Description Usage Arguments Details Author(s) References See Also Examples
Standard Errors of Standardized Estimates of Regression Coefficients (Yuan and Chan (2011))
1 | sehatslopeshatprimedelta(X, y, adjust = FALSE)
|
X |
|
y |
Numeric vector of length |
adjust |
Logical. Use n - 3 adjustment for small samples. |
The pth estimated standard error is calculated using
\mathbf{\widehat{se}}_{\boldsymbol{\hat{β}}_{\text{p}}^{\prime}} = √{ \frac{\hat{σ}_{X_{p}}^{2} \hat{c}_{p} \hat{σ}_{\hat{\varepsilon}}^{2}}{n \hat{σ}_{y}^{2}} + \frac{\hat{β}_{p}^{2} ≤ft[ \hat{σ}_{X_{p}}^{2} ≤ft( \boldsymbol{\hat{β}}^{T} \boldsymbol{\hat{Σ}}_{X} \boldsymbol{\hat{β}} \right) - \hat{σ}_{X_{p}}^{2} \hat{σ}_{\hat{\varepsilon}}^{2} - \hat{σ}_{y, X_{p}}^{2} \right]}{n \hat{σ}_{y}^{4}} }
where
p = ≤ft\{2, 3, \cdots, k \right\}
\hat{σ}_{\hat{\varepsilon}}^{2} is the estimated residual variance
\boldsymbol{\hat{β}}_{2, 3, \cdots, k} = ≤ft\{ \hat{β}_{2}, \hat{β}_{3}, \cdots, \hat{β}_{k}\right\}^{T} is the p \times 1 column vector of estimated regression slopes
\hat{σ}_{y}^{2} is the variance of the regressand variable y
\boldsymbol{\hat{Σ}}_{\mathbf{X}} is the p \times p estimated covariance matrix of the regressor variables X_2, X_3, \cdots, X_k
\hat{σ}_{X_p}^{2} is the variance of the corresponding pth regressor variable.
\hat{σ}_{y, X_{p}}^{2} is the covariance of the regressand variable y and the regressor variables X_2, X_3, \cdots, X_k
c_p is the diagonal element that corresponds to the regressor variable in \boldsymbol{Σ}_{\mathbf{X}}^{-1}
n is the sample size
Ivan Jacob Agaloos Pesigan
Yuan, K., Chan, W. (2011). Biases and Standard Errors of Standardized Regression Coefficients. Psychometrika 76, 670-690. doi:10.1007/s11336-011-9224-6.
Other standard errors of estimates of regression coefficients functions:
.sehatbetahatbiased()
,
.sehatbetahat()
,
.sehatslopeshatprimedelta()
,
.sehatslopeshatprimetb()
,
sehatbetahatbiased()
,
sehatbetahat()
,
sehatslopeshatprimetb()
1 2 3 4 5 6 7 8 9 10 11 | # Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
sehatslopeshatprimedelta(X = X, y = y)
# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
sehatslopeshatprimedelta(X = X, y = y)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.