R/getpca.R

Defines functions getPCa .test_eh .getResources .conditionToIndex

Documented in getPCa

###
#
# getPCa:
# Main function and additional support functions
# for fetching Prostate Cancer (PCa)
# datasets from ExperimentHub curated via curatedPCaData
#
###

## Functions adjusted from curatedTCGAData package on Bioconductor
## https://bioconductor.org/packages/release/data/experiment/html/curatedTCGAData.html

.conditionToIndex <- function(startVec, testVec, FUN) {
    logmat <- vapply(startVec, FUN, logical(length(testVec)))
    apply(logmat, 1L, any)
}

.getResources <- function(ExperimentHub, resTable, verbose) {
    fileNames <- stats::setNames(resTable[["RDataPath"]], resTable[["Title"]])
    resources <- lapply(resTable[["Title"]], function(res) {
    if (verbose) {
        message("Working on: ", gsub("\\.rds", "", basename(res)))
    }
    AnnotationHub::query(ExperimentHub, res)[[1L]]
    })

    names(resources) <- resTable[["Title"]]
    resources
}

.test_eh <- function(...) {
    tryCatch(
    {
        ExperimentHub(...)
    },
    error = function(e) {
        emsg <- conditionMessage(e)
        if (grepl("Timeout", emsg)) {
            warning("[experimenthub.bioconductor.org] timeout, localHub=TRUE",
            call. = FALSE
        )}
        ExperimentHub(..., localHub = TRUE)
    })
}

#' Construct Prostate Cancer MultiAssayExperiment object from specific cohort
#'
#' @description curatedPCaData provides \linkS4class{MultiAssayExperiment}
#' container objects that are constructed from ExperimentHub.
#' User provides PCa dataset name (see list on the overview-vignette or 
#' help files).
#'
#' @details This function will check against available resources in
#' ExperimentHub.
#' For a list of datasets, see the overview-vignette or below dataset listing.
#'
#' @param dataset character() of PCa cancer cohort names
#'     (e.g., 'abida')
#'
#' @param assays character() A vector of PCa assays. If not included, 
#' returns all available for the selected dataset; see below for more details.
#'
#' @param timestamp character(1) "20230215" indicating the data version to 
#' obtain from `ExperimentHub`. See `timestamp` section details.
#'
#' @param sampletypes A character vector of sample types to include in the MAE.
#' If the parameter is missing, then all samples are returned. Allowed values
#' are: 'primary', 'metastatic', 'normal', 'BPH', 'atrophic'
#'
#' @param ... Additional arguments passed on to the
#'     \code{\link[ExperimentHub:ExperimentHub-class]{ExperimentHub}}
#'     constructor
#'
#' @param verbose logical(1) Whether to show the dataset currenlty being
#'     (down)loaded (default TRUE)
#'
#' @section Available datasets:
#'
#' Following shortnames can be used with getPCa to query for their omics from
#' ExperimentHub. For more detailed description of the studies, see their
#' corresponding R documentation file. Further details are reported in the 
#' overview-vignette.
#'
#' \preformatted{
#'
#' Shortname      Rd documentation file           Longer name(s)
#' ----------------------------------------------------------------------------
#'
#' abida        curatedPCaDatasets_abida        Abida et al.
#' baca         curatedPCaDatasets_baca         Baca et al.
#' barbieri     curatedPCaDatasets_barbieri     Barbieri et al.
#' barwick      curatedPCaDatasets_barwick      Barwick et al.
#' chandran     curatedPCaDatasets_chandran     Chandran et al., Yu et al.
#' friedrich    curatedPCaDatasets_friedrich    Friedrich et al.
#' hieronymus   curatedPCaDatasets_hieronymus   Hieronymus et al.
#' icgcca       curatedPCaDatasets_icgcca       ICGC Canadian subset
#' igc          curatedPCaDatasets_igc          International Genomics Consortium (PCa subset)
#' kim          curatedPCaDatasets_kim          Kim et al.
#' kunderfranco curatedPCaDatasets_kunderfranco Kunderfranco et al.
#' ren          curatedPCaDatasets_ren          Ren et al.
#' sun          curatedPCaDatasets_sun          Sun et al.
#' taylor       curatedPCaDatasets_taylor       Taylor et al.
#' tcga         curatedPCaDatasets_tcga         The Cancer Genome Atlas (PCa subset, PRAD-prefix)
#' true         curatedPCaDatasets_true         True et al.
#' wallace      curatedPCaDatasets_wallace      Wallace et al.
#' wang         curatedPCaDatasets_wang         Wang et al.
#' weiner       curatedPCaDatasets_weiner       Weiner et al.
#' }
#'
#' @section Available Assays:
#'
#' The list of ExperimentList assay names and their descriptions.
#' These assays can be entered as part of the \code{assays} argument in the
#' main function.
#' \preformatted{
#'
#' ExperimentList data types   Description
#' ----------------------------------------------------------------------------
#'
#' gex.rma            Gene expression values (RMA normalized)
#' gex.logq                                  (Log-quantile)
#' gex.relz                                  (Relative z-scores)
#' gex.logr                                  (Log-ratios)
#' gex.rsem.log                              (Log-RSEM)
#' cna.gistic         Copy number alteration (GISTIC calls)
#' cna.logr                                  (Log-ratios)
#' mut                Somatic mutation calls
#' cibersort          Immune deconvolution as estimated by CIBERSORTx
#' xcell                                                   xCell
#' epic                                                    EPIC
#' quantiseq                                               quanTIseq
#' mcp                                                     MCP-counter
#' estimate                                                ESTIMATE
#' scores             Various risk and AR scores; see vignette references.
#' }
#'
#' @section timestamp: "20230215"
#' The timestamp is updated in case the data is updated. In this case, this
#' section describes the changes made for new timestamps. At this time, the
#' only data deposit is from 2023, Feb 15th, indicated by "20230215".
#'
#' @seealso curatedPCaData-package
#'
#' @return a \linkS4class{MultiAssayExperiment} of the specified assays and
#' cancer cohort
#'
#' @examples
#' mae_taylor <- getPCa(
#'     dataset = "taylor", timestamp = "20230215"
#' )
#'
#' @importFrom utils read.csv
#' @importFrom AnnotationHub query
#' @export getPCa
getPCa <- function(
    # Dataset name
    dataset,
    # Names for the set of assay data objects to extract from the MAE object's 
    # whole available subset in ExperimentList
    assays,
    # Timestamps of data from ExperimentHub; allowed values: '20230215'
    timestamp,
    # If not missing, subsetting the MAE object to certain sample types
    sampletypes,
    # Verbosity
    verbose = FALSE,
    # Additional parameters
    ...) {
    if (missing(dataset)) {
        stop("Select dataset; see ?curatedPCaData")
    }
    if (length(dataset) > 1) {
        stop("Select only one dataset at a time.")
    }
    dataset <- tolower(dataset) # datasets are saved as lower case
    # Change this if new update (with new timestamp) is added
    if (missing(timestamp)) {
        timestamp <- "20230215"
    }
    # Update this if more timestamps becomes available
    if (any(!timestamp %in% c("20230215"))) {
        stop("'timestamp' contains a timestamp that is not '20230215'; see 
        '?curatedPCaData'")
    }
    assays_file <- system.file("extdata", "metadata.csv", 
        package = "curatedPCaData", mustWork = TRUE)
    assay_metadat <- read.csv(assays_file, stringsAsFactors = FALSE)
    # Separate names Title in assay_metadat to get dataset, assay and timestamp 
    # separately
    eh_assays <- assay_metadat[["Title"]]
    eh_assays_sep <- t(as.data.frame(strsplit(eh_assays, "_")))
    # Get only requested dataset
    dataId <- which(eh_assays_sep[, 1] == dataset)
    if (length(dataId) == 0) {
        stop("Dataset name is incorrect or not available.")
    }
    eh_assays_sep <- eh_assays_sep[dataId, ]
    # Get available assays for selected dataset
    assaysAvail <- unique(eh_assays_sep[, 2]) 
    # Select user specified assays
    if (!missing(assays)) { # If nothing specific requested, return all
    # If user asks for something that is not available,
    if (any(!assays %in% assaysAvail)) { 
        stop(paste0(c("At least one of asked assay names is not available. 
            The available assays for this dataset are:", assaysAvail), 
                collapse = "  "))
    } else { # Select only requested assays
        assaysAvail <- unique(c(assays, "colData", "sampleMap"))
    }
    }
    # Select assays by timestamp request. If more versions are added this has 
    # to be updated. sampleMap is always selected by the latest timestamp given.
    # If not available, latest is used.
    codeAssay <- c()
    latest <- as.character(max(as.numeric(timestamp)))
    for (i in assaysAvail) {
        assayId <- which(eh_assays_sep[, 2] == i)
        availableTimestamp <- eh_assays_sep[assayId, 3]
        # Use latest given timestamp for sampleMap, if not available, use latest
    if (i == "sampleMap") { 
        if (latest %in% availableTimestamp) {
            selectedTimestamp <- latest
        } else {
            selectedTimestamp <- as.character(max(as.numeric(availableTimestamp)
                ))
        }
    } else {
        # Go through the user given timestamp request and get the first match, 
        # if no match, give latest
        nomatch <- FALSE
        n <- 1
        while (!nomatch) {
            # Select the first match, if no match, select latest
            if (timestamp[n] %in% availableTimestamp) {
                nomatch <- TRUE
                selectedTimestamp <- timestamp[n]
            } else {
                n <- n + 1
                if (n > length(timestamp)) {
                nomatch <- TRUE
                selectedTimestamp <- 
                    as.character(max(as.numeric(availableTimestamp)))
                }
            }
        }
    }
    codeAssay <- c(codeAssay, paste0(dataset, "_", i, "_", selectedTimestamp))
    }
    # Get indices of selected dataset_assay_timestamp combos
    fileIdx <- .conditionToIndex(codeAssay, eh_assays, function(x) startsWith(
        eh_assays, x))
    fileMatches <- assay_metadat[fileIdx, c("Title", "DispatchClass")]
    # Sanitycheck
    if (!length(nrow(fileMatches))) {
        stop("Cancer and data type combination(s) not available")
    }
    eh <- .test_eh()
    # Get the data
    assay_list <- .getResources(
        eh, assay_metadat[fileIdx, c("Title", "RDataPath")], verbose
    )
    # Get experiments and name them only by the assay/experiment/etc name
    # Omit colData and sampleMap since they are added separately
    cD_idx <- which(grepl("colData", names(assay_list), fixed = TRUE))
    sM_idx <- which(grepl("sampleMap", names(assay_list), fixed = TRUE))
    # Final sanity check
    if (length(cD_idx) != 1 | length(sM_idx) != 1) {
        stop("Either colData or sampleMap is missing for this dataset and the 
        MAE cannot be constructed, or there are multiple with same timestamp.")
    }
    eh_experiments <- ExperimentList(assay_list[-c(cD_idx, sM_idx)])
    names(eh_experiments) <- gsub("(^[a-z]*)_(.*)_(.*)", "\\2", names(
        eh_experiments))
    # Inform user
    message("Constructing the MultiAssayExperiment object from retrieved 
        components.")
    # Return MAE; if parameter 'sampletypes' is not missing, subsetting
    mae <- MultiAssayExperiment::MultiAssayExperiment(
        experiments = eh_experiments,
        colData = assay_list[cD_idx][[1]],
        sampleMap = assay_list[sM_idx][[1]]
    )
    # Return full MAE
    if(missing(sampletypes)){
        mae
    # Return a MAE with a subset to certain sample_types
    }else{
        MultiAssayExperiment::subsetByColData(mae, mae$sample_type %in% 
            sampletypes)
    }
}
Syksy/curatedPCaData documentation built on Oct. 11, 2024, 7:05 a.m.