My: Residuals <=ft( \boldsymbol{\hat{\varepsilon}} = \mathbf{My}...

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/epsilonhat.R

Description

Calculates residuals using

\boldsymbol{\hat{\varepsilon}} = \mathbf{My} .

where

\mathbf{M} = \mathbf{I} - \mathbf{P} \\ = \mathbf{I} - \mathbf{X} ≤ft( \mathbf{X}^{T} \mathbf{X} \right)^{-1} \mathbf{X}^{T} .

Usage

1
My(X, y)

Arguments

X

n by k numeric matrix. The data matrix \mathbf{X} (also known as design matrix, model matrix or regressor matrix) is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \mathbf{y} is an n \times 1 vector of observations on the regressand variable.

Value

Returns an n \times 1 matrix of residuals ≤ft( \boldsymbol{\hat{\varepsilon}} \right), that is, the difference between the observed ≤ft( \mathbf{y} \right) and predicted ≤ft( \mathbf{\hat{y}} \right) values of the regressand variable ≤ft( \boldsymbol{\hat{\varepsilon}} = \mathbf{y} - \mathbf{\hat{y}} \right).

Author(s)

Ivan Jacob Agaloos Pesigan

References

Wikipedia: Errors and Residuals

See Also

Other residuals functions: .My(), .tepsilonhat(), .yminusyhat(), epsilonhat(), tepsilonhat(), yminusyhat()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
# Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
My <- My(X = X, y = y)
hist(My)

# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
My <- My(X = X, y = y)
hist(My)

jeksterslabds/jeksterslabRlinreg documentation built on Jan. 7, 2021, 8:30 a.m.