R/ExportMethods.R

Defines functions .myColorMatrix .exportToTrack_clusters .plotReverseCumulatives

#' @include CAGEr.R
NULL

#' Plot reverse cumulative number of CAGE tags per CTSS
#' 
#' Plots the reverse cumulative distribution of the expression values of the
#' CTSS for all CAGE datasets present in the [`CAGEexp`] object.  The horizontal
#' axis represents an expression value and the vertical axis represents the
#' number of CTSS positions supported by >= of that value.  The plot uses a
#' log-log scale.  Use these plots as help in choosing the parameters range of
#' values and the referent slope for power-law normalization
#' (Balwierz _et al_., 2009).
#' 
#' A power law distribution is fitted to each reverse cumulative using the
#' values in the range specified `fitInRange`.  The fitted distribution is
#' defined by \deqn{y = -1 * alpha * x + beta} on the log-log scale, and the
#' value of _alpha_ for each sample is shown on the plot's legend.  In addition,
#' a suggested referent power law distribution to which all samples could be
#' normalized is drawn on the plot and corresponding parameters (slope _alpha_
#' and total number of tags _T_) are denoted on the plot.  This referent
#' distribution is chosen so that its slope (_alpha_) is the median of slopes
#' fitted to individual samples and its total number of tags (_T_) is the power
#' of 10 nearest to the median number of tags of individual samples.  Resulting
#' plots are helpful in deciding whether power-law normalization is appropriate
#' for given samples and reported `alpha` values aid in choosing optimal
#' _alpha_ value power law normalization (see [`normalizeTagCount`] for details).
#' 
#' @param object A `CAGEexp` object
#' 
#' @param values Plot `raw` CAGE tag counts (default) or `normalized` values.
#' 
#' @param fitInRange An integer vector with two values specifying a range of tag
#' count values to be used for fitting a power-law distribution to reverse
#' cumulatives.  Ignored is set to `NULL`.  See Details.
#' 
#' @param group The name of a column data of the `CAGEexp` object, to be used
#' to facet the plot.  If `NULL` (default), all the distributions will be
#' plotted together.  Set to `sampleLabels` to plot each sample separately.
#' 
#' @returns A [`ggplot2::ggplot`] object containing the plots.  The plot can
#' be further modified to change its title or axis labels (see
#' [`ggplot2::labs`]).  The legend can be removed with
#' [`ggplot2::guides`]`(col=FALSE)`.
#' 
#' @references Balwierz _et al_. (2009) Methods for analyzing deep sequencing
#' expression data: constructing the human and mouse promoterome with deepCAGE data,
#' _Genome Biology_ **10**(7):R79. <https://doi.org/10.1186/gb-2009-10-7-r79>
#' 
#' @author Vanja Haberle (original work)
#' @author Charles Plessy (port to ggplot2)
#' 
#' @seealso [`normalizeTagCount`]
#' @family CAGEr plot functions
#' @family CAGEr normalised data functions
#' 
#' @examples 
#' exampleCAGEexp <- setColors(exampleCAGEexp,
#'   c("salmon", "darkkhaki", "darkturquoise", "blueviolet", "blueviolet"))
#' exampleCAGEexp$grp <- c("a", "b", "b", "c", "c")
#' plotReverseCumulatives( exampleCAGEexp, fitInRange = c(5,100))
#' plotReverseCumulatives( exampleCAGEexp, values = "normalized"
#'                       , fitInRange = c(200, 2000), group = "sampleLabels")
#' plotReverseCumulatives( exampleCAGEexp[,4:5], fitInRange = c(5,100)) +
#'   ggplot2::ggtitle("prim6 replicates")
#' tagClustersGR(exampleCAGEexp) |> plotReverseCumulatives()
#' 
#' @importFrom ggplot2 aes geom_abline geom_step geom_vline ggplot ggtitle
#' @importFrom ggplot2 guides guide_legend labs
#' @importFrom ggplot2 scale_color_manual scale_x_log10 scale_y_log10
#' @importFrom rlang .data
#' @importFrom scales hue_pal
#' @importFrom stats cor median
#' @importFrom VGAM zeta
#' @export

setGeneric( "plotReverseCumulatives",
  function( object, values = c("raw", "normalized")
          , fitInRange = c(10, 1000)
          , group = NULL)
    standardGeneric("plotReverseCumulatives"))

# This is the main plotting function.
.plotReverseCumulatives <-
  function( object, values = c("raw", "normalized")
          , fitInRange = c(10, 1000)
          , group = NULL) {
  if (is.null(object@metadata$colData))
    stop("Expects a List-like object with a colData DataFrame in its metadata slot.")
  
  values <- match.arg(values)
  if (values == "raw") {
    xlab <- "Number of CAGE tags"
    ylab <- "Number of CTSSs >= number of tags"
  } else {
    xlab <- "Normalised expression value of CAGE tags"
    ylab <- "Number of CTSSs >= expression value"
  }
  
  if (is.null(group)) {
    object@metadata$colData$group <- "All samples"
    group <- "group"
  }
  
  if (is.null(object@metadata$colData$Colors)) {
    object@metadata$colData$Colors <- scales::hue_pal()(length(object))
  }
  
  toCumSums <- function(exprValues, sampleName) {
    # See benchmarks/sorted-abundance-benchmark.Rmd in the CAGEr's Git repository
    exprValues <- exprValues[exprValues != 0]
    exprValues <- sort(exprValues, decreasing = TRUE)
    DataFrame(x          = runValue(exprValues),
              y          = cumsum(runLength(exprValues)),
              sampleLabels = sampleName)
  }
  
  # Make a "long" table
  DF <- lapply( names(object)
              , function(s) toCumSums(object[[s]], s)
              ) |> do.call(what = rbind)
  
  # Enforce original sample order
  DF$plotOrder <- DF$sampleLabels |> ordered(unique(DF$sampleLabels))

  p <- as.data.frame(DF) |>
      merge( object@metadata$colData[,c('sampleLabels', group)] |> as.data.frame()
           , by="sampleLabels") |> ggplot() +
    aes(.data$x, .data$y, col = .data$plotOrder) +
    geom_step() +
    scale_x_log10() + scale_y_log10() +
    xlab(xlab) + ylab(ylab) +
    ggtitle("Reverse-cumulative plot")

  if(!is.null(fitInRange)) {
    fit.coefs.m <- sapply(object, val.range = fitInRange, \(x, val.range)
      .fit.power.law.to.reverse.cumulative(decode(x), val.range))
    fit.slopes <- fit.coefs.m[1,]
    reference.slope <- min(median(fit.slopes), -1.05)
    reference.library.size <- 10^floor(log10(median(sapply(object, sum))))
    reference.intercept <- log10(reference.library.size/VGAM::zeta(-1*reference.slope))  # intercept on log10 scale used for plotting with abline
    p <- p +
      geom_abline(intercept = reference.intercept, slope = reference.slope, color = "grey", linetype = "longdash") +
      geom_vline(xintercept = fitInRange, color = "darkgrey", linetype = "dotted") +
      scale_color_manual(
        values = object@metadata$colData$Colors,
        labels = paste0("(", formatC(-fit.slopes, format = "f", digits = 2), ") ",  names(fit.slopes))) +
      labs(subtitle = paste0("Ref. distribution alpha = ", sprintf("%.2f", -reference.slope), ", T = ", reference.library.size, ".")) +
      guides(col = guide_legend(title = "(alpha) sample names"))
  } else {
    p <- p +
      scale_color_manual(values = object@metadata$colData$Colors)
      guides(col = guide_legend(title = "Sample names"))
  }
  p + facet_wrap(group)
}

#' @rdname plotReverseCumulatives

setMethod("plotReverseCumulatives", "CAGEexp",
          function( object, values = c("raw", "normalized")
                  , fitInRange = c(10, 1000)
                  , group = NULL) {
  DF <- switch( match.arg(values)
                , raw        = CTSStagCountDF(object)
                , normalized = CTSSnormalizedTpmDF(object))
  DF@metadata$colData <- colData(object)
  # Remember DataFrames are just Lists.
  .plotReverseCumulatives(DF, values, fitInRange, group)
})

#' @rdname plotReverseCumulatives

setMethod("plotReverseCumulatives", "GRangesList",
          function( object, values = c("raw", "normalized")
                  , fitInRange = c(10, 1000)
                  , group = NULL) {
  L <- lapply(object, score) |> as("List")
  metadata(L) <- metadata(object)
  .plotReverseCumulatives(L, values, fitInRange, group)
})

#' @rdname plotReverseCumulatives

setMethod("plotReverseCumulatives", "GRanges",
          function( object, values = c("raw", "normalized")
                    , fitInRange = c(10, 1000)
                    , group = NULL) {
  if(is.null(group)) {
    sampleLabels <- "No sample name available"
  } else {
    sampleLabels <- group
  }
  L <- List(score(object))
  names(L) <- sampleLabels
  metadata(L)$colData <- metadata(object)$colData
  if (is.null(metadata(L)$colData)) metadata(L)$colData <- DataFrame(sampleLabels=sampleLabels)
  .plotReverseCumulatives(L, values, fitInRange, group = NULL)
})

#' @name plotInterquantileWidth
#' 
#' @title Plot cluster widths
#' 
#' @description Histograms of the interquantile width of tag clusters or
#' consensus clusters in each CAGE experiment.
#' 
#' @param object A [`CAGEexp`] object
#' 
#' @param clusters `tagClusters` or `consensusClusters`.
#' 
#' @param tpmThreshold Exclude clusters with normalized signal lower than `tpmThreshold`.
#' 
#' @param qLow,qUp Quantile defining the 5' ("lower") and 3' ("upper")
#'        boundaries of the clusters.
#' 
#' @param xlim Range of width to be plotted.
#' 
#' @details Interquantile width is a more robust measure of the promoter width
#' than the total span of the region, because it takes into account the
#' magnitude of the expression in the region.  Positions of specified quantiles
#' within each cluster have to be calculated beforehand by calling
#' [`quantilePositions`].
#' 
#' @return Plots the histograms with the `ggplot2` engine and returns the plot
#' object invisibly.
#' 
#' @author Vanja Haberle
#' @author Charles Plessy
#' 
#' @family CAGEr plot functions
#' @family CAGEr clusters functions
#' 
#' @importFrom ggplot2 ggplot scale_fill_manual geom_histogram facet_wrap
#' @importFrom ggplot2 ggtitle xlab ylab labs
#' 
#' @examples
#' 
#' plotInterquantileWidth( exampleCAGEexp, clusters = "tagClusters"
#'                       , tpmThreshold = 50, qLow = 0.1, qUp = 0.9
#'                       , xlim = c(2,200))
#'                       
#' plotInterquantileWidth( exampleCAGEexp, clusters = "consensusClusters"
#'                       , tpmThreshold = 50, qLow = 0.1, qUp = 0.9
#'                       , xlim = c(2,200))
#' 
#' @export

setGeneric( "plotInterquantileWidth"
          , function( object
                    , clusters = c("tagClusters", "consensusClusters")
                    , tpmThreshold = 5
                    , qLow = 0.1, qUp = 0.9, xlim = c(0,150))
            	standardGeneric("plotInterquantileWidth"))

#' @rdname plotInterquantileWidth

setMethod( "plotInterquantileWidth", "CAGEexp"
         , function (object, clusters, tpmThreshold, qLow, qUp, xlim) {
           
	clusters <- match.arg(clusters)
	getClustFun <- switch( clusters
	                     , tagClusters       = tagClustersGR
	                     , consensusClusters = consensusClustersGR)
  
  # Extract a list of data frames in "long" format for ggplot
	iqwidths <- lapply(seq_along(sampleLabels(object)), function(x) {
    gr <- getClustFun(object, x, qLow = qLow, qUp = qUp)
    gr <- gr[score(gr) >= tpmThreshold]
    data.frame(
      sampleName  = sampleLabels(object)[[x]],
      iq_width    = decode(gr$interquantile_width))
	})
	
	# Bind them together and set factor labels in proper order
	iqwidths <- do.call(rbind, iqwidths)
  iqwidths$sampleName <- factor(iqwidths$sampleName, levels = sampleLabels(object))
  iqwidths <- iqwidths[iqwidths$iq_width >= xlim[1] & iqwidths$iq_width <= xlim[2],]
  
	binsize <- round(max(iqwidths$iq_width)/2)
	
	ggplot2::ggplot(iqwidths) +
	  ggplot2::aes_string(x = "iq_width", fill = "sampleName") +
	  ggplot2::scale_fill_manual(values = names(sampleLabels(object))) +
	  ggplot2::geom_histogram(bins = binsize) +
	  ggplot2::facet_wrap("~sampleName") +
	  ggplot2::ggtitle(paste0(
	    switch(clusters, tagClusters = "Tag Clusters", consensusClusters = "Consenss Clusters"),
	    " interquantile width (quantile ", qLow, " to ", qUp, ")")) +
	  ggplot2::xlab("Interquantile width (bp)") +
	  ggplot2::ylab("Frequency") +
	  ggplot2::labs(fill = "Sample name")
})

#' @name plotExpressionProfiles
#' 
#' @title Plot CAGE expression profiles
#' 
#' @description Beanplot of distribution of normalized expression across CAGE
#' experiments for individual _expression classes_, colored and labeled
#' according to the information set when expression clustering was performed.
#' 
#' @param object A [`CAGEr`] object.
#' 
#' @param what `CTSS` or `consensusClusters`.
#' 
#' @details The beanplots are shown in one labeled box per _expression class_.
#' Each beanplot represents one CAGE experiment.  The vertical axis represents
#' scaled normalized expression.  The color of each class is determined by the
#' labels returned by expression clustering.
#' 
#' @author Vanja Haberle
#' @author Charles Plessy
#' 
#' @family CAGEr plot functions
#' @family CAGEr expression clustering functions
#'          
#' @examples
#' plotExpressionProfiles(exampleCAGEexp, what = "CTSS")
#' exampleCAGEexp |> plotExpressionProfiles("consensusClusters")
#' 
#' @importFrom reshape2 melt
#' @export

setGeneric( "plotExpressionProfiles"
          , function(object, what) standardGeneric("plotExpressionProfiles"))

#' @rdname plotExpressionProfiles

setMethod( "plotExpressionProfiles", "CAGEexp"
         , function (object, what=c("CTSS", "consensusClusters")) {
  what <- match.arg(what)
  
  if(what == "CTSS") {
    cl <- expressionClasses(CTSScoordinatesGR(object))
    cl.method <- CTSSexpressionClusteringMethod(object)
    DF <- CTSSnormalizedTpmDF(object)
	} else if (what == "consensusClusters") {
    cl <- expressionClasses(consensusClustersGR(object))
    cl.method <- consensusClustersExpressionClusteringMethod(object)
    DF <- DataFrame(consensusClustersTpm(object))
	}
  
  DF <- cbind(DF, exprClass=cl)
  DF <- DF[!is.na(cl),]
  df <- reshape2::melt(as.data.frame(DF), id="exprClass")

  ggplot2::ggplot(df) +
    ggplot2::aes_string(x = "value", y = "variable") +
    ggplot2::geom_violin() +
    ggplot2::facet_wrap(~exprClass) +
    ggplot2::scale_x_log10()
})


#' @name exportToTrack
#' 
#' @title Converts TSSs and clusters of TSSs to a genome browser track format
#' 
#' @description Converts _CTSS_, _tag clusters_ or _consensus clusters_ to the
#' `UCSCData` format of the `rtracklayer` package, that can be exported to BED
#' file(s) with track information for genome browsers.  _CTSSes_ and
#' _consensus clusters_ are optionally colored by their expression class.
#' _Tag clusters_ and _consensus clusters_ can be displayed in a
#' whiskerplot-like representation with a line showing full span on the cluster,
#' filled block showing interquantile range and a thick box denoting position of
#' the dominant (most frequently) used _TSS_.
#' 
#' @param object A [`CAGEexp`] object.
#' 
#' @param what Which elements should be exported: `CTSS` for
#' individual _CTSSs_,  `tagClusters` for _tag clusters_ or `consensusClusters`
#' for _consensus clusters_.
#' 
#' @param qLow,qUp Position of which "lower" (resp. "upper") quantile should be
#' used as 5' (resp. 3') boundary of the filled block in whiskerplot-like
#' representation of the cluster.  Default: `NULL` (plain line representation).
#' Ignored when `what = "CTSS"`.
#' 
#' @param colorByExpressionProfile Logical, should blocks be colored in the
#' color of their corresponding expression class.  Ignored when
#' `what` equals`"tagClusters"`.
#' 
#' @param oneTrack Logical, should the data be converted in an individual
#' object or a list of objects?
#' 
#' @details The BED representations of _CTSSs_, _tag cluster_ and
#' _consensus clusters_ can be directly visualised in the ZENBU or UCSC Genome
#' Browsers.
#' 
#' When `what = "CTSS"`, one `UCSCData` object with single track of 1 bp blocks
#' representing all detected CTSSs (in all CAGE samples) is created.  CTSSs can
#' be colored according to their expression class (see
#' [`getExpressionProfiles`] and [`plotExpressionProfiles`]).  For
#' `colorByExpressionProfile = FALSE`, CTSSs included in the clusters are
#' shown in black and CTSSs that were filtered out in gray.
#' 
#' When `what = "tagClusters"`, one track per CAGE dataset is created, which can
#' be exported to a single `UCSCData` object (by setting `oneFile = TRUE`) or separate
#' ones (`FALSE`).  If no quantile boundaries were provided (`qLow` and
#' `qUp` are `NULL`, TCs are represented as simple blocks showing the full
#' span of TC fromthe start to the end.  Setting `qLow` and/or `qUp` parameters
#' to a value of the desired quantile creates a gene-like representation with a
#' line showing full span of the TC, filled block showing specified
#' interquantile range and a thick 1 bp block denoting position of the dominant
#' (most frequently used) TSS.  All TCs in one track (one CAGE dataset) are
#' shown in the same color.
#' 
#' When `what = "consensusClusters"` _consensus clusters_ are exported.
#' Since there is only one set of consensus clusters common to all CAGE
#' datasets, only one track is created in case of a simple representation.  This
#' means that when `qLow = NULL` and `qUp = NULL` one track with blocks showing
#' the full span of consensus cluster from the start to the end is created.
#' However, the distribution of the CAGE signal within consensus cluster can be
#' different in different CAGE samples, resulting in different positions of 
#' quantiles and dominant TSS.  Thus, when `qLow` and/or `qUp` parameters
#' are set to a value of the desired quantile, a separate track with a gene-like
#' representation is created for every CAGE dataset.  These tracks can be
#' exported to a single `UCSCData` object (by setting `oneFile = TRUE`) or separate
#' ones (by setting `oneFile = FALSE`).  The gene-like representation is
#' analogous to the one described above for the TCs.  In all cases consensus
#' clusters can be colored according to their expression class (provided the
#' expression profiling of consensus clusters was done by calling
#' `getExpressionProfiles` function).  Colors of expression classes match the
#' colors in which they are shown in the plot returned by the
#' `plotExpressionProfiles` function.  For `colorByExpressionProfile = FALSE`
#' all consensus clusters are shown in black.
#' 
#' @return Returns either a `rtracklayer` `UCSCData` object, or a `GRangesList`
#' of them.
#' 
#' @author Vanja Haberle
#' @author Charles Plessy
#' 
#' @family CAGEr export functions
#' 
#' @examples 
#' # You can export from a CAGEexp object or from a cluster object directly:
#' exportToTrack(exampleCAGEexp, what = "CTSS")  # Is same as:
#' exportToTrack(CTSScoordinatesGR(exampleCAGEexp))  # Or:
#' exampleCAGEexp |> CTSScoordinatesGR() |> exportToTrack()
#' 
#' # Export a single sample, 
#' exampleCAGEexp |> CTSStagCountGR(2)      |> exportToTrack()
#' exampleCAGEexp |> CTSSnormalizedTpmGR(2) |> exportToTrack()
#' 
#' # Exporting multiple samples results in a GRangesList of UCSCData objects.
#' exportToTrack(exampleCAGEexp, what = "CTSS", oneTrack = FALSE)
#' exampleCAGEexp |> CTSStagCountGR("all")  |> exportToTrack()
#' exampleCAGEexp |> CTSSnormalizedTpmGR("all")  |> exportToTrack()
#' 
#' ### exporting CTSSs colored by expression class
#' # Temporarly disabled
#' # exportToTrack(exampleCAGEexp, what = "CTSS", colorByExpressionProfile = TRUE)
#' 
#' ### exporting tag clusters in gene-like representation
#' exportToTrack(exampleCAGEexp, what = "tagClusters", qLow = 0.1, qUp = 0.9)
#' tagClustersGR(exampleCAGEexp, 1) |> exportToTrack(qLow = 0.1, qUp = 0.9)
#'            
#' ### exporting consensus clusters
#' exportToTrack( exampleCAGEexp, what = "consensusClusters")
#' exampleCAGEexp |>
#'   consensusClustersGR("Zf.high", qLow = .1, qUp = .9) |>
#'   exportToTrack(qLow = .1, qUp = .9)
#' exportToTrack( exampleCAGEexp, what = "consensusClusters"
#'              , qLow = 0.1, qUp = 0.9, oneTrack = FALSE)
#' 
#' @export

setGeneric( "exportToTrack"
          , function( object, what = c("CTSS", "tagClusters", "consensusClusters")
                    , qLow = NULL, qUp = NULL
                    , colorByExpressionProfile = FALSE, oneTrack = TRUE)
            standardGeneric("exportToTrack"))

#' @rdname exportToTrack

setMethod( "exportToTrack", "CAGEexp"
         , function( object, what, qLow, qUp
                   , colorByExpressionProfile, oneTrack) {
  clusters <-
	  switch( match.arg(what)
	        , CTSS              = if (oneTrack) { CTSScoordinatesGR(object)
	                              } else { CTSStagCountGR(object, samples = "all") }
	        , tagClusters       = tagClustersGR(      object, qLow = qLow, qUp = qUp)
	        , consensusClusters = consensusClustersGR(object, qLow = qLow, qUp = qUp))
	
	exportToTrack( clusters, qLow = qLow, qUp = qUp
	             , colorByExpressionProfile = colorByExpressionProfile
	             , oneTrack = oneTrack)
})

#' @rdname exportToTrack

setMethod( "exportToTrack", "GRangesList"
           , function( object, what, qLow, qUp
                       , colorByExpressionProfile, oneTrack) {
  grl <- endoapply( object, exportToTrack
                  , qLow = qLow, qUp = qUp
                  , colorByExpressionProfile = colorByExpressionProfile
                  , oneTrack = FALSE)
  if (isTRUE(oneTrack)) {
    unlist(grl)
  } else {
    GRangesList(grl, compress = FALSE) # Because rtracklayer::export.bed does not like compressed GRangesList...
  }
})

#' @importFrom IRanges IRangesList
#' @rdname exportToTrack

setMethod( "exportToTrack", "GRanges",
function(object, what, qLow, qUp, colorByExpressionProfile, oneTrack) {
  if((! is.null(qLow)) & (! is.null(qUp)) ) {
    decoded.mat <-
      rbind( width(object)
           , mcols(object)[,paste0("q_", qLow)] |> decode()
           , mcols(object)[,paste0("q_", qUp)]  |> decode()
      )
    object$blocks <- IRangesList(apply(decoded.mat, 2, \(x) {
      # See benchmarks/BED12-blockInfo-benchmark.md
      width_value <- x[1]
      qLow_value  <- x[2]
      qUp_value   <- x[3]
      ir <- IRanges()                      |>
        c( if(qLow_value != 1) IRanges(1)) |>
        c( IRanges(qLow_value, qUp_value)) |>
        c( if(qUp_value != width_value) IRanges(width_value))
    }))
  }
  ucsc <- as(object, "UCSCData")
  score(ucsc) <- decode(score(ucsc))
  ucsc@trackLine <- new( "BasicTrackLine", name = "TC"
                       , description = "CAGE Tag Clusters (TC)"
                       , visibility="full")
  ucsc
})

#' @rdname exportToTrack

setMethod( "exportToTrack", "CTSS",
function( object, what, qLow, qUp, colorByExpressionProfile, oneTrack) {
  if (isTRUE(colorByExpressionProfile)) {
    stop("Coloring by expression profile is disabled for the moment.")
  } else {
    object$itemRgb <- ifelse(object$filteredCTSSidx, "black", "grey50")
  }
  if (is.null(score(object))) score(object) <- 0L
  trk <- exportToTrack( GRanges(object), qLow = qLow, qUp = qUp
                      , colorByExpressionProfile = colorByExpressionProfile
                      , oneTrack = oneTrack)
  sampleLabel <- sampleLabels(object)
  if(is.null(sampleLabel)) sampleLabel <- "All samples pooled"
  trk@trackLine@name <- paste0(sampleLabel, " (", trk@trackLine@name, ")")
  trk@trackLine@description <- paste0(sampleLabel, " (", trk@trackLine@description, ")")
  trk
})


.exportToTrack_clusters <- function( object, what, qLow, qUp, colorByExpressionProfile, oneTrack) {
  object$thick <- IRanges(ranges(object$dominant_ctss))
  object$dominant_ctss <- NULL
  names(object) <- NULL
  object$name <- NA
  exportToTrack( GRanges(object), qLow = qLow, qUp = qUp
                 , colorByExpressionProfile = colorByExpressionProfile
                 , oneTrack = oneTrack)
}

#' @rdname exportToTrack

setMethod( "exportToTrack", "TagClusters", .exportToTrack_clusters)

#' @rdname exportToTrack

setMethod( "exportToTrack", "ConsensusClusters", .exportToTrack_clusters)


# This function might be used later to restore the capacity of assigning a
# color to each SOM cluster.

.myColorMatrix <- function(color.mx, nrows, ncols, ...) {
  .myColorRamp <- function (vec, color.low="green", color.high="red", color.mid=NULL, alpha=1, value.low=min(vec), value.high=max(vec), value.mid=(value.low+value.high)/2, ...) {
    vec.01 <- rep(NA, length(vec))
    vec.01[vec <= value.low] <- 0
    vec.01[vec >= value.high] <- 1
    vec.01[vec>value.low & vec<=value.mid] <- 0.5*(vec[vec>value.low & vec<=value.mid]-value.low)/(value.mid-value.low)
    vec.01[vec>value.mid & vec<value.high] <- 0.5+ 0.5*(vec[vec>value.mid & vec<value.high]-value.mid)/(value.high-value.mid)
      cr <- colorRamp(c(color.low, color.mid, color.high),...)
      return(apply (cr(vec.01)/255, 1, function(x) rgb(x[1], x[2], x[3], alpha)))
    }
  top.row <- .myColorRamp(1:ncols,
    color.low=color.mx[1,1],
    color.mid=NULL,
    color.high=color.mx[1,2], ...)
  bottom.row <- .myColorRamp(1:ncols,
    color.low=color.mx[2,1],
    color.mid=NULL,
    color.high=color.mx[2,2], ...)
  sapply(1:ncols, function(i) .myColorRamp(1:nrows,
    color.low=top.row[i],
    color.mid=NULL,
    color.high=bottom.row[i], ...))
}
charles-plessy/CAGEr documentation built on Oct. 27, 2024, 10:11 p.m.