Description Usage Arguments Details Value Author(s) See Also
Derives the standardized slopes \boldsymbol{β}_{2, \cdots, k}^{\prime} of a linear regression model as a function of correlations.
1 | slopesprime(X, y)
|
X |
|
y |
Numeric vector of length |
The linear regression standardized slopes are calculated using
\boldsymbol{β}_{2, \cdots, k}^{\prime} = \mathbf{R}_{\mathbf{X}}^{T} \mathbf{r}_{\mathbf{y}, \mathbf{X}}
where
\mathbf{R}_{\mathbf{X}} is the p \times p correlation matrix of the regressor variables X_2, X_3, \cdots, X_k and
\mathbf{r}_{\mathbf{y}, \mathbf{X}} is the p \times 1 column vector of the correlations between the regressand y variable and regressor variables X_2, X_3, \cdots, X_k
Returns the standardized slopes \boldsymbol{β}_{2, \cdots, k}^{\prime} of a linear regression model derived from the correlation matrix.
Ivan Jacob Agaloos Pesigan
Other parameter functions:
.intercept()
,
.slopesprime()
,
.slopes()
,
intercept()
,
sigma2epsilon()
,
slopes()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.