#' @title Survival Cox Model with Cross-Validation Likelihood Based Boosting Learner
#' @author RaphaelS1
#' @name mlr_learners_surv.cv_coxboost
#'
#' @description
#' Fits a survival Cox model using likelihood based boosting and internal cross-validation for the
#' number of steps.
#' Calls [CoxBoost::CoxBoost()] or [CoxBoost::cv.CoxBoost()] from package 'CoxBoost'.
#'
#' @inheritSection mlr_learners_surv.coxboost Prediction types
#' @template learner
#' @templateVar id surv.cv_coxboost
#'
#' @template install_coxboost
#'
#' @details
#' Use [LearnerSurvCoxboost] and [LearnerSurvCVCoxboost] for Cox boosting without and with internal
#' cross-validation of boosting step number, respectively. Tuning using the internal optimizer in
#' [LearnerSurvCVCoxboost] may be more efficient when tuning `stepno` only. However, for tuning
#' multiple hyperparameters, \CRANpkg{mlr3tuning} and [LearnerSurvCoxboost] will likely give better
#' results.
#'
#' If `penalty == "optimCoxBoostPenalty"` then [CoxBoost::optimCoxBoostPenalty] is used to determine
#' the penalty value to be used in [CoxBoost::cv.CoxBoost].
#'
#' @references
#' `r format_bib("binder2009boosting")`
#'
#' @template seealso_learner
#' @export
#' @examplesIf mlr3misc::require_namespaces(c("coin", "sandwich", "partykit"), quietly = TRUE)
#' task = tsk("rats")
#' task$col_roles$feature = c("litter", "rx")
#' learner = lrn("surv.cv_coxboost", maxstepno = 20)
#' splits = partition(task)
#' learner$train(task, splits$train)
#' pred = learner$predict(task, splits$test)
LearnerSurvCVCoxboost = R6Class("LearnerSurvCVCoxboost",
inherit = mlr3proba::LearnerSurv,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ps(
maxstepno = p_int(default = 100, lower = 0, tags = "train"),
K = p_int(default = 10, lower = 2, tags = "train"),
type = p_fct(default = "verweij", levels = c("verweij", "naive"), tags = "train"),
folds = p_uty(default = NULL, tags = "train"),
minstepno = p_int(default = 50, lower = 0, tags = "train"),
start.penalty = p_dbl(tags = "train"),
iter.max = p_int(default = 10, lower = 1, tags = "train"),
upper.margin = p_dbl(default = 0.05, lower = 0, upper = 1, tags = "train"),
unpen.index = p_uty(tags = "train"),
standardize = p_lgl(default = TRUE, tags = "train"),
penalty = p_dbl(special_vals = list("optimCoxBoostPenalty"), tags = "train"),
criterion = p_fct(default = "pscore", levels = c("pscore", "score", "hpscore", "hscore"), tags = "train"),
stepsize.factor = p_dbl(default = 1, tags = "train"),
sf.scheme = p_fct(default = "sigmoid", levels = c("sigmoid", "linear"), tags = "train"),
pendistmat = p_uty(tags = "train"),
connected.index = p_uty(tags = "train"),
x.is.01 = p_lgl(default = FALSE, tags = "train"),
return.score = p_lgl(default = TRUE, tags = "train"),
trace = p_lgl(default = FALSE, tags = "train"),
at.step = p_uty(tags = "predict")
)
super$initialize(
id = "surv.cv_coxboost",
packages = c("mlr3extralearners", "CoxBoost", "pracma"),
feature_types = c("integer", "numeric"),
predict_types = c("crank", "lp", "distr"),
param_set = ps,
properties = c("weights", "selected_features"),
man = "mlr3extralearners::mlr_learners_surv.cv_coxboost",
label = "Likelihood-based Boosting"
)
},
#' @description
#' Returns the set of selected features which have non-zero coefficients.
#' Calls the internal `coef.CoxBoost()` function.
#'
#' @param at_step (`integer(1)`)\cr
#' Which boosting step to get the coefficients for. If no step is given
#' (default), the final boosting step is used.
#'
#' @return (`character()`) vector of feature names.
selected_features = function(at_step = NULL) {
if (is.null(self$model)) {
stopf("No model stored")
}
coefs = invoke(stats::coef, self$model, at.step = at_step)
coefs = coefs[coefs != 0]
names(coefs)
}
),
private = list(
.train = function(task) {
pars = self$param_set$get_values(tags = "train")
optim_args = c("minstepno", "start.penalty", "iter.max", "upper.margin", "penalty")
cv_args = c("maxstepno", "K", "type", "folds")
opt_pars = pars[names(pars) %in% optim_args]
cv_pars = pars[names(pars) %in% cv_args]
cox_pars = pars[names(pars) %nin% c(names(opt_pars), names(cv_pars))]
cox_pars$weights = private$.get_weights(task)
data = task$data()
tn = task$target_names
time = data[[tn[1L]]]
status = data[[tn[2L]]]
data = as.matrix(data[, !tn, with = FALSE])
pen_optim = FALSE
if (!is.null(opt_pars$penalty)) {
if (opt_pars$penalty == "optimCoxBoostPenalty") {
pen_optim = TRUE
opt_pars$penalty = NULL
}
} else {
cv_pars = insert_named(cv_pars, list(penalty = NULL))
}
with_package("CoxBoost", {
if (pen_optim) {
optim = invoke(
CoxBoost::optimCoxBoostPenalty,
time = time,
status = status,
x = data,
.args = c(opt_pars, cv_pars)
)
return(invoke(
CoxBoost::CoxBoost,
time = time,
status = status,
x = data,
stepno = optim$cv.res$optimal.step,
penalty = optim$penalty,
.args = cox_pars
))
} else {
optimal_step = invoke(
CoxBoost::cv.CoxBoost,
time = time,
status = status,
x = data,
.args = c(cv_pars, cox_pars)
)$optimal.step
return(invoke(
CoxBoost::CoxBoost,
time = time,
status = status,
x = data,
stepno = optimal_step,
.args = cox_pars
))
}
})
},
.predict = function(task) {
pars = self$param_set$get_values(tags = "predict")
# get newdata and ensure same ordering in train and predict
newdata = as.matrix(ordered_features(task, self))
lp = as.numeric(invoke(predict,
self$model,
newdata = newdata,
.args = pars,
type = "lp"))
# all the unique training time points
times = sort(unique(self$model$time))
surv = invoke(predict,
self$model,
newdata = newdata,
.args = pars,
type = "risk",
times = times)
mlr3proba::.surv_return(times = times, surv = surv, lp = lp)
}
)
)
.extralrns_dict$add("surv.cv_coxboost", LearnerSurvCVCoxboost)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.