Description Usage Arguments Details Value Author(s) See Also Examples
Model-implied variance-covariance matrix \boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right) from parameters of a k-variable linear regression model.
1 | Sigmatheta(slopes, sigma2epsilon, SigmaX)
|
slopes |
Numeric vector of length |
sigma2epsilon |
Numeric. Variance of the error term \varepsilon ≤ft( σ_{\varepsilon}^{2} \right). |
SigmaX |
|
The following are the parameters of a linear regression model for the covariance structure
\boldsymbol{β}_{2, \cdots, k} is the p \times 1 column vector of regression slopes,
σ_{\varepsilon}^{2} is the variance of the error term \varepsilon, and
\boldsymbol{Σ}_{\mathbf{X}} is the p \times p matrix of variances and covariances of {X}_{2}, {X}_{3}, \cdots, {X}_{k}.
Returns the model-implied variance-covariance matrix
\boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right).
Note that the first item corresponds to y
.
The rest of the items correspond to how SigmaX
is arranged.
Ivan Jacob Agaloos Pesigan
Other model-implied functions:
mutheta()
1 2 3 4 5 6 7 | slopes <- c(0.207648, 0.451039)
sigma2epsilon <- 0.9310598
SigmaX <- matrix(
data = c(1.2934694, 0.4379592, 0.4379592, 1.0779592),
ncol = 2
)
Sigmatheta(slopes = slopes, sigma2epsilon = sigma2epsilon, SigmaX = SigmaX)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.