Nothing
#' @include CTSS.R Multicore.R
#' @name clusterCTSS
#'
#' @title Cluster CTSSs into tag clusters
#'
#' @description Clusters individual CAGE transcription start sites (CTSSs) along
#' the genome into tag clusters (TCs) using specified _ab initio_ method, or
#' assigns them to predefined genomic regions.
#'
#' @param object A [`CAGEr`] object.
#'
#' @param threshold,nrPassThreshold Ignore CTSSs with signal `< threshold`
#' in `< nrPassThreshold` experiments.
#'
#' @param thresholdIsTpm Logical indicating if `threshold` is expressed in
#' raw tag counts (`FALSE`) or normalized signal (`TRUE`).
#'
#' @param method Method to be used for clustering: `"distclu"`,
#' `"paraclu"` or `"custom"`. See Details.
#'
#' @param maxDist Maximal distance between two neighbouring CTSSs for them to be
#' part of the same cluster. Used only when `method = "distclu"`,
#' otherwise ignored.
#'
#' @param removeSingletons Logical indicating if tag clusters containing only
#' one CTSS be removed. Ignored when `method = "custom"`.
#'
#' @param keepSingletonsAbove Controls which singleton tag clusters will be
#' removed. When `removeSingletons = TRUE`, only singletons with signal
#' `< keepSingletonsAbove` will be removed. Useful to prevent removing
#' highly supported singleton tag clusters. Default value `Inf` results
#' in removing all singleton TCs when `removeSingletons = TRUE`. Ignored
#' when `method = "custom"`.
#'
#' @param minStability Minimal stability of the cluster, where stability is
#' defined as ratio between maximal and minimal density value for which
#' this cluster is maximal scoring. For definition of stability refer to
#' Frith _et al._, Genome Research, 2007. Clusters with stability
#' `< minStability` will be discarded. Used only when `method = "paraclu"`.
#'
#' @param maxLength Maximal length of cluster in base-pairs. Clusters with length
#' `> maxLength` will be discarded. Ignored when `method = "custom"`.
#'
#' @param reduceToNonoverlapping Logical, should smaller clusters contained
#' within bigger cluster be removed to make a final set of tag clusters
#' non-overlapping. Used only `method = "paraclu"`.
#'
#' @param customClusters Genomic coordinates of predefined regions to be used to
#' segment the CTSSs. The format is either a [`GRanges`] object or a
#' [`data.frame`] with the following columns: `chr` (chromosome name),
#' `start` (0-based start coordinate), `end` (end coordinate), `strand`
#' (either `"+"`, or `"-"`). Used only when `method = "custom"`.
#'
#' @param useMulticore Logical, should multicore be used. `useMulticore = TRUE`
#' has no effect on non-Unix-like platforms.
#'
#' @param nrCores Number of cores to use when `useMulticore = TRUE`. Default
#' value `NULL` uses all detected cores.
#'
#' @details The `"distclu"` method is an implementation of simple distance-based
#' clustering of data attached to sequences, where two neighbouring TSSs are
#' joined together if they are closer than some specified distance (see
#' [`distclu-functions`] for implementation details.
#'
#' `"paraclu"` is an implementation of Paraclu algorithm for parametric
#' clustering of data attached to sequences (Frith _et al._, Genome Research,
#' 2007). Since Paraclu finds clusters within clusters (unlike distclu),
#' additional parameters (`removeSingletons`, `keepSingletonsAbove`,
#' `minStability`, `maxLength` and `reduceToNonoverlapping`) can be specified to
#' simplify the output by discarding too small (singletons) or too big clusters,
#' and to reduce the clusters to a final set of non-overlapping clusters.
#'
#' Clustering is done for every CAGE dataset within the CAGEr object separately,
#' resulting in a different set of tag clusters for every CAGE dataset. TCs from
#' different datasets can further be aggregated into a single referent set of
#' consensus clusters by calling the [`aggregateTagClusters`] function.
#'
#' @return The slots `clusteringMethod`, `filteredCTSSidx` and `tagClusters` of
#' the provided [`CAGEset`] object will be occupied by the information on method
#' used for clustering, CTSSs included in the clusters and list of tag clusters
#' per CAGE experiment, respectively. To retrieve tag clusters for individual
#' CAGE dataset use the [`tagClusters()`] function.
#'
#' In [`CAGEexp`] objects, the results will be stored as a `GRangesList` of
#' [`TagClusters`] objects in the metadata slot `tagClusters`. The
#' `TagClusters` objects will contain a `filteredCTSSidx` column if appropriate.
#' The clustering method name is saved in the metadata slot of the `GRangesList`.
#'
#' @references Frith _et al._ (2007) A code for transcription initiation in
#' mammalian genomes, _Genome Research_ **18**(1):1-12,
#' (\href{http://www.cbrc.jp/paraclu/}{http://www.cbrc.jp/paraclu/}).
#'
#' @author Vanja Haberle
#'
#' @seealso [`tagClusters`], [`aggregateTagClusters`] and [`CTSSclusteringMethod`].
#'
#' @family CAGEr object modifiers
#' @family CAGEr clusters functions
#'
#' @examples
#' head(tagClusters(exampleCAGEset, "sample1"))
#' clusterCTSS( object = exampleCAGEset, threshold = 50, thresholdIsTpm = TRUE
#' , nrPassThreshold = 1, method = "distclu", maxDist = 20
#' , removeSingletons = TRUE, keepSingletonsAbove = 100)
#' head(tagClusters(exampleCAGEset, "sample1"))
#'
#' clusterCTSS( exampleCAGEexp, threshold = 50, thresholdIsTpm = TRUE
#' , nrPassThreshold = 1, method = "distclu", maxDist = 20
#' , removeSingletons = TRUE, keepSingletonsAbove = 100)
#' tagClustersGR(exampleCAGEexp, "Zf.30p.dome")
#'
#' @export
setGeneric( "clusterCTSS"
, function( object
, threshold = 1, nrPassThreshold = 1, thresholdIsTpm = TRUE
, method = c("distclu", "paraclu", "custom"), maxDist = 20
, removeSingletons = FALSE, keepSingletonsAbove = Inf
, minStability = 1, maxLength = 500
, reduceToNonoverlapping = TRUE, customClusters = NULL
, useMulticore = FALSE, nrCores = NULL)
standardGeneric("clusterCTSS"))
#' @rdname clusterCTSS
setMethod( "clusterCTSS", "CAGEset"
, function( object, threshold, nrPassThreshold, thresholdIsTpm, method
, maxDist, removeSingletons, keepSingletonsAbove, minStability
, maxLength, reduceToNonoverlapping, customClusters
, useMulticore, nrCores) {
objName <- deparse(substitute(object))
sample.labels <- sampleLabels(object)
message("\nFiltering CTSSs below threshold...")
if(thresholdIsTpm){
if (identical(object@normalizedTpmMatrix, data.frame()))
stop("Could not find normalized CAGE signal values, see ?normalizeTagCount.")
data <- object@normalizedTpmMatrix
}else{
if (identical(object@tagCountMatrix, data.frame()))
stop("Could not find CTSS tag counts, see ?getCTSS.")
data <- object@tagCountMatrix
}
if (identical(object@normalizedTpmMatrix, data.frame()))
stop("Could not find normalized CAGE signal values, see ?normalizeTagCount.\n",
"clusterCTSS() needs normalized values to create its output tables, that ",
"include TPM expression columns.")
idx <- NULL # Initialise to keep R CMD check happy.
getCTSSdataSE <- function() {
if(threshold > 0){
nr.pass.threshold <- apply(data, 1, function(x) {sum(x >= threshold)})
idx <<- nr.pass.threshold >= min(nrPassThreshold, length(sample.labels))
data <<- CTSStagCountSE(object)[idx,]
}else{
data <<- CTSStagCountSE(object)
idx <<- rep(TRUE, nrow(data))
}}
getCTSSdatadf <- function() {
if(threshold > 0){
nr.pass.threshold <- apply(data, 1, function(x) {sum(x >= threshold)})
idx <<- nr.pass.threshold >= min(nrPassThreshold, length(sample.labels))
data <<- cbind(CTSScoordinates(object)[idx,], object@normalizedTpmMatrix[idx,,drop=F])
}else{
data <<- cbind(CTSScoordinates(object), object@normalizedTpmMatrix)
idx <<- rep(TRUE, nrow(data))
}}
message("Clustering...")
method <- match.arg(method)
if(method == "distclu"){
getCTSSdataSE()
ctss.cluster.list <- .distclu(se = data, max.dist = maxDist, removeSingletons = removeSingletons, keepSingletonsAbove = keepSingletonsAbove, useMulticore = useMulticore, nrCores = nrCores)
}else if (method == "paraclu"){
getCTSSdatadf()
ctss.cluster.list <- .paraclu(data = data, sample.labels = sample.labels, minStability = minStability, maxLength = maxLength, removeSingletons = removeSingletons, keepSingletonsAbove = keepSingletonsAbove, reduceToNonoverlapping = reduceToNonoverlapping, useMulticore = useMulticore, nrCores = nrCores)
}else if(method == "custom"){
getCTSSdatadf()
if(length(customClusters)==0){
stop("'customClusters' must be given when method = \"custom\"")
}
ctss.cluster.list <- .predefined.clusters(data = data, sample.labels = sample.labels, custom.clusters = customClusters, useMulticore = useMulticore, nrCores = nrCores)
}
object@filteredCTSSidx <- idx
object@clusteringMethod <- method
if (method == "distclu") {
ctss.cluster.list <- lapply(ctss.cluster.list, TCgranges2dataframe)
}
object@tagClusters <- ctss.cluster.list
assign(objName, object, envir = parent.frame())
invisible(1)
})
#' @rdname clusterCTSS
setMethod( "clusterCTSS", "CAGEexp"
, function( object, threshold, nrPassThreshold, thresholdIsTpm, method, maxDist
, removeSingletons, keepSingletonsAbove, minStability, maxLength
, reduceToNonoverlapping, customClusters, useMulticore, nrCores) {
objName <- deparse(substitute(object))
assay <- ifelse(isTRUE(thresholdIsTpm), "normalizedTpmMatrix", "counts")
data <- CTSStagCountSE(object)
if (! "normalizedTpmMatrix" %in% assayNames(data))
stop( "Could not find normalized CAGE signal values, see ?normalizeTagCount.\n"
, "clusterCTSS() needs normalized values to create its output tables, that "
, "include TPM expression columns.")
message("\nFiltering out CTSSs below threshold...")
filteredCTSSidx(object) <-
.filterCtss(data, threshold = threshold
, nrPassThreshold = nrPassThreshold, thresholdIsTpm = thresholdIsTpm)
message("Clustering...")
method <- match.arg(method)
if (method == "distclu") {
ctss.cluster.list <- .distclu( se = data[decode(filteredCTSSidx(object)),]
, max.dist = maxDist, removeSingletons = removeSingletons
, keepSingletonsAbove = keepSingletonsAbove
, useMulticore = useMulticore, nrCores = nrCores)
} else if (method == "paraclu") {
ctss.cluster.list <- .paraclu( data = data[decode(filteredCTSSidx(object)),]
, sample.labels = sampleLabels(object)
, minStability = minStability, maxLength = maxLength
, removeSingletons = removeSingletons
, keepSingletonsAbove = keepSingletonsAbove
, reduceToNonoverlapping = reduceToNonoverlapping
, useMulticore = useMulticore, nrCores = nrCores)
} else if(method == "custom") {
if(is.null(customClusters))
stop(sQuote("customClusters"), " must be given when method = ", sQuote("custom"), ".")
ctss.cluster.list <- .predefined.clusters( data = data[decode(filteredCTSSidx(object)),]
, sample.labels = sampleLabels(object)
, custom.clusters = customClusters
, useMulticore = useMulticore, nrCores = nrCores)
}
CTSSclusteringMethod(ctss.cluster.list) <- method
metadata(object)$tagClusters <- ctss.cluster.list
assign(objName, object, envir = parent.frame())
invisible(1)
})
#' @name .clusterAggregateAndSum
#' @rdname clusterAggregateAndSum
#'
#' @param clusters Clusters to be aggregated. `data.frame`, or
#' `GRanges`, which will be coerced to `data.frame`.
#'
#' @param key Name of the column containing the factor used to aggregate
#' the clusters.
#'
#' @title Aggregate identical clusters and sum their scores.
#'
#' @description Private function using `data.table` objects to preform grouping
#' operations at a high performance. These functions use _non-standard
#' evaluation_ in a context that raises warnings in `R CMD check`. By
#' separating these functions from the rest of the code, I hope to make the
#' workarounds easier to manage.
setGeneric(".clusterAggregateAndSum", function (clusters, key) standardGeneric(".clusterAggregateAndSum"))
#' @rdname clusterAggregateAndSum
#' @importFrom data.table setkeyv setnames
setMethod(".clusterAggregateAndSum", "data.table", function (clusters, key) {
setkeyv(clusters, key)
chr <- min <- max <- strand <- tpm <- NULL
clusters <- clusters[ , list( chr[1]
, min(start)
, max(end)
, strand[1]
, sum(tpm))
, by = key]
setnames(clusters, c(key, "chr", "start", "end", "strand", "tpm"))
setkeyv(clusters, key)
})
#' @rdname clusterAggregateAndSum
#' @importFrom data.table data.table
setMethod(".clusterAggregateAndSum", "data.frame", function (clusters, key) {
as.data.frame(.clusterAggregateAndSum(data.table(clusters), key))
})
#' @rdname clusterAggregateAndSum
setMethod(".clusterAggregateAndSum", "GRanges", function (clusters, key) {
CCdataframe2granges(.clusterAggregateAndSum(CCgranges2dataframe(clusters), key))
})
#' @rdname byCtss
#'
#' @title Apply functions to identical CTSSes.
#'
#' @param ctssDT A \code{\link{data.table}} representing CTSSes.
#' @param colName The name of the column on which to apply the function.
#' @param fun The function to apply.
#'
#' @description \code{.byCTSS} is a private function using \code{data.table} objects
#' to preform grouping operations at a high performance. These functions use
#' \emph{non-standard evaluation} in a context that raises warnings in \code{R CMD check}.
#' By separating these functions from the rest of the code, I hope to make the workarounds
#' easier to manage.
#'
#' @examples
#' ctssDT <- data.table::data.table(
#' chr = c("chr1", "chr1", "chr1", "chr2"),
#' pos = c(1 , 1 , 2 , 1 ),
#' strand = c("+" , "+" , "-" , "-" ),
#' tag_count = c(1 , 1 , 1 , 1 ))
#' ctssDT
#' CAGEr:::.byCtss(ctssDT, "tag_count", sum)
setGeneric( ".byCtss"
, function (ctssDT, colName, fun) standardGeneric(".byCtss"))
#' @rdname byCtss
setMethod(".byCtss", "data.table", function (ctssDT, colName, fun) {
if (! all(c("chr", "pos", "strand") %in% colnames(ctssDT))) stop("These are not CTSSes.")
chr <- pos <- strand <- .SD <- NULL
ctssDT[ , fun(.SD[[1]])
, by = list(chr, pos, strand)
, .SDcols = colName]
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.