RMSE: Root Mean Squared Error

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/MSE.R

Description

Calculates the root mean squared error ≤ft( \mathrm{RMSE} \right) using

\mathrm{RMSE} = √{\frac{1}{n} ∑_{i = 1}^{n} ≤ft( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{β}} \right)^{2}} \\ = √{\frac{1}{n} ∑_{i = 1}^{n} ≤ft( \mathbf{y} - \mathbf{\hat{y}} \right)^{2}} \\ = √{\frac{\mathrm{RSS}}{n}} .

Usage

1
RMSE(X, y)

Arguments

X

n by k numeric matrix. The data matrix \mathbf{X} (also known as design matrix, model matrix or regressor matrix) is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \mathbf{y} is an n \times 1 vector of observations on the regressand variable.

Value

Returns the root mean squared error.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Wikipedia: Root-mean-square deviation

See Also

Other assessment of model quality functions: .MSE(), .R2fromESS(), .R2fromRSS(), .RMSE(), .Rbar2(), .model(), MSE(), R2(), Rbar2(), model()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
# Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
RMSE(X = X, y = y)

# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
RMSE(X = X, y = y)

jeksterslabds/jeksterslabRlinreg documentation built on Jan. 7, 2021, 8:30 a.m.