Description Usage Arguments Value Author(s) References See Also Examples
View source: R/sigma2hatepsilonhat.R
Calculates an estimate of the error variance
\mathbf{E} ≤ft( σ^2 \right) = \hat{σ}_{\hat{\varepsilon}}^{2}
\hat{σ}_{\hat{\varepsilon} \ \textrm{biased}}^{2} = \frac{1}{n} ∑_{i = 1}^{n} ≤ft( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{β}} \right)^2 \\ = \frac{\boldsymbol{\hat{\varepsilon}}^{\prime} \boldsymbol{\hat{\varepsilon}}}{n} \\ = \frac{\mathrm{RSS}}{n}
where \boldsymbol{\hat{\varepsilon}} is the vector of residuals, \mathrm{RSS} is the residual sum of squares, and n is the sample size.
1 |
X |
|
y |
Numeric vector of length |
Returns the estimated residual variance \hat{σ}_{\hat{\varepsilon} \ \textrm{biased}}^{2} .
Ivan Jacob Agaloos Pesigan
Wikipedia: Ordinary Least Squares
Other residual variance functions:
.sigma2hatepsilonhatbiased()
,
.sigma2hatepsilonhat()
,
sigma2hatepsilonhat()
1 2 3 4 5 6 7 8 9 10 11 | # Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
sigma2hatepsilonhatbiased(X = X, y = y)
# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
sigma2hatepsilonhatbiased(X = X, y = y)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.