Nothing
# Function taken from the directlabels package that it is in the public domain
# with name of the pointLabel and the package factorminer with name autoLab
LocLab <- function(x, y = NULL, labels = seq(along = x), cex = 1,
method = c("SANN", "GA"),
allowSmallOverlap = FALSE,
trace = FALSE, shadotext = FALSE,
doPlot = TRUE,
...)
{
# http://en.wikipedia.org/wiki/Automatic_label_placement
# http://www.szoraster.com/Cartography/PracticalExperience.htm
# http://www.eecs.harvard.edu/~shieber/Projects/Carto/carto.html
# http://i11www.iti.uni-karlsruhe.de/map-labeling/bibliography/
if (!missing(y) && (is.character(y) || is.expression(y))) {
labels <- y
y <- NULL
}
if (is.factor(labels))
labels <- as.character(labels)
z = xy.coords(x, y, recycle = TRUE)
x = z$x
y = z$y
if (length(labels) < length(x))
labels = rep(labels, length(x))
method <- match.arg(method)
boundary = par()$usr
image_width = boundary[2] - boundary[1]
image_height = boundary[4] - boundary[3]
if (allowSmallOverlap) # default to 2% of the image size
nudgeFactor = .02*(abs(boundary[1] + 1i*boundary[2] - boundary[3] - 1i*boundary[4]))
n_labels = length(x)
# There are eight possible alignment codes, corresponding to the
# corners and side mid-points of the rectangle
# Codes are 1:8
# Code 7 is the most preferred
xBoundary = image_width * 0.01 # add a small boundary around the rectangle
yBoundary = image_height * 0.01
width = strwidth(labels, units = "user", cex = cex) + xBoundary
height = strheight(labels, units = "user", cex = cex) + yBoundary
gen_offset <- function(code)
c(-1, -1, -1, 0, 0, 1, 1, 1)[code] * (width/2) +
1i * c(-1, 0, 1, -1, 1, -1, 0, 1)[code] * (height/2)
# Finds intersection area of two rectangles
rect_intersect <- function(xy1, offset1, xy2, offset2) {
w = pmin(Re(xy1+offset1/2), Re(xy2+offset2/2)) - pmax(Re(xy1-offset1/2), Re(xy2-offset2/2))
h = pmin(Im(xy1+offset1/2), Im(xy2+offset2/2)) - pmax(Im(xy1-offset1/2), Im(xy2-offset2/2))
w[w <= 0] = 0
h[h <= 0] = 0
w*h
}
nudge <- function(offset) {
# Nudge the labels slightly if they overlap:
doesIntersect = rect_intersect(xy[rectidx1] + offset[rectidx1], rectv[rectidx1],
xy[rectidx2] + offset[rectidx2], rectv[rectidx2]) > 0
pyth = abs(xy[rectidx1] + offset[rectidx1] - xy[rectidx2] - offset[rectidx2]) / nudgeFactor
eps = 1.0e-10
for (i in which(doesIntersect & pyth > eps)) {
idx1 = rectidx1[i]
idx2 = rectidx2[i]
vect = (xy[idx1] + offset[idx1] - xy[idx2] - offset[idx2]) / pyth[idx1]
offset[idx1] = offset[idx1] + vect
offset[idx2] = offset[idx2] - vect
}
offset
}
objective <- function(gene) {
offset = gen_offset(gene)
# Allow for "bending" the labels a bit
if (allowSmallOverlap) offset = nudge(offset)
if (!is.null(rectidx1))
area = sum(rect_intersect(xy[rectidx1] + offset[rectidx1], rectv[rectidx1],
xy[rectidx2] + offset[rectidx2], rectv[rectidx2]))
else
area = 0
# Penalize labels which go outside the image area
# Count points outside of the image
n_outside = sum(Re(xy + offset - rectv/2) < boundary[1] | Re(xy + offset + rectv/2) > boundary[2] |
Im(xy + offset - rectv/2) < boundary[3] | Im(xy + offset + rectv/2) > boundary[4])
area + n_outside * image_width * image_height
}
# Make a list of label rectangles in their reference positions,
# centered over the map feature; the real labels are displaced
# from these positions so as not to overlap
# Note that some labels can be bigger than others
xy = x + 1i * y
rectv = width + 1i * height
rectidx1 = rectidx2 = array(0, (length(x)^2 - length(x)) / 2)
k=0
for (i in 1:length(x))
for (j in seq(len=(i-1))) {
k = k + 1
rectidx1[k] = i
rectidx2[k] = j
}
canIntersect = rect_intersect(xy[rectidx1], 2 * rectv[rectidx1],
xy[rectidx2], 2 * rectv[rectidx2]) > 0
rectidx1 = rectidx1[canIntersect]
rectidx2 = rectidx2[canIntersect]
if (trace) message("possible intersects =", length(rectidx1), "\n")
if (trace) message("portion covered =", sum(rect_intersect(xy, rectv,xy,rectv))/(image_width*image_height),"\n")
SANN <- function() {
# Make some starting "genes"
#gene = sample(1:8, n_labels, repl = TRUE)
### modif FH
# 1 : bas gauche
# 2 : gauche
# 3 : haut gauche
# 4 : bas
# 5 : haut
# 6 : bas froite
# 7 : droite
# 8 : haut droite
gene = rep(1, n_labels)
gene <- gene + as.integer(Im(xy)>min(Im(xy))+diff(range(Im(xy)))/3)
gene <- gene + as.integer(Im(xy)>min(Im(xy))+2*diff(range(Im(xy)))/3)
gene <- gene + 3*as.integer(Re(xy)>min(Re(xy))+diff(range(Re(xy)))/3)
gene <- gene + 3*as.integer(Re(xy)>min(Re(xy))+2*diff(range(Re(xy)))/3)
gene [gene>=6] <- gene[gene>=6]-1
score = objective(gene)
bestgene = gene
bestscore = score
T = 2.5
for (i in 1:50) {
k = 1
for (j in 1:50) {
newgene = gene
newgene[sample(1:n_labels, 1)] = sample(1:8,1)
newscore = objective(newgene)
if (newscore < score || runif(1) < 1 - exp((newscore - score) / T)) {
k = k + 1
score = newscore
gene = newgene
}
if (score <= bestscore) {
bestscore = score
bestgene = gene
}
if (bestscore == 0 || k == 10) break
}
if (bestscore == 0) break
if (trace) message("overlap area =", bestscore, "\n")
T = 0.9 * T
}
if (trace) message("overlap area =", bestscore, "\n")
nx = Re(xy + gen_offset(bestgene))
ny = Im(xy + gen_offset(bestgene))
list(x = nx, y = ny)
}
xy = SANN()
# Taken from http://article.gmane.org/gmane.comp.lang.r.general/147787
shadowtext <- function(xy, labels, col='black', bg='white',
theta=seq(pi/4, 2*pi, length.out=8), r=0.1, ... ) {
xy <- xy.coords(xy)
xo <- r*strwidth('A')
yo <- r*strheight('A')
for (i in theta)
text(xy$x + cos(i)*xo, xy$y + sin(i)*yo, labels, col=bg, ...)
text(xy$x, xy$y, labels, col=col, ... )
}
if (doPlot)
### modif FH
if (shadotext==TRUE) shadowtext(xy, labels, cex = cex, ...)
else text(xy, labels, cex = cex, ...)
invisible(xy)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.