#' @author Ivan Jacob Agaloos Pesigan
#'
#' @title Variance-Covariance Matrix of Estimates of Regression Coefficients (from \eqn{\hat{\sigma}_{\varepsilon}^{2}})
#'
#' @description Calculates the variance-covariance matrix of estimates of regression coefficients using
#' \deqn{
#' \widehat{\mathrm{cov}} \left( \boldsymbol{\hat{\beta}} \right) =
#' \hat{\sigma}_{\varepsilon}^2 \left( \mathbf{X}^{T} \mathbf{X} \right)^{-1}
#' }
#' where \eqn{\hat{\sigma}_{\varepsilon}^{2}}
#' is the estimate of the error variance \eqn{\sigma_{\varepsilon}^{2}}
#' and \eqn{\mathbf{X}} is the data matrix, that is,
#' an \eqn{n \times k} matrix of \eqn{n} observations of \eqn{k} regressors,
#' which includes a regressor whose value is 1 for each observation on the first column.
#'
#' @details If `sigma2hatepsilonhat = NULL`, `sigma2hatepsilonhat` is computed
#' using [`sigma2hatepsilonhat()`].
#'
#' @family variance-covariance of estimates of regression coefficients functions
#' @keywords vcov
#' @param sigma2hatepsilonhat Numeric.
#' Estimate of error variance.
#' @inheritParams sigma2hatepsilonhat
#' @return Returns the variance-covariance matrix
#' of estimates of regression coefficients.
#' @inherit sigma2hatepsilonhat references
#' @export
.vcovhatbetahat <- function(sigma2hatepsilonhat = NULL,
X,
y) {
if (is.null(sigma2hatepsilonhat)) {
sigma2hatepsilonhat <- sigma2hatepsilonhat(
X = X,
y = y
)
}
unname(
sigma2hatepsilonhat * solve(crossprod(X))
)
}
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @title Variance-Covariance Matrix of Estimates of Regression Coefficients (from \eqn{\hat{\sigma}_{\varepsilon \ \textrm{biased}}^{2}})
#'
#' @family variance-covariance of estimates of regression coefficients functions
#' @keywords vcov
#' @param sigma2hatepsilonhatbiased Numeric.
#' Biased estimate of error variance.
#' @inheritParams sigma2hatepsilonhatbiased
#' @inherit sigma2hatepsilonhatbiased references
#' @export
.vcovhatbetahatbiased <- function(sigma2hatepsilonhatbiased = NULL,
X,
y) {
if (is.null(sigma2hatepsilonhatbiased)) {
sigma2hatepsilonhatbiased <- sigma2hatepsilonhatbiased(
X = X,
y = y
)
}
unname(
sigma2hatepsilonhatbiased * solve(crossprod(X))
)
}
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @title Variance-Covariance Matrix of Estimates of Regression Coefficients
#'
#' @family variance-covariance of estimates of regression coefficients functions
#' @keywords vcov
#' @inheritParams .vcovhatbetahat
#' @inherit .vcovhatbetahat return description references
#' @examples
#' # Simple regression------------------------------------------------
#' X <- jeksterslabRdatarepo::wages.matrix[["X"]]
#' X <- X[, c(1, ncol(X))]
#' y <- jeksterslabRdatarepo::wages.matrix[["y"]]
#' vcovhatbetahat(X = X, y = y)
#'
#' # Multiple regression----------------------------------------------
#' X <- jeksterslabRdatarepo::wages.matrix[["X"]]
#' # age is removed
#' X <- X[, -ncol(X)]
#' vcovhatbetahat(X = X, y = y)
#' @export
vcovhatbetahat <- function(X,
y) {
.vcovhatbetahat(
sigma2hatepsilonhat = NULL,
X = X,
y = y
)
}
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @title Variance-Covariance Matrix of Estimates of Regression Coefficients (from \eqn{\hat{\sigma}_{\varepsilon \ \textrm{biased}}^{2}})
#'
#' @family variance-covariance of estimates of regression coefficients functions
#' @keywords vcov
#' @inheritParams .vcovhatbetahatbiased
#' @inherit .vcovhatbetahatbiased return description references
#' @examples
#' # Simple regression------------------------------------------------
#' X <- jeksterslabRdatarepo::wages.matrix[["X"]]
#' X <- X[, c(1, ncol(X))]
#' y <- jeksterslabRdatarepo::wages.matrix[["y"]]
#' vcovhatbetahatbiased(X = X, y = y)
#'
#' # Multiple regression----------------------------------------------
#' X <- jeksterslabRdatarepo::wages.matrix[["X"]]
#' # age is removed
#' X <- X[, -ncol(X)]
#' vcovhatbetahatbiased(X = X, y = y)
#' @export
vcovhatbetahatbiased <- function(X,
y) {
.vcovhatbetahatbiased(
sigma2hatepsilonhatbiased = NULL,
X = X,
y = y
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.