tests/testthat/test-CTD_specificity.R

test_that("Correct specificity values of CTD calculated", {

    # Test for specificity return from generate_celltype_data
    # create some fake exp data
    if (!is_32bit()) {
        set.seed(101)
        rand_data <- runif(1000)
        exp_set <- matrix(ifelse(rand_data < 0.55, 0, rand_data),
            ncol = 10,
            dimnames = list(paste0("gene_", 1:100), paste0("sample_", 1:10))
        )
        # Make exp into a sparse matrix
        exp_set <- Matrix::Matrix(exp_set)
        # now create 4 groups for the ten samples to get the means of
        grouping <- vector(mode = "list", length = 4)
        # just creating four levels so the test can be run four times
        names(grouping) <- paste0("level", seq(1, 4), "class")
        grouping <- lapply(grouping, function(x) {
            as.character(sample(paste0("celltype_", seq(1, 4)), 10, replace = TRUE))
        })

        # Now apply EWCE function
        fNames <- EWCE::generate_celltype_data(
            exp = exp_set,
            annotLevels = grouping,
            groupName = "testthat",
            # Setting these equal means it won't try to convert orthologs,
            # which returns 0 genes bc they're all fake
            input_species = "mouse",
            output_species = "mouse",
            savePath = tempdir(),
            no_cores = 1 ### IMPORTANT! Testthat causes conflicts with parallelization
        )
        # load res - named ctd
        ctd <- load_rdata(fNames)
        EWCE_res_spec <- lapply(ctd, function(x) x$specificity)

        # check against known answer for gene 16
        test <- setNames(c(1, 2), c("A", "B"))
        known_ans <- list(
            setNames(
                c(0.4450643, 0.2458045, 0.3091312),
                c("celltype_2", "celltype_3", "celltype_4")
            ),
            setNames(
                c(0.4050525, 0.4271945, 0.1677530),
                c("celltype_1", "celltype_2", "celltype_4")
            ),
            setNames(
                c(0.2022591, 0.3428756, 0.1924686, 0.2623967),
                c("celltype_1", "celltype_2", "celltype_3", "celltype_4")
            ),
            setNames(
                c(0.1583313, 0.2530405, 0.3367327, 0.2518955),
                c("celltype_1", "celltype_2", "celltype_3", "celltype_4")
            )
        )
        EWCE_res_gene_16 <- lapply(
            EWCE_res_spec,
            function(x) {
                round(x[rownames(x) == "gene_16", ], 7)
            }
        )
        # fail if specificity values aren't the same for gene 16 across the 3 tests
        testthat::expect_true(all.equal(EWCE_res_gene_16, known_ans))
    }
})
NathanSkene/EWCE documentation built on Nov. 3, 2024, 8:16 a.m.