Description Usage Arguments Value Author(s) References See Also Examples
Calculates the variance-covariance matrix of estimates of regression coefficients using
\widehat{\mathrm{cov}} ≤ft( \boldsymbol{\hat{β}} \right) = \hat{σ}_{\varepsilon}^2 ≤ft( \mathbf{X}^{T} \mathbf{X} \right)^{-1}
where \hat{σ}_{\varepsilon}^{2} is the estimate of the error variance σ_{\varepsilon}^{2} and \mathbf{X} is the data matrix, that is, an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.
1 | vcovhatbetahat(X, y)
|
X |
|
y |
Numeric vector of length |
Returns the variance-covariance matrix of estimates of regression coefficients.
Ivan Jacob Agaloos Pesigan
Wikipedia: Ordinary Least Squares
Other variance-covariance of estimates of regression coefficients functions:
.vcovhatbetahatbiased()
,
.vcovhatbetahat()
,
vcovhatbetahatbiased()
1 2 3 4 5 6 7 8 9 10 11 | # Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
vcovhatbetahat(X = X, y = y)
# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
vcovhatbetahat(X = X, y = y)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.