Rbar2: Adjusted R-squared \bar{R}^{2}

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/R2.R

Description

Calculates the adjusted coefficient of determination

\bar{R}^{2} = 1 - ≤ft(\frac{RSS / ≤ft( n - k \right)} {TSS / ≤ft( n - 1 \right)} \right) = 1 - ≤ft( 1 - R^2 \right) \frac{n - 1}{n - k} .

Usage

1
Rbar2(X, y)

Arguments

X

n by k numeric matrix. The data matrix \mathbf{X} (also known as design matrix, model matrix or regressor matrix) is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \mathbf{y} is an n \times 1 vector of observations on the regressand variable.

Value

Returns the adjusted coefficient of determination \bar{R}^{2} .

Author(s)

Ivan Jacob Agaloos Pesigan

References

Wikipedia: Residual Sum of Squares

Wikipedia: Explained Sum of Squares

Wikipedia: Total Sum of Squares

Wikipedia: Coefficient of Determination

See Also

Other assessment of model quality functions: .MSE(), .R2fromESS(), .R2fromRSS(), .RMSE(), .Rbar2(), .model(), MSE(), R2(), RMSE(), model()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
# Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
Rbar2(X = X, y = y)

# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
Rbar2(X = X, y = y)

jeksterslabds/jeksterslabRlinreg documentation built on Jan. 7, 2021, 8:30 a.m.