Nothing
# 3/12/2004 RAR DS
# this is BEINF, the Beta distribution with probabilities for 0 and 1 (i.e. 4 parameters)
#------------------------------------------------------------------------------------------
BEINF <- function (mu.link = "logit", sigma.link = "logit",
nu.link = "log", tau.link = "log")
{
mstats <- checklink("mu.link", "BEINF", substitute(mu.link),
c("logit", "probit", "cloglog", "cauchit", "log", "own"))
dstats <- checklink("sigma.link", "BEINF", substitute(sigma.link),
c("logit", "probit", "cloglog", "cauchit", "log", "own"))
vstats <- checklink("nu.link", "BEINF", substitute(nu.link),
c("inverse", "log", "identity", "own"))
tstats <- checklink("tau.link", "BEINF", substitute(tau.link),
c("inverse", "log", "identity", "own"))
structure(
list(family = c("BEINF", "Beta Inflated"),
parameters = list(mu=TRUE, sigma=TRUE, nu=TRUE, tau=TRUE),
nopar = 4,
type = "Mixed",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
tau.link = as.character(substitute(tau.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
tau.linkfun = tstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
tau.linkinv = tstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
tau.dr = tstats$mu.eta,
dldm = function(y,mu,sigma) { a <- mu*(1-sigma^2)/(sigma^2)
b <- a*(1-mu)/mu
dldm <- ifelse(((y==0)|(y==1)),0,((1-sigma^2)/(sigma^2))*(-digamma(a)
+digamma(b) +log(y) - log(1-y)))
dldm
},
d2ldm2 = function(y,mu,sigma) { a <- mu*(1-sigma^2)/(sigma^2)
b <- a*(1-mu)/mu
d2ldm2 <- ifelse( ((y==0)|(y==1)), 0 ,
-(((1-sigma^2)^2)/(sigma^4))*(trigamma(a) +trigamma(b)))
d2ldm2
},
dldd = function(y,mu,sigma) { a <- mu*(1-sigma^2)/(sigma^2)
b <- a*(1-mu)/mu
dldd <- ifelse( ((y==0)|(y==1)), 0 ,
-(2/(sigma^3))*( mu*(-digamma(a)+digamma(a+b)+log(y))
+(1-mu)*(-digamma(b)+digamma(a+b)+log(1-y)) ))
dldd
},
d2ldd2 = function(y,mu,sigma,nu,tau) {
a <- mu*(1-sigma^2)/(sigma^2)
b <- a*(1-mu)/mu
d2ldd2 <- ifelse( ((y==0)|(y==1)), 0 ,
-(4/(sigma^6))*((mu^2)*trigamma(a) +((1-mu)^2)*trigamma(b)
-trigamma(a+b)))
d2ldd2
},
dldv = function(y,nu,tau) {dldv <- ifelse(y==0,(1/nu),0) -(1/(1+nu+tau))
dldv
},
d2ldv2 = function(nu,tau) {d2ldv2 <- -(1+tau)/(nu*((1+nu+tau)^2))
d2ldv2
},
dldt = function(y,nu,tau) { dldt <- ifelse(y==1,(1/tau),0) -(1/(1+nu+tau))
dldt
},
d2ldt2 = function(nu,tau) {
d2ldt2 <- -(1+nu)/(tau*((1+nu+tau)^2))
d2ldt2
},
d2ldmdd = function(y,mu,sigma) { a <- mu*(1-sigma^2)/(sigma^2)
b <- a*(1-mu)/mu
d2ldmdd <- ifelse( ((y==0)|(y==1)), 0 ,
(2*(1-sigma^2)/(sigma^5))*(mu*trigamma(a)-(1-mu)*trigamma(b)))
d2ldmdd
},
d2ldmdv = function(y) {
d2ldmdv <- rep(0,length(y))
d2ldmdv
},
d2ldmdt = function(y) {
d2ldmdt <- rep(0,length(y))
d2ldmdt
},
d2ldddv = function(y) {
d2ldddv <- rep(0,length(y))
d2ldddv
},
d2ldddt = function(y) {
d2ldddt <- rep(0,length(y))
d2ldddt
},
d2ldvdt = function(nu,tau) {
d2ldvdt <- 1/((1+nu+tau)^2)
d2ldvdt
},
G.dev.incr = function(y,mu,sigma,nu,tau,...)
-2*dBEINF(y,mu,sigma,nu,tau,log=TRUE),
rqres = expression(rqres(pfun="pBEINF", type="Mixed", mass.p=c(0,1),
prob.mp=cbind(nu/(1+nu+tau),tau/(1+nu+tau)), y=y, mu=mu,
sigma=sigma, nu=nu, tau=tau)),
mu.initial = expression(mu <- (y+mean(y))/2), #(y+mean(y))/2),# rep(mean(y),length(y))
sigma.initial = expression(sigma <- rep(0.5, length(y))),
nu.initial = expression(nu <- rep(0.3, length(y))),
tau.initial = expression(tau <-rep(0.3, length(y))),
mu.valid = function(mu) all(mu > 0 & mu < 1) ,
sigma.valid = function(sigma) all(sigma > 0 & sigma < 1),
nu.valid = function(nu) all(nu > 0) ,
tau.valid = function(tau) all(tau > 0),
y.valid = function(y) all(y >= 0 & y <= 1),
mean = function(mu, sigma, nu, tau) (mu+tau)/(1+nu+tau),
variance = function(mu, sigma, nu, tau) (sigma^2 * mu *(1-mu)+mu^2+tau+((mu+tau)^2)*(1+nu+tau)^(-1))/(1+nu+tau)
),
class = c("gamlss.family","family"))
}
#------------------------------------------------------------------------------------------
dBEINF<-function(x, mu = 0.5, sigma = 0.1,
nu = 0.1, tau = 0.1, log = FALSE)
{
if (any(mu <= 0) | any(mu >= 1) )
stop(paste("mu must be between 0 and 1", "\n", ""))
if (any(sigma <= 0) | any(sigma >= 1))
stop(paste("sigma must be between 0 and 1", "\n", ""))
if (any(nu <= 0) )
stop(paste("nu must greated than 0", "\n", ""))
if (any(tau <= 0) )
stop(paste("tau must greated than 0", "\n", ""))
# if (any(x < 0) | any(x > 1)) stop(paste("x must be 0<=x<=1, i.e. 0 to 1 inclusively", "\n", ""))
a <- mu*(1-sigma^2)/(sigma^2)
b <- a*(1-mu)/mu
logfy <- rep(0, length(x))
logfy <- ifelse((x>0 & x<1), dbeta(x, shape1=a, shape2=b, ncp=0, log=TRUE), 0)
logfy <- ifelse((x==0), log(nu), logfy)
logfy <- ifelse((x==1), log(tau) , logfy)
logfy <- logfy - log(1+nu+tau)
if(log==FALSE) fy <- exp(logfy) else fy <- logfy
fy <- ifelse( x < 0 | x > 1, 0, fy)
fy
}
#------------------------------------------------------------------------------------------
pBEINF <- function(q, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
{
if (any(mu <= 0) | any(mu >= 1) )
stop(paste("mu must be between 0 and 1", "\n", ""))
if (any(sigma <= 0) | any(sigma >= 1))
stop(paste("sigma must be between 0 and 1", "\n", ""))
if (any(nu <= 0) )
stop(paste("nu must greated than 0", "\n", ""))
if (any(tau <= 0) )
stop(paste("tau must greated than 0", "\n", ""))
# if (any(q < 0) | any(q > 1)) stop(paste("y must be 0<=y<=1, i.e. 0 to 1 inclusively", "\n", ""))
a <- mu*(1-sigma^2)/(sigma^2)
b <- a*(1-mu)/mu
cdf <- ifelse((q>0 & q<1), nu + pbeta(q, shape1=a, shape2=b, ncp=0,
lower.tail=TRUE,log.p=FALSE), 0)
cdf <- ifelse((q==0), nu, cdf)
cdf <- ifelse((q==1), 1+nu+tau , cdf)
cdf <- cdf/(1+nu+tau)
if(lower.tail==TRUE) cdf <- cdf else cdf=1-cdf
if(log.p==FALSE) cdf <- cdf else cdf <- log(cdf)
cdf <- ifelse( q< 0, 0, cdf)
cdf <- ifelse( q > 01, 01, cdf)
cdf
}
#------------------------------------------------------------------------------------------
qBEINF <- function(p, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
{ if (any(mu <= 0) | any(mu >= 1) )
stop(paste("mu must be between 0 and 1", "\n", ""))
if (any(sigma <= 0) | any(sigma >= 1))
stop(paste("sigma must be between 0 and 1", "\n", ""))
if (any(nu <= 0) )
stop(paste("nu must greated than 0", "\n", ""))
if (any(tau <= 0) )
stop(paste("tau must greated than 0", "\n", ""))
if (any(p < 0) | any(p > 1))
stop(paste("p must be between 0 and 1", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (lower.tail==TRUE) p <- p else p <- 1-p
a <- mu*(1-sigma^2)/(sigma^2)
b <- a*(1-mu)/mu
suppressWarnings(
q <- ifelse((p<=(nu/(1+nu+tau))),0, qbeta((p-(nu/(1+nu+tau)))/(1/(1+nu+tau)), shape1=a,
shape2=b, lower.tail=TRUE, log.p=FALSE)))
q <- ifelse((p>=((1+nu)/(1+nu+tau))), 1, q)
q
}
#------------------------------------------------------------------------------------------
rBEINF <- function(n, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1)
{ if (any(mu <= 0) | any(mu >= 1) )
stop(paste("mu must be between 0 and 1", "\n", ""))
if (any(sigma <= 0) | any(sigma >= 1))
stop(paste("sigma must be between 0 and 1", "\n", ""))
if (any(nu <= 0) )
stop(paste("nu must greated than 0", "\n", ""))
if (any(tau <= 0) )
stop(paste("tau must greated than 0", "\n", ""))
if (any(n <= 0))
stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qBEINF(p, mu=mu, sigma=sigma, nu=nu, tau=tau)
r
}
#------------------------------------------------------------------------------------------
plotBEINF <- function( mu =.5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0.001, to=0.999, n = 101, ...)
{
fy <- dBEINF( seq(from,to,length=n), mu = mu ,sigma = sigma, nu = nu, tau=tau)
maxfy <- max(fy)
pr<-c(dBEINF(0, mu=mu ,sigma=sigma, nu=nu, tau=tau),dBEINF(1, mu=mu ,sigma=sigma, nu=nu, tau=tau))
allmax<- max(c(pr, maxfy))
plot(function(y) dBEINF(y, mu = mu ,sigma = sigma, nu = nu, tau=tau), from = from, to = to, n = n, ylim=c(0, allmax), ... )
po<-c(0,1)
points(po,pr,type="h")
points(po,pr,type="p", col="blue")
}
#-----------------------------------------------------------------------------------------
meanBEINF <- function(obj)
{
if ( obj$family[1]!="BEINF") stop("the object do not have a BEINF distribution")
meanofY<-(fitted(obj,"tau")+fitted(obj,"mu"))/(1+fitted(obj,"nu")+fitted(obj,"tau"))
meanofY
}
#----------------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.