Nothing
ui.modules_pancan_cross_gene_o2m = function(id) {
ns = NS(id)
fluidPage(
fluidRow(
# 初始设置
column(
3,
wellPanel(
style = "height:1100px",
h2("S1: Preset", align = "center"),
h4(strong("S1.1 Modify datasets"),"[Only for S1.3]") %>%
helper(type = "markdown", size = "l", fade = TRUE,
title = "Modify datasets",
content = "data_origin"),
mol_origin_UI(ns("mol_origin2cor"), database = "toil"),
h4(strong("S1.2 Choose cancers")) %>%
helper(type = "markdown", size = "l", fade = TRUE,
title = "Cancer types",
content = "tcga_types"),
pickerInput(
ns("choose_cancers"), NULL,
choices = sort(tcga_names),
multiple = TRUE,
selected = sort(tcga_names),
options = list(`actions-box` = TRUE)
),
br(),
h4(strong("S1.3 Filter samples"),"[opt]") %>%
helper(type = "markdown", size = "l", fade = TRUE,
title = "Filter samples",
content = "choose_samples"),
h5("Quick filter:"),
pickerInput(
ns("filter_by_code"), NULL,
choices = NULL, selected = NULL,
multiple = TRUE, options = list(`actions-box` = TRUE)
),
h5("Exact filter:"),
filter_samples_UI(ns("filter_samples2cor"), database = "toil"),
br(),
verbatimTextOutput(ns("filter_phe_id_info")),
br()
)
),
# 下载X轴数据
column(
3,
wellPanel(
style = "height:1100px",
h2("S2: Get data", align = "center"),
# 调用下载模块UI
h4(strong("S2.1 Select one gene")),
virtualSelectInput(
inputId = ns("gene_id"),
label = NULL,
choices = NULL,
search = TRUE),
br(),
h4(strong("S2.2 Load mRNA/Mutation/CNV data")),
shinyWidgets::actionBttn(
ns("step2_2_load"), "Load",
style = "gradient",
icon = icon("box"),
color = "primary",
block = TRUE,
size = "sm"
),
br(),
verbatimTextOutput(ns("step2_2_text")),
br(),
h4(strong("S2.3 Load transcript data")),
checkboxInput(ns("overall_trans"), label = "Add overall(mean) values for all transcripts", value = TRUE),
virtualSelectInput(
inputId = ns("trans_id"),
multiple = TRUE,
label = NULL,
choices = NULL,
search = TRUE),
shinyWidgets::actionBttn(
ns("step2_3_load"), "Load",
style = "gradient",
icon = icon("box"),
color = "primary",
block = TRUE,
size = "sm"
),
br(),
verbatimTextOutput(ns("step2_3_text")),
br(),
h4(strong("S2.4 Load methylation (450K) data")),
checkboxInput(ns("overall_methy"), label = "Add overall(mean) values for all cpg sites", value = TRUE),
virtualSelectInput(
inputId = ns("methy_id"),
multiple = TRUE,
label = NULL,
choices = NULL,
search = TRUE),
shinyWidgets::actionBttn(
ns("step2_4_load"), "Load",
style = "gradient",
icon = icon("box"),
color = "primary",
block = TRUE,
size = "sm"
),
br(),
verbatimTextOutput(ns("step2_4_text")),
)
),
# 分析/绘图/下载
column(
6,
wellPanel(
h2("S3: Analyze & Visualize", align = "center") %>%
helper(type = "markdown", size = "l", fade = TRUE,
title = "Analyze & Visualize",
content = "cross_gene"),
style = "height:1100px",
# h4(strong("S3.1 Set analysis parameters")),
# h4(strong("S3.2 Set visualization parameters")),
shinyWidgets::actionBttn(
ns("step3_plot"), "Run (Visualize)",
style = "gradient",
icon = icon("chart-line"),
color = "primary",
block = TRUE,
size = "sm"
),
br(),
fluidRow(
column(12, offset = 0,
plotOutput({ns("funky_plot")}, height = "700px")
)
),
br(),
fluidRow(
column(3,
div(shinyjs::hidden(downloadButton(ns("save_plot_bt"), "Figure")), style="display: inline-block;vertical-align:top;"),
div(style="display: inline-block;vertical-align:top",
dropMenu(
actionBttn(ns("plot_opt"),label = NULL,style = "material-circle",
color = "success",icon = icon("gear")),
div(h3("1. Height:"),style="width:400px;"),
numericInput(ns("save_plot_H"), NULL ,min = 1, max = 20, value = NULL, step = 0.1),
div(h3("2. Width:"),style="width:400px;"),
numericInput(ns("save_plot_W"), NULL ,min = 1, max = 20, value = NULL, step = 0.1),
div(h3("3. Format:"),style="width:400px;"),
radioGroupButtons(
inputId = ns("save_plot_F"),
label = NULL,
status = "primary",
choices = c("PDF", "PNG"),
justified = TRUE
),
placement = "top"
)
)
),
column(3, offset = 0, shinyjs::hidden(downloadButton(ns("save_data_res"), "Statistical data(.csv)")))
)
)
)
)
)
}
server.modules_pancan_cross_gene_o2m = function(input, output, session) {
ns <- session$ns
# 记录选择癌症
cancer_choose <- reactiveValues(name = "ACC", phe_primary="",
filter_phe_id=query_tcga_group(database = "toil", cancer = "BRCA", return_all = T))
observe({
cancer_choose$name = input$choose_cancers
cancer_choose$phe_primary <- query_tcga_group(database = "toil", cancer = cancer_choose$name, return_all = T)
})
# 数据源设置
opt_pancan = callModule(mol_origin_Server, "mol_origin2cor", database = "toil")
custom_meta_sig = reactive(NULL)
sig_dat = reactive(NULL)
## 过滤样本
# exact filter module
filter_phe_id = callModule(filter_samples_Server, "filter_samples2cor",
database = "toil",
cancers=reactive(cancer_choose$name),
custom_metadata=reactive(custom_meta_sig()),
opt_pancan = reactive(opt_pancan()))
# quick filter widget
observe({
code_types_valid = code_types[names(code_types) %in%
unique(cancer_choose$phe_primary$Code)]
code_types_valid = setdiff(code_types_valid, "NT (normal tissue)")
updatePickerInput(
session,
"filter_by_code",
choices = unlist(code_types_valid,use.names = F),
selected = unlist(code_types_valid,use.names = F)
)
})
# 综合上述二者
observe({
# quick filter
choose_codes = names(code_types)[unlist(code_types) %in% input$filter_by_code]
filter_phe_id2 = cancer_choose$phe_primary %>%
dplyr::filter(Code %in% choose_codes) %>%
dplyr::pull("Sample")
# exact filter
if(is.null(filter_phe_id())){
cancer_choose$filter_phe_id = filter_phe_id2
} else {
cancer_choose$filter_phe_id = intersect(filter_phe_id2,filter_phe_id())
}
output$filter_phe_id_info = renderPrint({
cat(paste0("Tip: ", length(cancer_choose$filter_phe_id), " samples are retained"))
})
})
check_omics = reactiveValues(mRNA=TRUE,mutation=TRUE,cnv=TRUE)
updateVirtualSelect(
"gene_id",
choices = tcga_id_option[["Molecular profile"]][["mRNA Expression"]]$all,
selected = tcga_id_option[["Molecular profile"]][["mRNA Expression"]]$default
)
notify <- function(msg, id = NULL) {
showNotification(msg, id = id, duration = NULL, closeButton = FALSE, type = "message")
}
observeEvent(input$step2_2_load, {
id <- notify(h3("[1/3] Caching mRNA data..."))
on.exit(removeNotification(id), add = TRUE)
dat_tmp = query_pancan_value(input$gene_id, "mRNA")
if(all(is.na(dat_tmp$expression))){check_omics$mRNA=FALSE}
Sys.sleep(0.5)
notify(h3("[2/3] Caching mutation data..."), id = id)
dat_tmp = query_pancan_value(input$gene_id, "mutation")
if(all(is.na(dat_tmp))){check_omics$mutation=FALSE}
Sys.sleep(0.5)
notify(h3("[3/3] Caching CNV data..."), id = id)
opt_pancan = .opt_pancan
opt_pancan$toil_cnv$use_thresholded_data=T
dat_tmp = query_pancan_value(input$gene_id, "cnv",opt_pancan = opt_pancan)
if(all(is.na(dat_tmp$data))){check_omics$cnv=FALSE}
Sys.sleep(0.5)
output$step2_2_text = renderPrint({
cat(paste0("Tips: \n(1) mRNA is ",
ifelse(check_omics$mRNA,"OK; ","missing; "),
"\n(2) Mutation is ",
ifelse(check_omics$mutation,"OK; ","missing; "),
"\n(3) CNV is ",
ifelse(check_omics$cnv,"OK.","missing.")
))
})
})
candi_trans = reactive({
# req(input$gene_id)
load_data("v2_tpc_id_help")$tcga$id_trans %>%
dplyr::filter(Symbol == input$gene_id) %>%
dplyr::pull(Level3) %>% sort()
})
observe({
updateVirtualSelect(
"trans_id",
choices = candi_trans(),
selected = candi_trans()[1:5]
)
})
observeEvent(input$step2_3_load, {
withProgress(message = "Caching transcript... ", {
valid_trans = rep(TRUE, length(input$trans_id))
for (i in seq(input$trans_id)) {
incProgress(1 / length(input$trans_id), detail = paste0("Now: ",i))
# gene_trans_tmp = query_pancan_value(input$trans_id[i], "transcript")
gene_trans_tmp = query_pancan_value(
input$trans_id[i], "transcript"
) %>% as.data.frame() %>%
dplyr::select(expression) %>%
dplyr::rename("Trans"="expression") %>%
tibble::rownames_to_column("sample") %>%
dplyr::inner_join(tcga_gtex) %>%
dplyr::filter(type2=="tumor") %>%
dplyr::group_by(tissue) %>%
dplyr::summarise(Trans = median(Trans))
if(sd(gene_trans_tmp$Trans)==0){
valid_trans[i] = FALSE
}
}
check_omics$valid_trans = input$trans_id[valid_trans]
})
output$step2_3_text = renderPrint({
cat(paste0("Tip: ",length(check_omics$valid_trans)," valid transcript(s) is cached."))
})
})
candi_methy = reactive({
load_data("v2_tpc_id_help")$tcga$id_M450 %>%
dplyr::filter(Level3 == input$gene_id) %>%
dplyr::pull(CpG) %>% sort()
})
observe({
updateVirtualSelect(
"methy_id",
choices = candi_methy(),
selected = candi_methy()[1:5]
)
})
observeEvent(input$step2_4_load, {
withProgress(message = "Caching methylation... ", {
for (i in seq(input$methy_id)) {
incProgress(1 / length(input$methy_id), detail = paste0("Now: ",i))
opt_pancan = .opt_pancan
opt_pancan$toil_methylation$rule_out = setdiff(candi_methy(), input$methy_id[i])
opt_pancan$toil_methylation$aggr = "mean"
gene_methy_tmp = query_pancan_value(input$gene_id, "methylation", opt_pancan=opt_pancan)
}
})
check_omics$valid_methy = input$methy_id
output$step2_4_text = renderPrint({
# cat(paste0("Tip: Methylation is OK."))
cat(paste0("Tip: ",length(check_omics$valid_methy)," valid cpg site(s) is cached."))
})
})
plot_func = eventReactive(input$step3_plot,{
shiny::validate(
need(all(check_omics$mRNA,check_omics$mRNA,check_omics$mRNA),
"Please load valid mRNA/Mutation/CNV data in Step2.2"),
# need(try(length(check_omics$valid_trans)>0),
# "Please load valid transcript data in Step2.3"),
# need(try(length(check_omics$valid_methy)>0),
# "Please load valid methylation data in Step2.4"),
need(try(length(check_omics$valid_trans)<15),
"Please select less than 15 transcript in Step2.3"),
need(try(length(check_omics$valid_methy)<15),
"Please select less than 15 methylation CpG sites in Step2.4"),
)
shinyjs::disable("step3_plot")
res = vis_gene_cross_omics(input$gene_id,
tumor_projects = cancer_choose$name,
tumor_samples = cancer_choose$filter_phe_id,
n_trans = check_omics$valid_trans,
n_methy = check_omics$valid_methy,
add_mean_trans = input$overall_trans,
add_mean_methy = input$overall_methy,
return_list = TRUE)
shinyjs::enable("step3_plot")
res
})
output$funky_plot = renderPlot({plot_func()$plot})
# three download buttons
observeEvent(input$step3_plot, {
shinyjs::show("save_plot_bt")
shinyjs::show("save_data_res")
updateNumericInput(session, "save_plot_H", value = plot_func()$plot$height)
updateNumericInput(session, "save_plot_W", value = plot_func()$plot$width)
})
output$save_plot_bt = downloadHandler(
filename = function(){
paste0("Plot", "_",format(Sys.time(), "%Y-%m-%d_%H-%M-%S"), ".",tolower(input$save_plot_F))
},
content = function(file){
p = plot_func()$plot
if (input$save_plot_F == "PDF") {
pdf(file, width = input$save_plot_W, height = input$save_plot_H, onefile = FALSE)
print(p)
dev.off()
} else if (input$save_plot_F == "PNG"){
png(file, width = input$save_plot_W, height = input$save_plot_H, res = 600, units = "in")
print(p)
dev.off()
}
}
)
output$save_data_res = downloadHandler(
filename = function(){
paste0("Statdata_",format(Sys.time(), "%Y-%m-%d_%H-%M-%S"), ".csv")
},
content = function(file){
p_stat = plot_func()$data
p_stat = apply(p_stat,2,as.character) #list column
write.csv(p_stat, file, row.names = FALSE)
}
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.