| ks.gumbel | R Documentation |
The function ks.gumbel() gives the values for the KS test assuming a Gumbel with shape
parameter mu and scale parameter sigma. In addition, optionally, this function
allows one to show a comparative graph between the empirical and theoretical cdfs for a specified data set.
ks.gumbel(x, mu.est, sigma.est,
alternative = c("less", "two.sided", "greater"), plot = FALSE, ...)
x |
vector of observations. |
mu.est |
estimate of the parameter mu |
sigma.est |
estimate of the parameter sigma |
alternative |
indicates the alternative hypothesis and must be one of |
plot |
Logical; if TRUE, the cdf plot is provided. |
... |
additional arguments to be passed to the underlying plot function. |
The Kolmogorov-Smirnov test is a goodness-of-fit technique based on the maximum distance between the empirical and theoretical cdfs.
The function ks.gumbel() carries out the KS test for the Gumbel
Marshall, A. W., Olkin, I.(2007). Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families, Springer, New York.
pp.gumbel for PP plot and qq.gumbel for QQ plot
## Load data sets
data(dataset2)
## Maximum Likelihood(ML) Estimates of mu & sigma for the data(dataset2)
## Estimates of mu & sigma using 'maxLik' package
## mu.est = 212.157, sigma.est = 151.768
ks.gumbel(dataset2, 212.157, 151.768, alternative = "two.sided", plot = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.