sigma2hatepsilonhatbiased: Residual Variance \hat{sigma}_{\hat{\varepsilon} \...

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/sigma2hatepsilonhat.R

Description

Calculates an estimate of the error variance

\mathbf{E} ≤ft( σ^2 \right) = \hat{σ}_{\hat{\varepsilon}}^{2}

\hat{σ}_{\hat{\varepsilon} \ \textrm{biased}}^{2} = \frac{1}{n} ∑_{i = 1}^{n} ≤ft( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{β}} \right)^2 \\ = \frac{\boldsymbol{\hat{\varepsilon}}^{\prime} \boldsymbol{\hat{\varepsilon}}}{n} \\ = \frac{\mathrm{RSS}}{n}

where \boldsymbol{\hat{\varepsilon}} is the vector of residuals, \mathrm{RSS} is the residual sum of squares, and n is the sample size.

Usage

1

Arguments

X

n by k numeric matrix. The data matrix \mathbf{X} (also known as design matrix, model matrix or regressor matrix) is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \mathbf{y} is an n \times 1 vector of observations on the regressand variable.

Value

Returns the estimated residual variance \hat{σ}_{\hat{\varepsilon} \ \textrm{biased}}^{2} .

Author(s)

Ivan Jacob Agaloos Pesigan

References

Wikipedia: Linear Regression

Wikipedia: Ordinary Least Squares

See Also

Other residual variance functions: .sigma2hatepsilonhatbiased(), .sigma2hatepsilonhat(), sigma2hatepsilonhat()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
# Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
sigma2hatepsilonhatbiased(X = X, y = y)

# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
sigma2hatepsilonhatbiased(X = X, y = y)

jeksterslabds/jeksterslabRlinreg documentation built on Jan. 7, 2021, 8:30 a.m.