Nothing
#' @importFrom dplyr %>%
#' @importFrom ComplexHeatmap ht_opt
#' @importFrom ComplexHeatmap Heatmap
#' @importFrom ComplexHeatmap HeatmapAnnotation
#' @importFrom rlang .data
#' @importFrom stats setNames
NULL
## exporting to inherit parameters below, plotEmbeddings()
#' @export
sccore::embeddingPlot
#' Get a vector with the levels of a factor named with their
#' own name. Useful for lapply loops over factor levels
#' @param f a factor
#' @return named character vector of factor levels
#' @keywords internal
namedLevels <- function(f) {
if(!is.factor(f)) {
stop('f is not a factor')
}
r <- levels(f)
names(r) <- r
r
}
#' Extract specified clustering from list of conos clusterings
#'
#' @param clusters list of conos clusterings
#' @param clustering name of extracted clustering
#' @return vector of clusters, named with cell names
#' @keywords internal
getClusteringGroups <- function(clusters, clustering) {
if (length(clusters) < 1) {
stop("generate a joint clustering first")
}
if (is.null(clustering)) { # take the first one
return(clusters[[1]]$groups)
}
if (is.null(clusters[[clustering]])) {
stop(paste("clustering", clustering, "hasn't been calculated"))
}
return(clusters[[clustering]]$groups)
}
#' Plot panel of specified embeddings
#'
#' @inheritParams sccore::embeddingPlot
#' @param embeddings list of two-column matrices with (x, y) coordinates of the embeddings. Each mutrix must have cell names in rownames.
#' @param ncol number of columns in the panel (default=NULL)
#' @param nrow number of rows in the panel (default=NULL)
#' @param panel.size vector with two numbers, which specified (width, height) of the panel in inches (default=NULL). Ignored if raster is FALSE.
#' @param adjust.func function to adjust plots before combining them to single panel (default=NULL). Can be used, for example, to provide color pallette of guides of the plots.
#' @param subset a subset of cells to show (vector of cell names) (default=NULL)
#' @param return.plotlist boolean Whether to return a list of ggplot objects instead of a combined plot (default=FALSE)
#' @return ggplot2 object with the panel of plots
#' @keywords internal
plotEmbeddings <- function(embeddings, groups=NULL, colors=NULL, ncol=NULL, nrow=NULL, raster=FALSE, raster.dpi=300, panel.size=NULL, adjust.func=NULL, title.size=6, adj.list=NULL, subset=NULL, return.plotlist=FALSE, ...) {
if (is.null(panel.size)) {
panel.size <- dev.size(units="in")
} else if (length(panel.size) == 1) {
panel.size <- c(panel.size, panel.size)
}
n.plots <- length(embeddings)
if (is.null(ncol) && is.null(nrow)) {
ncol <- ceiling(sqrt(n.plots))
}
if (is.null(ncol)) {
ncol <- ceiling(n.plots / nrow)
}
if (is.null(nrow)) {
nrow <- ceiling(n.plots / ncol)
}
if (is.null(names(embeddings))) {
names(embeddings) <- paste(1:length(embeddings))
}
plot.list <- lapply(names(embeddings), function(n) {
emb <- embeddings[[n]]
if(!is.null(subset)) {
emb <- emb[rownames(emb) %in% subset,,drop=FALSE]
}
embeddingPlot(emb, groups=groups, colors=colors, raster=raster, raster.dpi=raster.dpi, ...) +
ggplot2::geom_label(data=data.frame(x=-Inf, y=Inf, label=n), mapping=ggplot2::aes(x=x, y=y, label=.data$label),
fill=ggplot2::alpha("white", 0.6), hjust=0, vjust=1, size=title.size,
label.padding=ggplot2::unit(title.size / 4, "pt"), label.size = NA)
})
for (adj in adj.list) {
plot.list %<>% lapply(`+`, adj)
}
if (!is.null(adjust.func)) {
plot.list <- lapply(plot.list, adjust.func)
}
if(return.plotlist) return(plot.list)
return(cowplot::plot_grid(plotlist=plot.list, ncol=ncol, nrow=nrow))
}
#' Plot panel of specified embeddings, extracting them from pagoda2 objects
#'
#' @inheritParams plotEmbeddings
#' @param samples list of pagoda2 or Seurat objects
#' @param gene gene name (default=NULL). If this parameter is provided, points are colored by expression of this gene.
#' @param embedding.type type of embedding (default=NULL). If embedding.type is NULL, this defaults to 'tSNE'. If a matrix is passed, it is interpreted as an actual embedding (then first two columns are interpreted as x/y coordinates, row names must be cell names).
#' @return ggplot2 object with the panel of plots
#' @keywords internal
plotSamples <- function(samples, groups=NULL, colors=NULL, gene=NULL, embedding.type=NULL, ...) {
if (!is.null(groups)) {
groups <- as.factor(groups)
}
if (is.null(x = embedding.type)) {
embedding.type <- if (inherits(x = samples[[1]], what = c('seurat', 'Seurat'))) {
'tsne'
} else {
'tSNE'
}
}
if ('matrix' %in% class(embedding.type)) { # actual embedding was passed, should be class "matrix" "array"
embeddings <- lapply(samples,function(r) embedding.type[rownames(embedding.type) %in% getCellNames(r),,drop=FALSE])
embeddings <- embeddings[unlist(lapply(embeddings,function(x) nrow(x)>0))]
} else { # extract embeddings from samples
embeddings <- lapply(samples, getEmbedding, embedding.type)
}
no.embedding <- sapply(embeddings, is.null)
if (all(no.embedding)) {
stop(paste0("No '", embedding.type, "' embedding presented in the samples"))
}
if (any(no.embedding)) {
warning(paste0(sum(no.embedding), " of your samples doesn't have '", embedding.type, "' embedding"))
embeddings <- embeddings[!no.embedding]
}
if (!is.null(gene)) {
colors <- lapply(samples, getGeneExpression, gene) %>% Reduce(c, .)
}
return(plotEmbeddings(embeddings, groups = groups, colors = colors, ...))
}
#' Plots barplots per sample of composition of each pagoda2 application based on
#' selected clustering
#'
#' @param conos.obj A conos object (default=NULL)
#' @param clustering name of clustering in the current object (default=NULL)
#' @param groups arbitrary grouping of cells (to use instead of the clustering) (default=NULL)
#' @param sample.factor a factor describing cell membership in the samples (or some other category) (default=NULL). This will default to samples if not provided.
#' @param show.entropy boolean Whether to include entropy barplot (default=TRUE)
#' @param show.size boolean Whether to include size barplot (default=TRUE)
#' @param show.composition boolean Whether to include composition barplot (default=TRUE)
#' @param legend.height numeric Relative hight of the legend panel (default=0.2)
#' @return a ggplot object
#' @export
plotClusterBarplots <- function(conos.obj=NULL, clustering=NULL, groups=NULL, sample.factor=NULL, show.entropy=TRUE, show.size=TRUE, show.composition=TRUE, legend.height=0.2) {
## param checking
if (!is.null(clustering) && is.null(conos.obj)) {
stop('conos.obj must be passed if clustering name is specified')
}
if (is.null(groups) && is.null(conos.obj)) {
stop('Either groups factor on the cells or a conos object needs to be specified, both cannot be NULL')
}
groups <- parseCellGroups(conos.obj, clustering, groups)
if (!is.null(groups)) {
groups <- as.factor(groups)
}
if(is.null(sample.factor)) {
sample.factor <- conos.obj$getDatasetPerCell() # assignment to samples
}
xt <- table(sample.factor[match(names(groups),names(sample.factor))],groups)
xt <- xt[rowSums(xt)>0, ]
xt <- xt[ ,colSums(xt)>0]
df <- reshape2::melt(xt)
colnames(df) <- c("sample","cluster","f")
df$f <- df$f/colSums(xt)[as.character(df$cluster)]
clp <- ggplot2::ggplot(df, ggplot2::aes(x=factor(.data$cluster, levels=levels(groups)),y=.data$f,fill=.data$sample)) +
ggplot2::geom_bar(stat='identity') + ggplot2::xlab('cluster') + ggplot2::ylab('fraction of cells') + ggplot2::theme_bw() +
ggplot2::scale_y_continuous(expand=c(0, 0))
if (!show.size && !show.entropy){
return(clp)
}
# extract legend
leg <- cowplot::get_legend(clp + ggplot2::theme(legend.position="bottom"))
pl <- list(clp + ggplot2::theme(legend.position="none"))
if(show.entropy) {
if (!requireNamespace("entropy", quietly=TRUE)){
stop("You need to install 'entropy' package to use 'show.entropy=TRUE'")
}
n.samples <- nrow(xt)
ne <- 1-apply(xt, 2, entropy::KL.empirical, y2=rowSums(xt), unit=c('log2')) / log2(n.samples) # relative entropy
enp <- ggplot2::ggplot(data.frame(cluster=factor(colnames(xt),levels=levels(groups)),entropy=ne), ggplot2::aes(.data$cluster, .data$entropy)) +
ggplot2::geom_bar(stat='identity',fill='grey65') + ggplot2::ylim(0,1) +
ggplot2::geom_hline(yintercept=1, linetype="dashed", color = "grey30") + ggplot2::theme_bw()
pl <- c(pl,list(enp))
}
if(show.size) {
szp <- ggplot2::ggplot(data.frame(cluster=factor(colnames(xt),levels=levels(groups)), cells=colSums(xt)), ggplot2::aes(.data$cluster, .data$cells)) +
ggplot2::geom_bar(stat='identity') + ggplot2::scale_y_continuous(trans='log10') + ggplot2::theme_bw() + ggplot2::ylab('number of cells')
pl <- c(pl, list(szp))
}
pp <- cowplot::plot_grid(plotlist=pl ,ncol=1, rel_heights=c(1,rep(0.3,length(pl)-1)))
pp2 <- cowplot::plot_grid(leg, pp, ncol=1, rel_heights=c(legend.height,1))
return(pp2)
}
#' Generate boxplot per cluster of the proportion of cells in each celltype
#'
#' @param conos.obj conos object
#' @param clustering name of the clustering to use (default=NULL)
#' @param apptypes a factor specifying how to group the samples (default=NULL)
#' @param return.details boolean If TRUE return a list with the plot and the summary data.frame (default=FALSE)
#' @return Boxplot per cluster of the proportion of cells in each celltype
#' @export
plotClusterBoxPlotsByAppType <- function(conos.obj, clustering=NULL, apptypes=NULL, return.details=FALSE) {
type <- 'proportions'
## param checking
if(is.null(clustering)) {
clustering <- 'multi level'
}
if(is.null(apptypes)) stop('apptypes must be spectified')
if(!is.factor(apptypes)) stop('apptypes must be a factor')
if(!type %in% c('counts','proportions')) stop('argument type must be either counts or proportions')
## main function
groups <- as.factor(conos.obj$clusters[[clustering]]$groups)
plot.df <- do.call(rbind,lapply(names(conos.obj$samples), function(n) {
o <- conos.obj$samples[[n]]
grps1 <- groups[intersect(names(groups), rownames(o$counts))]
tbl1 <- data.frame(
clname=levels(grps1),
val=tabulate(grps1),
sample=c(n),
stringsAsFactors = FALSE
)
if(type=='proportions') {
tbl1$val <- tbl1$val / sum(tbl1$val)
}
tbl1
}))
## append app type
plot.df$apptype <- apptypes[plot.df$sample]
## Make the plot
gg <- ggplot2::ggplot(plot.df, ggplot2::aes(x=.data$apptype,y=.data$val,fill=.data$clname)) + ggplot2::facet_wrap(~.data$clname) + ggplot2::geom_boxplot()
if (type == 'counts') {
gg <- gg + ggplot2::scale_y_continuous(name='counts')
} else {
gg <- gg + ggplot2::scale_y_continuous(name='% of sample')
}
gg <- gg + ggplot2::scale_x_discrete(name='cluster')
## return
if(return.details){
return(list(plot=gg,data=plot.df))
}
return(gg)
}
#' Deprecated; Get markers for global clusters
#'
#' @param conos.obj conos object
#' @param clustering character Name of the clustering to use (default='multi level')
#' @param min.samples.expressing numeric Minimum number of samples that must have the genes upregulated in the respective cluster (default=0)
#' @param min.percent.samples.expressing numeric Minumum percent of samples that must have the gene upregulated (default=0)
#' @return List of consistent genes per each cluster
#' @keywords internal
getGlobalClusterMarkers <- function(conos.obj, clustering='multi level',
min.samples.expressing=0, min.percent.samples.expressing=0){
.Deprecated("getDifferentialGenes")
## get the groups from the clusters
groups <- as.factor(conos.obj$clusters[[clustering]]$groups)
## de lists
delists <- lapply(conos.obj$samples, function(p2) {
cells <- rownames(p2$counts)
groups.p2 <- groups[cells]
de <- p2$getDifferentialGenes(groups=groups.p2)
de
})
## get de genes per app
z <- lapply(namedLevels(groups), function(l) {
lapply(delists, function(x) {
res <- x[[l]]
rownames(res[res$Z > 0,])
})
})
## get consistent genes for each cluster
zp <- lapply(z, function(k) {
k <- lapply(k, unique)
gns <- factor(unlist(unname(k)))
t.gns <- tabulate(gns)
names(t.gns) <- levels(gns)
t.gns.pc <- t.gns / length(k)
## consistent genes
names(t.gns[t.gns >= min.samples.expressing & t.gns.pc >= min.percent.samples.expressing])
})
## return consistent genes
zp
}
#' Plot fraction of variance explained by the successive reduced space components (PCA, CPCA)
#'
#' Requires buildGraph() or updatePairs() to be ran first with the argument score.component.variance=TRUE.
#'
#' @param conos.obj conos object
#' @param space character Reduction space to be analyzed (currently, component variance scoring is only supported by PCA and CPCA) (default='PCA')
#' @param plot.theme ggplot theme (default=ggplot2::theme_bw()). Refer to <https://ggplot2.tidyverse.org/reference/ggtheme.html> for more details.
#' @return ggplot
#' @export
plotComponentVariance <- function(conos.obj, space='PCA', plot.theme=ggplot2::theme_bw()) {
pairs <- conos.obj$pairs[[space]]
if(!is.null(pairs[[space]])) stop(paste("no pairs for space",space,"found. Please run buildGraph() or updatePairs() first, with score.component.variance=TRUE"))
nvs <- lapply(pairs,'[[','nv'); nvs <- setNames(unlist(nvs,recursive=FALSE,use.names=FALSE),unlist(lapply(nvs,names)))
if(length(nvs)<1) stop("no variance information found. Please run buildGraph() or updatePairs() with score.component.variance=TRUE")
if(space=='PCA') { # omit duplicates
nvs <- nvs[unique(names(nvs))]
}
df <- reshape2::melt(do.call(cbind,nvs))
colnames(df) <- c('component','dataset','var')
df$component <- factor(df$component,levels=sort(unique(df$component)))
ggplot2::ggplot(df, ggplot2::aes(x=.data$component,y=var)) +
ggplot2::geom_point(shape=16, ggplot2::aes(color=.data$dataset), position = ggplot2::position_jitter(), alpha=0.3) +
ggplot2::geom_line(ggplot2::aes(group=.data$dataset,color=.data$dataset), alpha=0.2)+
ggplot2::ylab('fraction of variance explained') + ggplot2::xlab('component number') +
ggplot2::geom_boxplot(notch=FALSE,outlier.shape=NA,fill=NA) + plot.theme + ggplot2::theme(legend.position='none')
}
#' Plot a heatmap of differential genes
#'
#' @param con conos (or p2) object
#' @param groups groups in which the DE genes were determined (so that the cells can be ordered correctly)
#' @param de differential expression result (list of data frames) (default=NULL)
#' @param min.auc optional minimum AUC threshold (default=NULL)
#' @param min.specificity optional minimum specificity threshold (default=NULL)
#' @param min.precision optional minimum precision threshold (default=NULL)
#' @param n.genes.per.cluster numeric Number of genes to show for each cluster (default=10)
#' @param additional.genes optional additional genes to include (the genes will be assigned to the closest cluster) (default=NULL)
#' @param exclude.genes an optional list of genes to exclude from the heatmap (default=NULL)
#' @param labeled.gene.subset a subset of gene names to show (instead of all genes) (default=NULL). Can be a vector of gene names, or a number of top genes (in each cluster) to show the names for.
#' @param expression.quantile numeric Expression quantile to show (default=0.99)
#' @param pal palette to use for the main heatmap (default=colorRampPalette(c('dodgerblue1','grey95','indianred1'))(1024))
#' @param ordering order by which the top DE genes (to be shown) are determined (default "-AUC")
#' @param column.metadata additional column metadata, passed either as a data.frame with rows named as cells, or as a list of named cell factors (default=NULL).
#' @param show.gene.clusters whether to show gene cluster color codes
#' @param remove.duplicates remove duplicated genes (leaving them in just one of the clusters)
#' @param column.metadata.colors a list of color specifications for additional column metadata, specified according to the HeatmapMetadata format. Use "clusters" slot to specify cluster colors.
#' @param show.cluster.legend boolean Whether to show the cluster legend (default=TRUE)
#' @param show_heatmap_legend boolean Whether to show the expression heatmap legend (default=FALSE)
#' @param border boolean Whether to show borders around the heatmap and annotations (default=TRUE)
#' @param return.details boolean If TRUE will return a list containing the heatmap (ha), but also raw matrix (x), expression list (expl) and other info to produce the heatmap on your own (default=FALSE).
#' @param row.label.font.size numeric Font size for the row labels (default=10)
#' @param order.clusters boolean Whether to re-order the clusters according to the similarity of the expression patterns (of the genes being shown) (default=FALSE)
#' @param split boolean Whether to use arguments "row_split" and "column_split" in ComplexHeatmap::Heatmap() (default=FALSE). These arguments are categorical vectors used to split the rows/columns in the heatmap.
#' @param split.gap numeric Value of millimeters "mm" to use for 'row_gap' and 'column_gap' (default=0). If split is FALSE, this argument is ignored.
#' @param cell.order explicitly supply cell order (default=NULL)
#' @param averaging.window numeric Optional window averaging between neighboring cells within each group (turned off by default) - useful when very large number of cells shown (requires zoo package) (default=0)
#' @param max.cells numeric Maximum cells to include in any given group (default: Inf)
#' @param ... extra parameters are passed to ComplexHeatmap::Heatmap() call
#' @return ComplexHeatmap::Heatmap object (see return.details param for other output)
#' @export
plotDEheatmap <- function(con, groups, de=NULL, min.auc=NULL, min.specificity=NULL, min.precision=NULL,
n.genes.per.cluster=10, additional.genes=NULL, exclude.genes=NULL, labeled.gene.subset=NULL, expression.quantile=0.99,
pal=colorRampPalette(c('dodgerblue1','grey95','indianred1'))(1024), ordering='-AUC', column.metadata=NULL, show.gene.clusters=TRUE,
remove.duplicates=TRUE, column.metadata.colors=NULL, show.cluster.legend=TRUE, show_heatmap_legend=FALSE, border=TRUE, return.details=FALSE,
row.label.font.size=10, order.clusters=FALSE, split=FALSE, split.gap=0, cell.order=NULL, averaging.window=0, max.cells=Inf, ...) {
if (!requireNamespace("ComplexHeatmap", quietly = TRUE) || packageVersion("ComplexHeatmap") < "2.4") {
stop("ComplexHeatmap >= 2.4 package needs to be installed to use plotDEheatmap. Please run \"devtools::install_github('jokergoo/ComplexHeatmap')\".")
}
groups <- as.factor(groups)
if(is.null(de)) { # run DE
de <- con$getDifferentialGenes(groups=groups,append.auc=TRUE,z.threshold=0,upregulated.only=TRUE)
}
# drop empty results
de <- de[unlist(lapply(de,nrow))>0]
# drop results that are not in the factor levels
de <- de[names(de) %in% levels(groups)]
# order de list to match groups order
de <- de[order(match(names(de),levels(groups)))]
# apply filters
if(!is.null(min.auc)) {
if(!is.null(de[[1]]$AUC)) {
de <- lapply(de,function(x) x %>% dplyr::filter(.data$AUC>min.auc))
} else {
warning("AUC column lacking in the DE results - recalculate with append.auc=TRUE")
}
}
if(!is.null(min.specificity)) {
if(!is.null(de[[1]]$Specificity)) {
de <- lapply(de,function(x) x %>% dplyr::filter(.data$Specificity>min.specificity))
} else {
warning("Specificity column lacking in the DE results - recalculate append.specificity.metrics=TRUE")
}
}
if(!is.null(min.precision)) {
if(!is.null(de[[1]]$Precision)) {
de <- lapply(de,function(x) x %>% dplyr::filter(.data$Precision>min.precision))
} else {
warning("Precision column lacking in the DE results - recalculate append.specificity.metrics=TRUE")
}
}
#de <- lapply(de,function(x) x%>%arrange(-Precision)%>%head(n.genes.per.cluster))
if(n.genes.per.cluster==0) { # want to show only expliclty specified genes
if (is.null(additional.genes)){
stop("if n.genes.per.cluster is 0, additional.genes must be specified")
}
additional.genes.only <- TRUE
n.genes.per.cluster <- 30 # leave some genes to establish cluster association for the additional genes
} else {
additional.genes.only <- FALSE
}
de <- lapply(de,function(x) x%>%dplyr::arrange(!!rlang::parse_expr(ordering))%>%head(n.genes.per.cluster))
de <- de[unlist(lapply(de, nrow))>0]
gns <- lapply(de,function(x) as.character(x$Gene)) %>% unlist
sn <- function(x) setNames(x,x)
expl <- lapply(de,function(d) do.call(rbind,lapply(sn(as.character(d$Gene)),function(gene) getGeneExpression(con,gene))))
# place additional genes
if (!is.null(additional.genes)) {
genes.to.add <- setdiff(additional.genes,unlist(lapply(expl,rownames)))
if (length(genes.to.add)>0) {
x <- setdiff(genes.to.add, getGenes(con))
if (length(x)>0) {
warning('the following genes are not found in the dataset: ',paste(x,collapse=' '))
}
age <- do.call(rbind,lapply(sn(genes.to.add),function(gene) getGeneExpression(con,gene)))
# for each gene, measure average correlation with genes of each cluster
acc <- do.call(rbind,lapply(expl,function(og) rowMeans(cor(t(age),t(og)),na.rm=TRUE)))
acc <- acc[,apply(acc,2,function(x) any(is.finite(x))),drop=FALSE]
acc.best <- na.omit(apply(acc,2,which.max))
for (i in 1:length(acc.best)) {
gn <- names(acc.best)[i];
expl[[acc.best[i]]] <- rbind(expl[[acc.best[i]]],age[gn,,drop=FALSE])
}
if (additional.genes.only) { # leave only genes that were explictly specified
expl <- lapply(expl,function(d) d[rownames(d) %in% additional.genes,,drop=FALSE])
expl <- expl[unlist(lapply(expl,nrow))>0]
}
}
}
# omit genes that should be excluded
if(!is.null(exclude.genes)) {
expl <- lapply(expl,function(x) {
x[!rownames(x) %in% exclude.genes,,drop=FALSE]
})
}
exp <- do.call(rbind,expl)
# limit to cells that were participating in the de
exp <- na.omit(exp[,colnames(exp) %in% names(na.omit(groups))])
if (order.clusters) {
# group clusters based on expression similarity (of the genes shown)
xc <- do.call(cbind,tapply(1:ncol(exp),groups[colnames(exp)],function(ii) rowMeans(exp[,ii,drop=FALSE])))
hc <- hclust(as.dist(2-cor(xc)),method='ward.D2')
groups <- factor(groups,levels=hc$labels[hc$order])
expl <- expl[levels(groups)]
# re-create exp (could just reorder it)
exp <- do.call(rbind,expl)
exp <- na.omit(exp[,colnames(exp) %in% names(na.omit(groups))])
}
if (is.finite(max.cells)) {
exp <- do.call(cbind,tapply(1:ncol(exp),as.factor(groups[colnames(exp)]),function(ii) {
if(length(ii)>max.cells) { ii <- sample(ii,max.cells) }
exp[,ii,drop=F]
}))
}
if(averaging.window>0) {
# check if zoo is installed
if(requireNamespace("zoo", quietly = TRUE)) {
exp <- do.call(cbind,tapply(1:ncol(exp),as.factor(groups[colnames(exp)]),function(ii) {
xa <- t(zoo::rollapply(as.matrix(t(exp[,ii,drop=FALSE])),averaging.window,mean,align='left',partial=TRUE))
colnames(xa) <- colnames(exp)[ii]
xa
}))
} else {
warning("window averaging requires zoo package to be installed. skipping.")
}
}
# transform expression values
x <- t(apply(as.matrix(exp), 1, function(xp) {
if(expression.quantile<1) {
qs <- quantile(xp,c(1-expression.quantile,expression.quantile))
if(diff(qs)==0) { # too much, set to adjacent values
xps <- unique(xp)
if(length(xps)<3) { qs <- range(xp) } # only two values, just take the extremes
xpm <- median(xp)
if(sum(xp<xpm) > sum(xp>xpm)) { # more common to have values below the median
qs[1] <- max(xp[xp<xpm])
} else { # more common to have values above the median
qs[2] <- min(xps[xps>xpm]) # take the next one higher
}
}
xp[xp<qs[1]] <- qs[1]
xp[xp>qs[2]] <- qs[2]
}
xp <- xp-min(xp);
if(max(xp)>0) xp <- xp/max(xp);
xp
}))
if(!is.null(cell.order)) {
o <- cell.order[cell.order %in% colnames(x)]
} else {
o <- order(groups[colnames(x)])
}
x=x[,o]
annot <- data.frame(clusters=groups[colnames(x)],row.names = colnames(x))
if(!is.null(column.metadata)) {
if(is.data.frame(column.metadata)) { # data frame
annot <- cbind(annot,column.metadata[colnames(x),])
} else if(is.list(column.metadata)) { # a list of factors
annot <- cbind(annot,data.frame(do.call(cbind.data.frame,lapply(column.metadata,'[',rownames(annot)))))
} else {
warning('column.metadata must be either a data.frame or a list of cell-named factors')
}
}
annot <- annot[,rev(1:ncol(annot)),drop=FALSE]
if(is.null(column.metadata.colors)) {
column.metadata.colors <- list();
} else {
if(!is.list(column.metadata.colors)) stop("column.metadata.colors must be a list in a format accepted by HeatmapAnnotation col argument")
# reorder pallete to match the ordering in groups
if(!is.null(column.metadata.colors[['clusters']])) {
if(!all(levels(groups) %in% names(column.metadata.colors[['clusters']]))) {
stop("column.metadata.colors[['clusters']] must be a named vector of colors containing all levels of the specified cell groups")
}
column.metadata.colors[['clusters']] <- column.metadata.colors[['clusters']][levels(groups)]
}
}
# make sure cluster colors are defined
if(is.null(column.metadata.colors[['clusters']])) {
uc <- unique(annot$clusters);
column.metadata.colors$clusters <- setNames(rainbow(length(uc)),uc)
}
tt <- unlist(lapply(expl,nrow));
rannot <- setNames(rep(names(tt),tt),unlist(lapply(expl,rownames)))
#names(rannot) <- rownames(x);
rannot <- rannot[!duplicated(names(rannot))]
rannot <- rannot[names(rannot) %in% rownames(x)]
rannot <- data.frame(clusters=factor(rannot,levels=names(expl)))
if (remove.duplicates) {
x <- x[!duplicated(rownames(x)),]
}
# draw heatmap
ha <- ComplexHeatmap::HeatmapAnnotation(df=annot,border=border,col=column.metadata.colors,show_legend=show.cluster.legend)
if(show.gene.clusters) {
ra <- ComplexHeatmap::HeatmapAnnotation(df=rannot,which='row',show_annotation_name=FALSE, show_legend=FALSE, border=border,col=column.metadata.colors)
} else {
ra <- NULL
}
## turns off ComplexHeatmap warning:
## `use_raster` is automatically set to TRUE for a matrix with more than
## 2000 columns. You can control `use_raster` argument by explicitly
## setting TRUE/FALSE to it.
## Set `ht_opt$message = FALSE` to turn off this message.
##
ht_opt$message = FALSE
#ComplexHeatmap::Heatmap(x, col=pal, cluster_rows=FALSE, cluster_columns=FALSE, show_column_names=FALSE, top_annotation=ha , left_annotation=ra, column_split=groups[colnames(x)], row_split=rannot[,1], row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), border=TRUE, ...);
if(split) {
ha <- ComplexHeatmap::Heatmap(x, name='expression', col=pal, cluster_rows=FALSE, cluster_columns=FALSE, show_row_names=is.null(labeled.gene.subset), show_column_names=FALSE, top_annotation=ha , left_annotation=ra, border=border, show_heatmap_legend=show_heatmap_legend, row_names_gp = grid::gpar(fontsize = row.label.font.size), column_split=groups[colnames(x)], row_split=rannot[,1], row_gap = grid::unit(split.gap, "mm"), column_gap = grid::unit(split.gap, "mm"), ...);
} else {
ha <- ComplexHeatmap::Heatmap(x, name='expression', col=pal, cluster_rows=FALSE, cluster_columns=FALSE, show_row_names=is.null(labeled.gene.subset), show_column_names=FALSE, top_annotation=ha , left_annotation=ra, border=border, show_heatmap_legend=show_heatmap_legend, row_names_gp = grid::gpar(fontsize = row.label.font.size), ...);
}
if(!is.null(labeled.gene.subset)) {
if(is.numeric(labeled.gene.subset)) {
# select top n genes to show
labeled.gene.subset <- unique(unlist(lapply(de,function(x) x$Gene[1:min(labeled.gene.subset,nrow(x))])))
}
gene.subset <- which(rownames(x) %in% labeled.gene.subset)
labels <- rownames(x)[gene.subset]
ha <- ha + ComplexHeatmap::rowAnnotation(link = ComplexHeatmap::anno_mark(at = gene.subset, labels = labels, labels_gp = grid::gpar(fontsize = row.label.font.size)))
}
if(return.details) {
return(list(ha=ha,x=x,annot=annot,rannot=rannot,expl=expl,pal=pal,labeled.gene.subset=labeled.gene.subset))
}
return(ha)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.