Sigmatheta: Model-Implied Variance-Covariance Matrix \boldsymbol{Sigma}...

Description Usage Arguments Details Value Author(s) See Also Examples

View source: R/ram.R

Description

Model-implied variance-covariance matrix \boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right) from parameters of a k-variable linear regression model.

Usage

1

Arguments

slopes

Numeric vector of length p or p by 1 matrix. p \times 1 column vector of regression slopes ≤ft( \boldsymbol{β}_{2, 3, \cdots, k} = ≤ft\{ β_2, β_3, \cdots, β_k \right\} \right) .

sigma2epsilon

Numeric. Variance of the error term \varepsilon ≤ft( σ_{\varepsilon}^{2} \right).

SigmaX

p by p numeric matrix. p \times p matrix of variances and covariances between regressor variables {X}_{2}, {X}_{3}, \cdots, {X}_{k} ≤ft( \boldsymbol{Σ}_{\mathbf{X}} \right).

Details

The following are the parameters of a linear regression model for the covariance structure

Value

Returns the model-implied variance-covariance matrix \boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right). Note that the first item corresponds to y. The rest of the items correspond to how SigmaX is arranged.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other model-implied functions: mutheta()

Examples

1
2
3
4
5
6
7
slopes <- c(0.207648, 0.451039)
sigma2epsilon <- 0.9310598
SigmaX <- matrix(
  data = c(1.2934694, 0.4379592, 0.4379592, 1.0779592),
  ncol = 2
)
Sigmatheta(slopes = slopes, sigma2epsilon = sigma2epsilon, SigmaX = SigmaX)

jeksterslabds/jeksterslabRlinreg documentation built on Jan. 7, 2021, 8:30 a.m.