R/family.survival.R

Defines functions bisa rbisa qbisa pbisa dbisa double.cens.normal

Documented in bisa dbisa double.cens.normal pbisa qbisa rbisa

# These functions are
# Copyright (C) 1998-2024 T.W. Yee, University of Auckland.
# All rights reserved.











 double.cens.normal <-
  function(r1 = 0, r2 = 0,
           lmu = "identitylink",
           lsd = "loglink",
           imu = NULL, isd = NULL,
           zero = "sd") {
  if (!is.Numeric(r1, length.arg = 1, integer.valued = TRUE) ||
      r1 < 0)
    stop("bad input for 'r1'")
  if (!is.Numeric(r2, length.arg = 1, integer.valued = TRUE) ||
      r2 < 0)
    stop("bad input for 'r2'")

  lmu <- as.list(substitute(lmu))
  emu <- link2list(lmu)
  lmu <- attr(emu, "function.name")

  lsd <- as.list(substitute(lsd))
  esd <- link2list(lsd)
  lsd <- attr(esd, "function.name")


  new("vglmff",
  blurb = c("Univariate normal distribution with ",
            "double censoring\n\n",
            "Links:    ",
            namesof("mu", lmu, earg = emu, tag = TRUE), ", ",
            namesof("sd", lsd, earg = esd, tag = TRUE),
            "\n",
            "Variance: sd^2"),
  constraints = eval(substitute(expression({
    constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
                                predictors.names = predictors.names,
                                M1 = 2)
  }) , list( .zero = zero))),

  infos = eval(substitute(function(...) {
    list(M1 = 2,
         Q1 = 1,
         expected = TRUE,
         multipleResponses = FALSE,
         parameters.names = c("mu", "sd"),
         lmu = .lmu ,
         lsd = .lsd ,
         zero = .zero )
  }, list( .zero = zero, .lmu = lmu, .lsd = lsd ))),

  initialize = eval(substitute(expression({
    predictors.names <-
      c(namesof("mu", .lmu , earg = .emu , tag = FALSE),
        namesof("sd", .lsd , earg = .esd , tag = FALSE))

    if (ncol(y <- cbind(y)) != 1)
      stop("the response must be a vector or a one-column matrix")

    if (length(w) != n ||
      !is.Numeric(w, integer.valued = TRUE, positive = TRUE))
      stop("the argument 'weights' must be a vector ",
           "of positive integers")

    sumw <- sum(w)
    extra$bign <- sumw + .r1 + .r2  # Tot num

    if (!length(etastart)) {
      yyyy.est <- if (length( .imu )) .imu else median(y)
      sd.y.est <- if (length( .isd )) .isd else {
        junk <- lm.wfit(x = x, y = c(y), w = c(w))
        1.25 * sqrt( sum(w * junk$resid^2) / junk$df.residual )
      }
      yyyy.est <- rep_len(yyyy.est , n)
      sd.y.est <- rep_len(sd.y.est , n)
      etastart <-
        cbind(mu = theta2eta(yyyy.est, .lmu , earg = .emu ),
              sd = theta2eta(sd.y.est, .lsd , earg = .esd ))
    }
  }) , list( .lmu = lmu, .lsd = lsd,
             .emu = emu, .esd = esd,
             .imu = imu, .isd = isd,
             .r1 = r1, .r2 = r2 ))),
  linkinv = function(eta, extra = NULL) eta[, 1],
  last = eval(substitute(expression({
    misc$link <-    c(mu = .lmu , sd = .lsd )

    misc$earg <- list(mu = .emu , sd = .esd )

    misc$multipleResponses <- FALSE
    misc$expected <- TRUE
    misc$r1 <- .r1
    misc$r2 <- .r2
  }) , list( .lmu = lmu, .lsd = lsd,
             .emu = emu, .esd = esd,
             .r1 = r1, .r2 = r2 ))),
  loglikelihood = eval(substitute(
    function(mu, y, w, residuals = FALSE, eta, extra = NULL,
             summation = TRUE) {
    sd <- eta2theta(eta[, 2], .lsd , earg = .esd )

    if (!summation)
      stop("cannot handle 'summation = FALSE' yet")

    if (residuals) {
      stop("loglikelihood residuals not implemented yet")
    } else {
      sum(w * dnorm(y, m = mu, sd = sd, log = TRUE)) +
      (if ( .r1 == 0) 0 else {
         z1 <- min((y - mu) / sd)
         Fz1 <- pnorm(z1)
         .r1 * log(Fz1)}) +
      (if ( .r2 == 0) 0 else {
         z2 <- max((y - mu) / sd)
         Fz2 <- pnorm(z2)
         .r2 * log1p(-Fz2)})
    }
  } , list( .lmu = lmu, .lsd = lsd,
            .emu = emu, .esd = esd,
            .r1 = r1, .r2 = r2 ))),
  vfamily = c("double.cens.normal"),
  validparams = eval(substitute(function(eta, y, extra = NULL) {
    mu <- eta[, 1]
    sd <- eta2theta(eta[, 2], .lsd , earg = .esd )
    okay1 <- all(is.finite(mu)) &&
             all(is.finite(sd)) && all(0 < sd)
    okay1
  }, list( .lmu = lmu, .lsd = lsd,
           .emu = emu, .esd = esd,
           .r1 = r1, .r2 = r2 ))),
  deriv = eval(substitute(expression({
    sd <- eta2theta(eta[, 2], .lsd, earg =.esd)

    q1 <- .r1 / extra$bign
    q2 <- .r2 / extra$bign
    pee <- 1 - q1 - q2  # 1 if r1==r2==0
    z1 <- if ( .r1 == 0) - 100 else min((y - mu) / sd)  # 100==Inf
    z2 <- if ( .r2 == 0) + 100 else max((y - mu) / sd)  # 100==Inf
    fz1 <- if ( .r1 == 0) 0 else dnorm(z1)
    fz2 <- if ( .r2 == 0) 0 else dnorm(z2)
    Fz1 <- if ( .r1 == 0) 0.02 else pnorm(z1)  # 0/0 undefined
    Fz2 <- if ( .r2 == 0) 0.99 else pnorm(z2)

    dl.dmu <- (y - mu) / sd^2 +
              ((- .r1 * fz1 / Fz1 +
                  .r2 * fz2 / (1 - Fz2)) / sd) / (n * w)
    dl.dsd <- -1 / sd + (y - mu)^2 / sd^3 +
              ((- .r1 * z1 * fz1 / Fz1 +
                  .r2 * z2 * fz2 / (1 - Fz2)) / sd) / (n * w)

    dmu.deta <- dtheta.deta(mu, .lmu , earg =.emu )
    dsd.deta <- dtheta.deta(sd, .lsd , earg =.esd )

    c(w) * cbind(dl.dmu * dmu.deta, dl.dsd * dsd.deta)
  }) , list( .lmu = lmu, .lsd = lsd,
             .emu = emu, .esd = esd,
             .r1 = r1, .r2 = r2 ))),
  weight = expression({
    wz <- matrix(NA_real_, n, dimm(M))

    Q.1 <- ifelse(q1 == 0, 1, q1)  # Saves division by 0 below;
    Q.2 <- ifelse(q2 == 0, 1, q2)  # Saves division by 0 below;

    ed2l.dmu2 <- 1 / (sd^2) +
                 ((fz1*(z1+fz1/Q.1) -
                   fz2*(z2-fz2/Q.2)) / sd^2) / (pee*w)
    ed2l.dmusd <- ((fz1-fz2 + z1*fz1*(z1+fz1/Q.1) -
                  z2*fz2*(z2-fz2/Q.2)) / sd^2) / (pee*w)
    ed2l.dsd2 <- 2 / (sd^2) +
                 ((z1*fz1-z2*fz2 + z1^2 *fz1 *(z1+fz1/Q.1) -
                 z2^2 *fz2*(z2-fz2/Q.2)) / sd^2) / (pee*w)

    wz[,iam(1,1,M)] <- w * ed2l.dmu2 * dmu.deta^2
    wz[,iam(2,2,M)] <- w * ed2l.dsd2 * dsd.deta^2
    wz[,iam(1,2,M)] <- w * ed2l.dmusd * dsd.deta * dmu.deta
    wz
  }))
}






dbisa <- function(x, scale = 1, shape, log = FALSE) {
  if (!is.logical(log.arg <- log) || length(log) != 1)
    stop("bad input for argument 'log'")
  rm(log)


  L <- max(length(x), length(shape), length(scale))
  if (length(x)     != L) x     <- rep_len(x,     L)
  if (length(shape) != L) shape <- rep_len(shape, L)
  if (length(scale) != L) scale <- rep_len(scale, L)

  logdensity <- rep_len(log(0), L)

  xok <- (x > 0)
  xifun <- function(x) {
    temp <- sqrt(x)
    temp - 1/temp
  }
  logdensity[xok] <-
    dnorm(xifun(x[xok] / scale[xok]) / shape[xok], log = TRUE) +
    log1p(scale[xok]/x[xok]) - log(2) - log(shape[xok]) -
    0.5 * log(x[xok]) - 0.5 * log(scale[xok])
  logdensity[scale <= 0] <- NaN
  logdensity[shape <= 0] <- NaN
  if (log.arg) logdensity else exp(logdensity)
}



pbisa <- function(q, scale = 1, shape,
                  lower.tail = TRUE, log.p = FALSE) {


  ans <- pnorm(((temp <- sqrt(q/scale)) - 1/temp) / shape,
               lower.tail = lower.tail, log.p = log.p)
  ans[scale < 0 | shape < 0] <- NaN
  ans[q <= 0] <- if (lower.tail) ifelse(log.p, log(0), 0) else
                                 ifelse(log.p, log(1), 1)
  ans
}



qbisa <- function(p, scale = 1, shape,
                  lower.tail = TRUE, log.p = FALSE) {

  if (!is.logical(lower.tail) || length(lower.tail ) != 1)
    stop("bad input for argument 'lower.tail'")

  if (!is.logical(log.p) || length(log.p) != 1)
    stop("bad input for argument 'log.p'")


  A <- qnorm(p, lower.tail = lower.tail, log.p = log.p)
  temp1 <- A * shape * sqrt(4 + A^2 * shape^2)
  ans1 <- (2 + A^2 * shape^2 + temp1) * scale / 2
  ans2 <- (2 + A^2 * shape^2 - temp1) * scale / 2



  if (lower.tail) {
    if (log.p) {
      ln.p <- p
      ans <- ifelse(exp(p) < 0.5,
                    pmin(ans1, ans2),
                    pmax(ans1, ans2))
      ans[ln.p == -Inf] <- 0
      ans[ln.p == 0] <- Inf
     #ans[ln.p > 0] <- NaN
    } else {
      ans <- ifelse(p < 0.5, pmin(ans1, ans2), pmax(ans1, ans2))
     #ans[p < 0] <- NaN
      ans[p == 0] <- 0
      ans[p == 1] <- Inf
     #ans[p > 1] <- NaN
    }
  } else {
    if (log.p) {
      ln.p <- p
      ans <- ifelse(-expm1(p) < 0.5,
                    pmin(ans1, ans2),
                    pmax(ans1, ans2))
      ans[ln.p == -Inf] <- Inf
      ans[ln.p == 0] <- 0
     #ans[ln.p > 0] <- NaN
    } else {
      ans <- ifelse(p > 0.5, pmin(ans1, ans2), pmax(ans1, ans2))
     #ans[p < 0] <- NaN
      ans[p == 0] <- Inf
      ans[p == 1] <- 0
     #ans[p > 1] <- NaN
    }
  }

  ans[scale < 0 | shape < 0] <- NaN
  ans
}



rbisa <- function(n, scale = 1, shape) {

  A <- rnorm(n)
  temp1 <- A * shape
  temp1 <- temp1 * sqrt(4 + temp1^2)
  ans1 <- (2 + A^2 * shape^2 + temp1) * scale / 2
  ans2 <- (2 + A^2 * shape^2 - temp1) * scale / 2



  ans <- ifelse(A < 0, pmin(ans1, ans2), pmax(ans1, ans2))
  ans[shape <= 0] <- NaN
  ans[scale <= 0] <- NaN
  ans
}











 bisa <-
  function(lscale = "loglink", lshape = "loglink",
           iscale = 1,      ishape = NULL,
           imethod = 1,
           zero = "shape",
           nowarning = FALSE) {



  lshape <- as.list(substitute(lshape))
  eshape <- link2list(lshape)
  lshape <- attr(eshape, "function.name")

  lscale <- as.list(substitute(lscale))
  escale <- link2list(lscale)
  lscale <- attr(escale, "function.name")


  if (length(ishape) && !is.Numeric(ishape, positive = TRUE))
      stop("bad input for argument 'ishape'")
  if (!is.Numeric(iscale, positive = TRUE))
      stop("bad input for argument 'iscale'")
  if (!is.Numeric(imethod, length.arg = 1,
                  integer.valued = TRUE, positive = TRUE) ||
     imethod > 3)
      stop("argument 'imethod' must be 1 or 2 or 3")


  new("vglmff",
  blurb = c("Birnbaum-Saunders distribution\n\n",
            "Links:    ",
            namesof("scale", lscale, earg = escale, tag = TRUE),
            "; ",
            namesof("shape", lshape, earg = eshape, tag = TRUE)),
  constraints = eval(substitute(expression({
    constraints <- cm.zero.VGAM(constraints, x = x, .zero , M = M,
                                predictors.names = predictors.names,
                                M1 = 2)
  }) , list( .zero = zero))),

  infos = eval(substitute(function(...) {
    list(M1 = 2,
         Q1 = 1,
         expected = TRUE,
         multipleResponses = FALSE,
         parameters.names = c("scale", "shape"),
         lscale = .lscale ,
         lshape = .lshape ,
         zero = .zero )
  }, list( .zero = zero, .lscale = lscale, .lshape = lshape  ))),


  rqresslot = eval(substitute(
    function(mu, y, w, eta, extra = NULL) {
      Scale <- eta2theta(eta[, 1], .lscale , earg = .escale )
      Shape <- eta2theta(eta[, 2], .lshape , earg = .eshape )
    scrambleseed <- runif(1)  # To scramble the seed
      qnorm(pbisa(y, scale = Scale, shape = Shape))
  }, list( .lshape = lshape, .lscale = lscale,
           .eshape = eshape, .escale = escale ))),


  initialize = eval(substitute(expression({
    if (ncol(y <- cbind(y)) != 1)
      stop("the response must be a vector or a one-column matrix")

    predictors.names <-
      c(namesof("scale", .lscale , earg = .escale , tag = FALSE),
        namesof("shape", .lshape , earg = .eshape , tag = FALSE))

    if (!length(etastart)) {
      scale.init <- rep_len( .iscale , n)
      shape.init <- if (is.Numeric( .ishape))
                      rep_len( .ishape , n) else {
      if ( .imethod == 1) {
        ybar <- rep_len(weighted.mean(y, w), n)
        ybarr <- rep_len(1 / weighted.mean(1/y, w), n)  # Reqrs y>0
        sqrt(ybar / scale.init + scale.init / ybarr - 2)
      } else if ( .imethod == 2) {
        sqrt(2*( pmax(y, scale.init+0.1) / scale.init - 1))
      } else {
        ybar <- rep_len(weighted.mean(y, w), n)
        sqrt(2*(pmax(ybar, scale.init + 0.1) / scale.init - 1))
      }
    }
      etastart <-
        cbind(theta2eta(scale.init, .lscale , earg = .escale ),
              theta2eta(shape.init, .lshape , earg = .eshape ))
    }
  }) , list( .lshape = lshape, .lscale = lscale,
             .ishape = ishape, .iscale = iscale,
             .eshape = eshape, .escale = escale,
             .imethod = imethod ))),
  linkinv = eval(substitute(function(eta, extra = NULL) {
    sc <- eta2theta(eta[, 1], .lscale , earg = .escale )
    sh <- eta2theta(eta[, 2], .lshape , earg = .eshape )
    sc * (1 + sh^2 / 2)
  }, list( .lshape = lshape, .lscale = lscale,
           .eshape = eshape, .escale = escale ))),
  last = eval(substitute(expression({
    misc$link <-    c(scale = .lscale , shape = .lshape )

    misc$earg <- list(scale = .escale , shape = .eshape )

    misc$expected <- TRUE
    misc$multipleResponses <- FALSE
  }) , list( .lshape = lshape, .lscale = lscale,
             .eshape = eshape, .escale = escale ))),
  loglikelihood = eval(substitute(
    function(mu, y, w, residuals = FALSE, eta,
             extra = NULL,
             summation = TRUE) {
    sc <- eta2theta(eta[, 1], .lscale , earg = .escale )
    sh <- eta2theta(eta[, 2], .lshape , earg = .eshape )
    if (residuals) {
      stop("loglikelihood residuals not implemented yet")
    } else {
      ll.elts <- c(w) *
                 dbisa(x = y, scale = sc, shape = sh, log = TRUE)
      if (summation) {
        sum(ll.elts)
      } else {
        ll.elts
      }
    }
  }, list( .lshape = lshape, .lscale = lscale,
           .eshape = eshape, .escale = escale ))),

  vfamily = c("bisa"),
  validparams = eval(substitute(function(eta, y, extra = NULL) {
    sc <- eta2theta(eta[, 1], .lscale , earg = .escale )
    sh <- eta2theta(eta[, 2], .lshape , earg = .eshape )
    okay1 <- all(is.finite(sc)) && all(0 < sc) &&
             all(is.finite(sh)) && all(0 < sh)
    okay1
  }, list( .lshape = lshape, .lscale = lscale,
           .eshape = eshape, .escale = escale ))),
  deriv = eval(substitute(expression({
    sc <- eta2theta(eta[, 1], .lscale , earg = .escale )
    sh <- eta2theta(eta[, 2], .lshape , earg = .eshape )

    dl.dsh <- ((y / sc - 2 + sc / y) / sh^2 - 1) / sh
    dl.dsc <- -0.5 / sc + 1/(y + sc) +
               sqrt(y) * ((y + sc) / y) *
              (sqrt(y / sc) - sqrt(sc / y)) / (2 * sh^2 * sc^1.5)

    dsh.deta <- dtheta.deta(sh, .lshape , earg = .eshape )
    dsc.deta <- dtheta.deta(sc, .lscale , earg = .escale )

    c(w) * cbind(dl.dsc * dsc.deta,
                 dl.dsh * dsh.deta)
  }) , list( .lshape = lshape, .lscale = lscale,
             .eshape = eshape, .escale = escale ))),
  weight = eval(substitute(expression({
    wz <- matrix(NA_real_, n, M)  # Diagonal!!
    wz[, iam(2, 2, M)] <- 2 * dsh.deta^2 / sh^2
    hfunction <- function(alpha)
      alpha * sqrt(pi/2) - pi * exp(2 / alpha^2) *
                           pnorm(2 / alpha, lower.tail = FALSE)
    wz[, iam(1, 1, M)] <- dsc.deta^2 *
                          (sh * hfunction(sh) / sqrt(2 * pi) +
                          1) / (sh * sc)^2
    c(w) * wz
  }), list( .zero = zero ))))
}

Try the VGAM package in your browser

Any scripts or data that you put into this service are public.

VGAM documentation built on Sept. 18, 2024, 9:09 a.m.