#' Compute the communication probability/strength between any interacting cell groups
#'
#' To further speed up on large-scale datasets, USER can downsample the data using the function 'subset' from Seurat package (e.g., pbmc.small <- subset(pbmc, downsample = 500)), or using the function `sketchData` from CellChat, in particular for the large cell clusters;
#'
#'
#' @param object CellChat object
#' @param type methods for computing the average gene expression per cell group. By default = "triMean", producing fewer but stronger interactions;
#' When setting `type = "truncatedMean"`, a value should be assigned to 'trim', producing more interactions.
#' @param trim the fraction (0 to 0.25) of observations to be trimmed from each end of x before the mean is computed
#' @param LR.use a subset of ligand-receptor interactions used in inferring communication network
#' @param raw.use whether use the raw data (i.e., `object@data.signaling`) or the projected data (i.e., `object@data.project`).
#' Set raw.use = FALSE to use the projected data when analyzing single-cell data with shallow sequencing depth because the projected data could help to reduce the dropout effects of signaling genes, in particular for possible zero expression of subunits of ligands/receptors.
#' @param population.size whether consider the proportion of cells in each group across all sequenced cells.
#' Set population.size = FALSE if analyzing sorting-enriched single cells, to remove the potential artifact of population size.
#' Set population.size = TRUE if analyzing unsorted single-cell transcriptomes, with the reason that abundant cell populations tend to send collectively stronger signals than the rare cell populations.
#'
#' Parameters for spatial data analysis
#' @param distance.use whether use distance constraints to compute communication probability.
#' distance.use = FALSE will only filter out interactions between spatially distant regions, but not add distance constraints.
#' @param interaction.length The maximum interaction/diffusion length of ligands (Unit: microns). This hard threshold is used to filter out the connections between spatially distant regions
#' @param scale.distance A scale or normalization factor for the spatial distances. This values can be 1, 0.1, 0.01, 0.001. We choose this values such that the minimum value of the scaled distances is in [1,2].
#'
#' When comparing communication across different CellChat objects, the same scale factor should be used. For a single CellChat analysis, different scale factors will not affect the ranking of the signaling based on their interaction strength.
#' @param k.min the minimum number of interacting cell pairs required for defining adjacent cell groups
#'
#' @param nboot threshold of p-values
#' @param seed.use set a random seed. By default, set the seed to 1.
#' @param Kh parameter in Hill function
#' @param n parameter in Hill function
#'
#'
#' @importFrom future nbrOfWorkers
#' @importFrom future.apply future_sapply
#' @importFrom pbapply pbsapply
#' @importFrom stats aggregate
#' @importFrom Matrix crossprod
#' @importFrom utils txtProgressBar setTxtProgressBar
#'
#' @return A CellChat object with updated slot 'net':
#'
#' object@net$prob is the inferred communication probability (strength) array, where the first, second and third dimensions represent a source, target and ligand-receptor pair, respectively.
#'
#' USER can access all the inferred cell-cell communications using the function 'subsetCommunication(object)', which returns a data frame.
#'
#' object@net$pval is the corresponding p-values of each interaction
#'
#' @export
#'
computeCommunProb <- function(object, type = c("triMean", "truncatedMean","thresholdedMean", "median"), trim = 0.1, LR.use = NULL, raw.use = TRUE, population.size = FALSE,
distance.use = TRUE, interaction.length = 200, scale.distance = 0.01, k.min = 10,
nboot = 100, seed.use = 1L, Kh = 0.5, n = 1) {
type <- match.arg(type)
cat(type, "is used for calculating the average gene expression per cell group.", "\n")
FunMean <- switch(type,
triMean = triMean,
truncatedMean = function(x) mean(x, trim = trim, na.rm = TRUE),
median = function(x) median(x, na.rm = TRUE))
if (raw.use) {
data <- as.matrix(object@data.signaling)
} else {
data <- object@data.project
}
if (is.null(LR.use)) {
pairLR.use <- object@LR$LRsig
} else {
pairLR.use <- LR.use
}
complex_input <- object@DB$complex
cofactor_input <- object@DB$cofactor
my.sapply <- ifelse(
test = future::nbrOfWorkers() == 1,
yes = sapply,
no = future.apply::future_sapply
)
ptm = Sys.time()
pairLRsig <- pairLR.use
group <- object@idents
geneL <- as.character(pairLRsig$ligand)
geneR <- as.character(pairLRsig$receptor)
nLR <- nrow(pairLRsig)
numCluster <- nlevels(group)
if (numCluster != length(unique(group))) {
stop("Please check `unique(object@idents)` and ensure that the factor levels are correct!
You may need to drop unused levels using 'droplevels' function. e.g.,
`meta$labels = droplevels(meta$labels, exclude = setdiff(levels(meta$labels),unique(meta$labels)))`")
}
# if (all(data[1:5, ] == floor(data[1:5, ]))) {
# stop("Please check your input data matrix and ensure that you use the normalized data instead of count data!")
# }
data.use <- data/max(data)
nC <- ncol(data.use)
# compute the average expression per group
data.use.avg <- aggregate(t(data.use), list(group), FUN = FunMean)
data.use.avg <- t(data.use.avg[,-1])
colnames(data.use.avg) <- levels(group)
# compute the expression of ligand or receptor
dataLavg <- computeExpr_LR(geneL, data.use.avg, complex_input)
dataRavg <- computeExpr_LR(geneR, data.use.avg, complex_input)
# take account into the effect of co-activation and co-inhibition receptors
dataRavg.co.A.receptor <- computeExpr_coreceptor(cofactor_input, data.use.avg, pairLRsig, type = "A")
dataRavg.co.I.receptor <- computeExpr_coreceptor(cofactor_input, data.use.avg, pairLRsig, type = "I")
dataRavg <- dataRavg * dataRavg.co.A.receptor/dataRavg.co.I.receptor
dataLavg2 <- t(replicate(nrow(dataLavg), as.numeric(table(group))/nC))
dataRavg2 <- dataLavg2
# compute the expression of agonist and antagonist
index.agonist <- which(!is.na(pairLRsig$agonist) & pairLRsig$agonist != "")
index.antagonist <- which(!is.na(pairLRsig$antagonist) & pairLRsig$antagonist != "")
# quantify the communication probability
# compute the spatial constraint
if (object@options$datatype != "RNA") {
data.spatial <- object@images$coordinates
spot.size.fullres <- object@images$scale.factors$spot
spot.size <- object@images$scale.factors$spot.diameter
d.spatial <- computeRegionDistance(coordinates = data.spatial, group = group, trim = trim, interaction.length = interaction.length, spot.size = spot.size, spot.size.fullres = spot.size.fullres, k.min = k.min)
if (distance.use) {
print(paste0('>>> Run CellChat on spatial imaging data using distances as constraints <<< [', Sys.time(),']'))
d.spatial <- d.spatial * scale.distance
diag(d.spatial) <- NaN
cat("The suggested minimum value of scaled distances is in [1,2], and the calculated value here is ", min(d.spatial, na.rm = TRUE),"\n")
if (min(d.spatial, na.rm = TRUE) < 1) {
stop("Please increase the value of `scale.distance` and check the suggested values in the parameter description (e.g., 1, 0.1, 0.01, 0.001, 0.11, 0.011)")
}
P.spatial <- 1/d.spatial
# P.spatial[is.inf(d.spatial)] <- 1
P.spatial[is.na(d.spatial)] <- 0
diag(P.spatial) <- max(P.spatial) # if this value is 1, the self-connections will have more larger weight.
d.spatial <- d.spatial/scale.distance # This is only for saving the data
} else {
print(paste0('>>> Run CellChat on spatial imaging data without distances as constraints <<< [', Sys.time(),']'))
P.spatial <- matrix(1, nrow = numCluster, ncol = numCluster)
P.spatial[is.na(d.spatial)] <- 0
}
} else {
print(paste0('>>> Run CellChat on sc/snRNA-seq data <<< [', Sys.time(),']'))
d.spatial <- matrix(NaN, nrow = numCluster, ncol = numCluster)
P.spatial <- matrix(1, nrow = numCluster, ncol = numCluster)
distance.use = NULL; interaction.length = NULL; spot.size = NULL; spot.size.fullres = NULL; k.min = NULL;
}
Prob <- array(0, dim = c(numCluster,numCluster,nLR))
Pval <- array(0, dim = c(numCluster,numCluster,nLR))
set.seed(seed.use)
permutation <- replicate(nboot, sample.int(nC, size = nC))
data.use.avg.boot <- my.sapply(
X = 1:nboot,
FUN = function(nE) {
groupboot <- group[permutation[, nE]]
data.use.avgB <- aggregate(t(data.use), list(groupboot), FUN = FunMean)
data.use.avgB <- t(data.use.avgB[,-1])
return(data.use.avgB)
},
simplify = FALSE
)
pb <- txtProgressBar(min = 0, max = nLR, style = 3, file = stderr())
for (i in 1:nLR) {
# ligand/receptor
dataLR <- Matrix::crossprod(matrix(dataLavg[i,], nrow = 1), matrix(dataRavg[i,], nrow = 1))
P1 <- dataLR^n/(Kh^n + dataLR^n)
P1_Pspatial <- P1*P.spatial
if (sum(P1_Pspatial) == 0) {
Pnull = P1_Pspatial
Prob[ , , i] <- Pnull
p = 1
Pval[, , i] <- matrix(p, nrow = numCluster, ncol = numCluster, byrow = FALSE)
} else {
# agonist and antagonist
if (is.element(i, index.agonist)) {
data.agonist <- computeExpr_agonist(data.use = data.use.avg, pairLRsig, cofactor_input, index.agonist = i, Kh = Kh, n = n)
P2 <- Matrix::crossprod(matrix(data.agonist, nrow = 1))
} else {
P2 <- matrix(1, nrow = numCluster, ncol = numCluster)
}
if (is.element(i, index.antagonist)) {
data.antagonist <- computeExpr_antagonist(data.use = data.use.avg, pairLRsig, cofactor_input, index.antagonist = i, Kh = Kh, n = n)
P3 <- Matrix::crossprod(matrix(data.antagonist, nrow = 1))
} else {
P3 <- matrix(1, nrow = numCluster, ncol = numCluster)
}
# number of cells
if (population.size) {
P4 <- Matrix::crossprod(matrix(dataLavg2[i,], nrow = 1), matrix(dataRavg2[i,], nrow = 1))
} else {
P4 <- matrix(1, nrow = numCluster, ncol = numCluster)
}
# Pnull = P1*P2*P3*P4
Pnull = P1*P2*P3*P4*P.spatial
Prob[ , , i] <- Pnull
Pnull <- as.vector(Pnull)
#Pboot <- foreach(nE = 1:nboot) %dopar% {
Pboot <- sapply(
X = 1:nboot,
FUN = function(nE) {
data.use.avgB <- data.use.avg.boot[[nE]]
dataLavgB <- computeExpr_LR(geneL[i], data.use.avgB, complex_input)
dataRavgB <- computeExpr_LR(geneR[i], data.use.avgB, complex_input)
# take account into the effect of co-activation and co-inhibition receptors
dataRavgB.co.A.receptor <- computeExpr_coreceptor(cofactor_input, data.use.avgB, pairLRsig[i, , drop = FALSE], type = "A")
dataRavgB.co.I.receptor <- computeExpr_coreceptor(cofactor_input, data.use.avgB, pairLRsig[i, , drop = FALSE], type = "I")
dataRavgB <- dataRavgB * dataRavgB.co.A.receptor/dataRavgB.co.I.receptor
dataLRB = Matrix::crossprod(dataLavgB, dataRavgB)
P1.boot <- dataLRB^n/(Kh^n + dataLRB^n)
# agonist and antagonist
if (is.element(i, index.agonist)) {
data.agonist <- computeExpr_agonist(data.use = data.use.avgB, pairLRsig, cofactor_input, index.agonist = i, Kh = Kh, n = n)
P2.boot <- Matrix::crossprod(matrix(data.agonist, nrow = 1))
} else {
P2.boot <- matrix(1, nrow = numCluster, ncol = numCluster)
}
if (is.element(i, index.antagonist)) {
data.antagonist <- computeExpr_antagonist(data.use = data.use.avgB, pairLRsig, cofactor_input, index.antagonist = i, Kh = Kh, n= n)
P3.boot <- Matrix::crossprod(matrix(data.antagonist, nrow = 1))
} else {
P3.boot <- matrix(1, nrow = numCluster, ncol = numCluster)
}
if (population.size) {
groupboot <- group[permutation[, nE]]
dataLavg2B <- as.numeric(table(groupboot))/nC
dataLavg2B <- matrix(dataLavg2B, nrow = 1)
dataRavg2B <- dataLavg2B
P4.boot = Matrix::crossprod(dataLavg2B, dataRavg2B)
} else {
P4.boot = matrix(1, nrow = numCluster, ncol = numCluster)
}
# Pboot = P1.boot*P2.boot*P3.boot*P4.boot
Pboot = P1.boot*P2.boot*P3.boot*P4.boot*P.spatial
return(as.vector(Pboot))
}
)
Pboot <- matrix(unlist(Pboot), nrow=length(Pnull), ncol = nboot, byrow = FALSE)
nReject <- rowSums(Pboot - Pnull > 0)
p = nReject/nboot
Pval[, , i] <- matrix(p, nrow = numCluster, ncol = numCluster, byrow = FALSE)
}
setTxtProgressBar(pb = pb, value = i)
}
close(con = pb)
Pval[Prob == 0] <- 1
dimnames(Prob) <- list(levels(group), levels(group), rownames(pairLRsig))
dimnames(Pval) <- dimnames(Prob)
net <- list("prob" = Prob, "pval" = Pval)
execution.time = Sys.time() - ptm
object@options$run.time <- as.numeric(execution.time, units = "secs")
object@options$parameter <- list(type.mean = type, trim = trim, raw.use = raw.use, population.size = population.size, nboot = nboot, seed.use = seed.use, Kh = Kh, n = n,
distance.use = distance.use, interaction.length = interaction.length, spot.size = spot.size, spot.size.fullres = spot.size.fullres, k.min = k.min
)
if (object@options$datatype != "RNA") {
object@images$distance <- d.spatial
}
object@net <- net
print(paste0('>>> CellChat inference is done. Parameter values are stored in `object@options$parameter` <<< [', Sys.time(),']'))
return(object)
}
#' Compute the communication probability on signaling pathway level by summarizing all related ligands/receptors
#'
#' @param object CellChat object
#' @param net A list from object@net; If net = NULL, net = object@net
#' @param pairLR.use A dataframe giving the ligand-receptor interactions; If pairLR.use = NULL, pairLR.use = object@LR$LRsig
#' @param thresh threshold of the p-value for determining significant interaction
#'
#' @return A CellChat object with updated slot 'netP':
#'
#' object@netP$prob is the communication probability array on signaling pathway level; USER can convert this array to a data frame using the function 'reshape2::melt()',
#'
#' e.g., `df.netP <- reshape2::melt(object@netP$prob, value.name = "prob"); colnames(df.netP)[1:3] <- c("source","target","pathway_name")` or access all significant interactions using the function \code{\link{subsetCommunication}}
#'
#' object@netP$pathways list all the signaling pathways with significant communications.
#'
#' From version >= 1.1.0, pathways are ordered based on the total communication probabilities. NB: pathways with small total communication probabilities might be also very important since they might be specifically activated between only few cell types.
#'
#' @export
#'
computeCommunProbPathway <- function(object = NULL, net = NULL, pairLR.use = NULL, thresh = 0.05) {
if (is.null(net)) {
net <- object@net
}
if (is.null(pairLR.use)) {
pairLR.use <- object@LR$LRsig
}
prob <- net$prob
prob[net$pval > thresh] <- 0
pathways <- unique(pairLR.use$pathway_name)
group <- factor(pairLR.use$pathway_name, levels = pathways)
prob.pathways <- aperm(apply(prob, c(1, 2), by, group, sum), c(2, 3, 1))
pathways.sig <- pathways[apply(prob.pathways, 3, sum) != 0]
prob.pathways.sig <- prob.pathways[,,pathways.sig, drop = FALSE]
idx <- sort(apply(prob.pathways.sig, 3, sum), decreasing=TRUE, index.return = TRUE)$ix
pathways.sig <- pathways.sig[idx]
prob.pathways.sig <- prob.pathways.sig[, , idx]
if (is.null(object)) {
netP = list(pathways = pathways.sig, prob = prob.pathways.sig)
return(netP)
} else {
object@netP$pathways <- pathways.sig
object@netP$prob <- prob.pathways.sig
return(object)
}
}
#' Calculate the aggregated network by counting the number of links or summarizing the communication probability
#'
#' @param object CellChat object
#' @param sources.use,targets.use,signaling,pairLR.use Please check the description in function \code{\link{subsetCommunication}}
#' @param remove.isolate whether removing the isolate cell groups without any interactions when applying \code{\link{subsetCommunication}}
#' @param thresh threshold of the p-value for determining significant interaction
#' @param return.object whether return an updated CellChat object
#' @importFrom dplyr group_by summarize groups
#' @importFrom stringr str_split
#'
#' @return Return an updated CellChat object:
#'
#' `object@net$count` is a matrix: rows and columns are sources and targets respectively, and elements are the number of interactions between any two cell groups. USER can convert a matrix to a data frame using the function `reshape2::melt()`
#'
#' `object@net$weight` is also a matrix containing the interaction weights between any two cell groups
#'
#' `object@net$sum` is deprecated. Use `object@net$weight`
#'
#' @export
#'
aggregateNet <- function(object, sources.use = NULL, targets.use = NULL, signaling = NULL, pairLR.use = NULL, remove.isolate = TRUE, thresh = 0.05, return.object = TRUE) {
net <- object@net
if (is.null(sources.use) & is.null(targets.use) & is.null(signaling) & is.null(pairLR.use)) {
prob <- net$prob
pval <- net$pval
pval[prob == 0] <- 1
prob[pval >= thresh] <- 0
net$count <- apply(prob > 0, c(1,2), sum)
net$weight <- apply(prob, c(1,2), sum)
net$weight[is.na(net$weight)] <- 0
net$count[is.na(net$count)] <- 0
} else {
df.net <- subsetCommunication(object, slot.name = "net",
sources.use = sources.use, targets.use = targets.use,
signaling = signaling,
pairLR.use = pairLR.use,
thresh = thresh)
df.net$source_target <- paste(df.net$source, df.net$target, sep = "_")
df.net2 <- df.net %>% group_by(source_target) %>% summarize(count = n(), .groups = 'drop')
df.net3 <- df.net %>% group_by(source_target) %>% summarize(prob = sum(prob), .groups = 'drop')
df.net2$prob <- df.net3$prob
a <- stringr::str_split(df.net2$source_target, "_", simplify = T)
df.net2$source <- as.character(a[, 1])
df.net2$target <- as.character(a[, 2])
cells.level <- levels(object@idents)
if (remove.isolate) {
message("Isolate cell groups without any interactions are removed. To block it, set `remove.isolate = FALSE`")
df.net2$source <- factor(df.net2$source, levels = cells.level[cells.level %in% unique(df.net2$source)])
df.net2$target <- factor(df.net2$target, levels = cells.level[cells.level %in% unique(df.net2$target)])
} else {
df.net2$source <- factor(df.net2$source, levels = cells.level)
df.net2$target <- factor(df.net2$target, levels = cells.level)
}
count <- tapply(df.net2[["count"]], list(df.net2[["source"]], df.net2[["target"]]), sum)
prob <- tapply(df.net2[["prob"]], list(df.net2[["source"]], df.net2[["target"]]), sum)
net$count <- count
net$weight <- prob
net$weight[is.na(net$weight)] <- 0
net$count[is.na(net$count)] <- 0
}
if (return.object) {
object@net <- net
return(object)
} else {
return(net)
}
}
#' Compute averaged expression values for each cell group
#'
#' @param object CellChat object
#' @param features a char vector giving the used features. default use all features
#' @param group.by cell group information; default is `object@idents` when input is a single object and `object@idents$joint` when input is a merged object; otherwise it should be one of the column names of the meta slot
#' @param type methods for computing the average gene expression per cell group.
#'
#' By default = "triMean", defined as a weighted average of the distribution's median and its two quartiles (https://en.wikipedia.org/wiki/Trimean);
#'
#' When setting `type = "truncatedMean"`, a value should be assigned to 'trim'. See the function `base::mean`.
#'
#' @param trim the fraction (0 to 0.25) of observations to be trimmed from each end of x before the mean is computed.
#' @param slot.name the data in the slot.name to use
#' @param data.use a customed data matrix. Default: data.use = NULL and the expression matrix in the 'slot.name' is used
#'
#' @return Returns a matrix with genes as rows, cell groups as columns.
#' @export
#'
computeAveExpr <- function(object, features = NULL, group.by = NULL, type = c("triMean", "truncatedMean", "median"), trim = NULL,
slot.name = c("data.signaling", "data"), data.use = NULL) {
type <- match.arg(type)
slot.name <- match.arg(slot.name)
FunMean <- switch(type,
triMean = triMean,
truncatedMean = function(x) mean(x, trim = trim, na.rm = TRUE),
median = function(x) median(x, na.rm = TRUE))
if (is.null(data.use)) {
data.use <- slot(object, slot.name)
}
if (is.null(features)) {
features.use <- row.names(data.use)
} else {
features.use <- intersect(features, row.names(data.use))
}
data.use <- data.use[features.use, , drop = FALSE]
data.use <- as.matrix(data.use)
if (is.null(group.by)) {
labels <- object@idents
if (!is.factor(labels)) {
message("Use the joint cell labels from the merged CellChat object")
labels <- object@idents$joint
}
} else {
labels <- object@meta[[group.by]]
}
if (!is.factor(labels)) {
labels <- factor(labels)
}
# compute the average expression per group
data.use.avg <- aggregate(t(data.use), list(labels), FUN = FunMean)
data.use.avg <- t(data.use.avg[,-1])
rownames(data.use.avg) <- features.use
colnames(data.use.avg) <- levels(labels)
return(data.use.avg)
}
#' Compute the expression of complex in individual cells using geometric mean
#' @param complex_input the complex_input from CellChatDB
#' @param data.use data matrix (row are genes and columns are cells or cell groups)
#' @param complex the names of complex
#' @return
#' @importFrom dplyr select starts_with
#' @importFrom future nbrOfWorkers
#' @importFrom future.apply future_sapply
#' @importFrom pbapply pbsapply
#' @export
computeExpr_complex <- function(complex_input, data.use, complex) {
Rsubunits <- complex_input[complex,] %>% dplyr::select(starts_with("subunit"))
my.sapply <- ifelse(
test = future::nbrOfWorkers() == 1,
yes = sapply,
no = future.apply::future_sapply
)
data.complex = my.sapply(
X = 1:nrow(Rsubunits),
FUN = function(x) {
RsubunitsV <- unlist(Rsubunits[x,], use.names = F)
RsubunitsV <- RsubunitsV[RsubunitsV != ""]
return(geometricMean(data.use[RsubunitsV,]))
}
)
data.complex <- t(data.complex)
return(data.complex)
}
# Compute the average expression of complex per cell group using geometric mean
# @param complex_input the complex_input from CellChatDB
# @param data.use data matrix (rows are genes and columns are cells)
# @param complex the names of complex
# @param group a factor defining the cell groups
# @param FunMean the function for computing mean expression per group
# @return
# @importFrom dplyr select starts_with
# @importFrom future nbrOfWorkers
# @importFrom future.apply future_sapply
# @importFrom pbapply pbsapply
# #' @export
.computeExprGroup_complex <- function(complex_input, data.use, complex, group, FunMean) {
Rsubunits <- complex_input[complex,] %>% dplyr::select(starts_with("subunit"))
my.sapply <- ifelse(
test = future::nbrOfWorkers() == 1,
yes = pbapply::pbsapply,
no = future.apply::future_sapply
)
data.complex = my.sapply(
X = 1:nrow(Rsubunits),
FUN = function(x) {
RsubunitsV <- unlist(Rsubunits[x,], use.names = F)
RsubunitsV <- RsubunitsV[RsubunitsV != ""]
RsubunitsV <- intersect(RsubunitsV, rownames(data.use))
if (length(RsubunitsV) > 1) {
data.avg <- aggregate(t(data.use[RsubunitsV,]), list(group), FUN = FunMean)
data.avg <- t(data.avg[,-1])
} else if (length(RsubunitsV) == 1) {
data.avg <- aggregate(matrix(data.use[RsubunitsV,], ncol = 1), list(group), FUN = FunMean)
data.avg <- t(data.avg[,-1])
} else {
data.avg = matrix(0, nrow = 1, ncol = length(unique(group)))
}
return(geometricMean(data.avg))
}
)
data.complex <- t(data.complex)
return(data.complex)
}
#' Compute the expression of ligands or receptors using geometric mean
#' @param geneLR a char vector giving a set of ligands or receptors
#' @param data.use data matrix (row are genes and columns are cells or cell groups)
#' @param complex_input the complex_input from CellChatDB
# #' @param group a factor defining the cell groups; If NULL, compute the expression of ligands or receptors in individual cells; otherwise, compute the average expression of ligands or receptors per cell group
# #' @param FunMean the function for computing average expression per cell group
#' @return
#' @export
computeExpr_LR <- function(geneLR, data.use, complex_input){
nLR <- length(geneLR)
numCluster <- ncol(data.use)
index.singleL <- which(geneLR %in% rownames(data.use))
dataL1avg <- data.use[geneLR[index.singleL],]
dataLavg <- matrix(nrow = nLR, ncol = numCluster)
dataLavg[index.singleL,] <- dataL1avg
index.complexL <- setdiff(1:nLR, index.singleL)
if (length(index.complexL) > 0) {
complex <- geneLR[index.complexL]
data.complex <- computeExpr_complex(complex_input, data.use, complex)
dataLavg[index.complexL,] <- data.complex
}
return(dataLavg)
}
#' Modeling the effect of coreceptor on the ligand-receptor interaction
#'
#' @param data.use data matrix
#' @param cofactor_input the cofactor_input from CellChatDB
#' @param pairLRsig a data frame giving ligand-receptor interactions
#' @param type when type == "A", computing expression of co-activation receptor; when type == "I", computing expression of co-inhibition receptor.
#' @return
#' @importFrom future nbrOfWorkers
#' @importFrom future.apply future_sapply
#' @importFrom pbapply pbsapply
#' @export
computeExpr_coreceptor <- function(cofactor_input, data.use, pairLRsig, type = c("A", "I")) {
type <- match.arg(type)
if (type == "A") {
coreceptor.all = pairLRsig$co_A_receptor
} else if (type == "I"){
coreceptor.all = pairLRsig$co_I_receptor
}
index.coreceptor <- which(!is.na(coreceptor.all) & coreceptor.all != "")
if (length(index.coreceptor) > 0) {
my.sapply <- ifelse(
test = future::nbrOfWorkers() == 1,
yes = sapply,
no = future.apply::future_sapply
)
coreceptor <- coreceptor.all[index.coreceptor]
coreceptor.ind <- cofactor_input[coreceptor, grepl("cofactor" , colnames(cofactor_input) )]
data.coreceptor.ind = my.sapply(
X = 1:nrow(coreceptor.ind),
FUN = function(x) {
coreceptor.indV <- unlist(coreceptor.ind[x,], use.names = F)
coreceptor.indV <- coreceptor.indV[coreceptor.indV != ""]
coreceptor.indV <- intersect(coreceptor.indV, rownames(data.use))
if (length(coreceptor.indV) == 1) {
return(1 + data.use[coreceptor.indV, ])
} else if (length(coreceptor.indV) > 1) {
return(apply(1 + data.use[coreceptor.indV, ], 2, prod))
} else {
return(matrix(1, nrow = 1, ncol = ncol(data.use)))
}
}
)
data.coreceptor.ind <- t(data.coreceptor.ind)
data.coreceptor <- matrix(1, nrow = length(coreceptor.all), ncol = ncol(data.use))
data.coreceptor[index.coreceptor,] <- data.coreceptor.ind
} else {
data.coreceptor <- matrix(1, nrow = length(coreceptor.all), ncol = ncol(data.use))
}
return(data.coreceptor)
}
# Modeling the effect of coreceptor on the ligand-receptor interaction
#
# @param data.use data matrix
# @param cofactor_input the cofactor_input from CellChatDB
# @param pairLRsig a data frame giving ligand-receptor interactions
# @param type when type == "A", computing expression of co-activation receptor; when type == "I", computing expression of co-inhibition receptor.
# @param group a factor defining the cell groups
# @param FunMean the function for computing mean expression per group
# @return
# @importFrom future nbrOfWorkers
# @importFrom future.apply future_sapply
# @importFrom pbapply pbsapply
# #' @export
.computeExprGroup_coreceptor <- function(cofactor_input, data.use, pairLRsig, type = c("A", "I"), group, FunMean) {
type <- match.arg(type)
if (type == "A") {
coreceptor.all = pairLRsig$co_A_receptor
} else if (type == "I"){
coreceptor.all = pairLRsig$co_I_receptor
}
index.coreceptor <- which(!is.na(coreceptor.all) & coreceptor.all != "")
if (length(index.coreceptor) > 0) {
my.sapply <- ifelse(
test = future::nbrOfWorkers() == 1,
yes = pbapply::pbsapply,
no = future.apply::future_sapply
)
coreceptor <- coreceptor.all[index.coreceptor]
coreceptor.ind <- cofactor_input[coreceptor, grepl("cofactor" , colnames(cofactor_input) )]
data.coreceptor.ind = my.sapply(
X = 1:nrow(coreceptor.ind),
FUN = function(x) {
coreceptor.indV <- unlist(coreceptor.ind[x,], use.names = F)
coreceptor.indV <- coreceptor.indV[coreceptor.indV != ""]
coreceptor.indV <- intersect(coreceptor.indV, rownames(data.use))
if (length(coreceptor.indV) > 1) {
data.avg <- aggregate(t(data.use[coreceptor.indV,]), list(group), FUN = FunMean)
data.avg <- t(data.avg[,-1])
return(apply(1 + data.avg, 2, prod))
# return(1 + apply(data.avg, 2, mean))
} else if (length(coreceptor.indV) == 1) {
data.avg <- aggregate(matrix(data.use[coreceptor.indV,], ncol = 1), list(group), FUN = FunMean)
data.avg <- t(data.avg[,-1])
return(1 + data.avg)
} else {
return(matrix(1, nrow = 1, ncol = length(unique(group))))
}
}
)
data.coreceptor.ind <- t(data.coreceptor.ind)
data.coreceptor <- matrix(1, nrow = length(coreceptor.all), ncol = length(unique(group)))
data.coreceptor[index.coreceptor,] <- data.coreceptor.ind
} else {
data.coreceptor <- matrix(1, nrow = length(coreceptor.all), ncol = length(unique(group)))
}
return(data.coreceptor)
}
#' Modeling the effect of agonist on the ligand-receptor interaction
#' @param data.use data matrix
#' @param cofactor_input the cofactor_input from CellChatDB
#' @param pairLRsig the L-R interactions
#' @param group a factor defining the cell groups
#' @param index.agonist the index of agonist in the database
#' @param Kh a parameter in Hill function
#' @param FunMean the function for computing mean expression per group
#' @param n Hill coefficient
#' @return
#' @export
#' @importFrom stats aggregate
computeExprGroup_agonist <- function(data.use, pairLRsig, cofactor_input, group, index.agonist, Kh, FunMean, n) {
agonist <- pairLRsig$agonist[index.agonist]
agonist.ind <- cofactor_input[agonist, grepl("cofactor" , colnames(cofactor_input))]
agonist.indV <- unlist(agonist.ind, use.names = F)
agonist.indV <- agonist.indV[agonist.indV != ""]
agonist.indV <- intersect(agonist.indV, rownames(data.use))
if (length(agonist.indV) == 1) {
data.avg <- aggregate(matrix(data.use[agonist.indV,], ncol = 1), list(group), FUN = FunMean)
data.avg <- t(data.avg[,-1])
data.agonist <- 1 + data.avg^n/(Kh^n + data.avg^n)
} else if (length(agonist.indV) > 1) {
data.avg <- aggregate(t(data.use[agonist.indV,]), list(group), FUN = FunMean)
data.avg <- t(data.avg[,-1])
data.agonist <- apply(1 + data.avg^n/(Kh^n + data.avg^n), 2, prod)
} else {
data.agonist = matrix(1, nrow = 1, ncol = length(unique(group)))
}
return(data.agonist)
}
#' Modeling the effect of antagonist on the ligand-receptor interaction
#'
#' @param data.use data matrix
#' @param cofactor_input the cofactor_input from CellChatDB
#' @param pairLRsig the L-R interactions
#' @param group a factor defining the cell groups
#' @param index.antagonist the index of antagonist in the database
#' @param Kh a parameter in Hill function
#' @param n Hill coefficient
#' @param FunMean the function for computing mean expression per group
#' @return
#' @export
#' @importFrom stats aggregate
computeExprGroup_antagonist <- function(data.use, pairLRsig, cofactor_input, group, index.antagonist, Kh, FunMean, n) {
antagonist <- pairLRsig$antagonist[index.antagonist]
antagonist.ind <- cofactor_input[antagonist, grepl( "cofactor" , colnames(cofactor_input) )]
antagonist.indV <- unlist(antagonist.ind, use.names = F)
antagonist.indV <- antagonist.indV[antagonist.indV != ""]
antagonist.indV <- intersect(antagonist.indV, rownames(data.use))
if (length(antagonist.indV) == 1) {
data.avg <- aggregate(matrix(data.use[antagonist.indV,], ncol = 1), list(group), FUN = FunMean)
data.avg <- t(data.avg[,-1])
data.antagonist <- Kh^n/(Kh^n + data.avg^n)
} else if (length(antagonist.indV) > 1) {
data.avg <- aggregate(t(data.use[antagonist.indV,]), list(group), FUN = FunMean)
data.avg <- t(data.avg[,-1])
data.antagonist <- apply(Kh^n/(Kh^n + data.avg^n), 2, prod)
} else {
data.antagonist = matrix(1, nrow = 1, ncol = length(unique(group)))
}
return(data.antagonist)
}
#' Modeling the effect of agonist on the ligand-receptor interaction
#' @param data.use data matrix
#' @param cofactor_input the cofactor_input from CellChatDB
#' @param pairLRsig the L-R interactions
# #' @param group a factor defining the cell groups
#' @param index.agonist the index of agonist in the database
#' @param Kh a parameter in Hill function
# #' @param FunMean the function for computing mean expression per group
#' @param n Hill coefficient
#' @return
#' @export
#' @importFrom stats aggregate
computeExpr_agonist <- function(data.use, pairLRsig, cofactor_input, index.agonist, Kh, n) {
agonist <- pairLRsig$agonist[index.agonist]
agonist.ind <- cofactor_input[agonist, grepl("cofactor" , colnames(cofactor_input))]
agonist.indV <- unlist(agonist.ind, use.names = F)
agonist.indV <- agonist.indV[agonist.indV != ""]
agonist.indV <- intersect(agonist.indV, rownames(data.use))
if (length(agonist.indV) == 1) {
# data.avg <- aggregate(matrix(data.use[agonist.indV,], ncol = 1), list(group), FUN = FunMean)
# data.avg <- t(data.avg[,-1])
data.avg <- data.use[agonist.indV,, drop = FALSE]
data.agonist <- 1 + data.avg^n/(Kh^n + data.avg^n)
} else if (length(agonist.indV) > 1) {
# data.avg <- aggregate(t(data.use[agonist.indV,]), list(group), FUN = FunMean)
# data.avg <- t(data.avg[,-1])
data.avg <- data.use[agonist.indV,, drop = FALSE]
data.agonist <- apply(1 + data.avg^n/(Kh^n + data.avg^n), 2, prod)
} else {
# data.agonist = matrix(1, nrow = 1, ncol = length(unique(group)))
data.agonist = matrix(1, nrow = 1, ncol = ncol(data.use))
}
return(data.agonist)
}
#' Modeling the effect of antagonist on the ligand-receptor interaction
#'
#' @param data.use data matrix
#' @param cofactor_input the cofactor_input from CellChatDB
#' @param pairLRsig the L-R interactions
# #' @param group a factor defining the cell groups
#' @param index.antagonist the index of antagonist in the database
#' @param Kh a parameter in Hill function
#' @param n Hill coefficient
# #' @param FunMean the function for computing mean expression per group
#' @return
#' @export
#' @importFrom stats aggregate
computeExpr_antagonist <- function(data.use, pairLRsig, cofactor_input, index.antagonist, Kh, n) {
antagonist <- pairLRsig$antagonist[index.antagonist]
antagonist.ind <- cofactor_input[antagonist, grepl( "cofactor" , colnames(cofactor_input) )]
antagonist.indV <- unlist(antagonist.ind, use.names = F)
antagonist.indV <- antagonist.indV[antagonist.indV != ""]
antagonist.indV <- intersect(antagonist.indV, rownames(data.use))
if (length(antagonist.indV) == 1) {
# data.avg <- aggregate(matrix(data.use[antagonist.indV,], ncol = 1), list(group), FUN = FunMean)
# data.avg <- t(data.avg[,-1])
data.avg <- data.use[antagonist.indV,, drop = FALSE]
data.antagonist <- Kh^n/(Kh^n + data.avg^n)
} else if (length(antagonist.indV) > 1) {
# data.avg <- aggregate(t(data.use[antagonist.indV,]), list(group), FUN = FunMean)
# data.avg <- t(data.avg[,-1])
data.avg <- data.use[antagonist.indV,, drop = FALSE]
data.antagonist <- apply(Kh^n/(Kh^n + data.avg^n), 2, prod)
} else {
# data.antagonist = matrix(1, nrow = 1, ncol = length(unique(group)))
data.antagonist = matrix(1, nrow = 1, ncol = ncol(data.use))
}
return(data.antagonist)
}
#' Compute the geometric mean
#' @param x a numeric vector
#' @param na.rm whether remove na
#' @return
#' @export
geometricMean <- function(x,na.rm=TRUE){
if (is.null(nrow(x))) {
exp(mean(log(x),na.rm=na.rm))
} else {
exp(apply(log(x),2,mean,na.rm=na.rm))
}
}
#' Compute the Tukey's trimean
#' @param x a numeric vector
#' @param na.rm whether remove na
#' @return
#' @importFrom stats quantile
#' @export
triMean <- function(x, na.rm = TRUE) {
mean(stats::quantile(x, probs = c(0.25, 0.50, 0.50, 0.75), na.rm = na.rm))
}
#' Compute the average expression per cell group when the percent of expressing cells per cell group larger than a threshold
#' @param x a numeric vector
#' @param trim the percent of expressing cells per cell group to be considered as zero
#' @param na.rm whether remove na
#' @return
#' @importFrom Matrix nnzero
# #' @export
thresholdedMean <- function(x, trim = 0.1, na.rm = TRUE) {
percent <- Matrix::nnzero(x)/length(x)
if (percent < trim) {
return(0)
} else {
return(mean(x, na.rm = na.rm))
}
}
#' Identify all the significant interactions (L-R pairs) from some cell groups to other cell groups
#'
#' @param object CellChat object
#' @param from a vector giving the index or the name of source cell groups
#' @param to a corresponding vector giving the index or the name of target cell groups. Note: The length of 'from' and 'to' must be the same, giving the corresponding pair of cell groups for communication.
#' @param bidirection whether show the bidirectional communication, i.e., both 'from'->'to' and 'to'->'from'.
#' @param pair.only whether only return ligand-receptor pairs without pathway names and communication strength
#' @param pairLR.use0 ligand-receptor pairs to use; default is all the significant interactions
#' @param thresh threshold of the p-value for determining significant interaction
#'
#' @return
#' @export
#'
identifyEnrichedInteractions <- function(object, from, to, bidirection = FALSE, pair.only = TRUE, pairLR.use0 = NULL, thresh = 0.05){
pairwiseLR <- object@net$pairwiseRank
if (is.null(pairwiseLR)) {
stop("The interactions between pairwise cell groups have not been extracted!
Please first run `object <- rankNetPairwise(object)`")
}
group.names.all <- names(pairwiseLR)
if (!is.numeric(from)) {
from <- match(from, group.names.all)
if (sum(is.na(from)) > 0) {
message("Some input cell group names in 'from' do not exist!")
from <- from[!is.na(from)]
}
}
if (!is.numeric(to)) {
to <- match(to, group.names.all)
if (sum(is.na(to)) > 0) {
message("Some input cell group names in 'to' do not exist!")
to <- to[!is.na(to)]
}
}
if (length(from) != length(to)) {
stop("The length of 'from' and 'to' must be the same!")
}
if (bidirection) {
from2 <- c(from, to)
to <- c(to, from)
from <- from2
}
if (is.null(pairLR.use0)) {
k <- 0
pairLR.use0 <- list()
for (i in 1:length(from)){
pairwiseLR_ij <- pairwiseLR[[from[i]]][[to[i]]]
idx <- pairwiseLR_ij$pval < thresh
if (length(idx) > 0) {
k <- k +1
pairLR.use0[[k]] <- pairwiseLR_ij[idx,]
}
}
pairLR.use0 <- do.call(rbind, pairLR.use0)
}
k <- 0
pval <- matrix(nrow = length(rownames(pairLR.use0)), ncol = length(from))
prob <- pval
group.names <- c()
for (i in 1:length(from)) {
k <- k+1
pairwiseLR_ij <- pairwiseLR[[from[i]]][[to[i]]]
pairwiseLR_ij <- pairwiseLR_ij[rownames(pairLR.use0),]
pval_ij <- pairwiseLR_ij$pval
prob_ij <- pairwiseLR_ij$prob
pval_ij[pval_ij > 0.05] = 1
pval_ij[pval_ij > 0.01 & pval_ij <= 0.05] = 2
pval_ij[pval_ij <= 0.01] = 3
prob_ij[pval_ij ==1] <- 0
pval[,k] <- pval_ij
prob[,k] <- prob_ij
group.names <- c(group.names, paste(group.names.all[from[i]], group.names.all[to[i]], sep = " - "))
}
prob[which(prob == 0)] <- NA
# remove rows that are entirely NA
pval <- pval[rowSums(is.na(prob)) != ncol(prob), ,drop = FALSE]
pairLR.use0 <- pairLR.use0[rowSums(is.na(prob)) != ncol(prob), ,drop = FALSE]
prob <- prob[rowSums(is.na(prob)) != ncol(prob), ,drop = FALSE]
if (pair.only) {
pairLR.use0 <- dplyr::select(pairLR.use0, ligand, receptor)
}
return(pairLR.use0)
}
#' Compute the region distance based on the spatial locations of each splot/cell of the spatial transcriptomics
#'
#' @param coordinates a data matrix in which each row gives the spatial locations/coordinates of each cell/spot
#' @param group a factor vector defining the regions/labels of each cell/spot
#' @param trim the fraction (0 to 0.25) of observations to be trimmed from each end of x before computing the average distance per cell group.
#' @param interaction.length The maximum interaction/diffusion length of ligands. This hard threshold is used to filter out the connections between spatially distant regions
#' @param spot.size theoretical spot size; e.g., 10x Visium (spot.size = 65 microns)
#' @param spot.size.fullres The number of pixels that span the diameter of a theoretical spot size in the original,full-resolution image.
#' @param k.min the minimum number of interacting cell pairs required for defining adjacent cell groups
# #' @param k.spatial Number of neighbors in a knn graph, which is used to filter out the connections between spatially distant regions that do not share many neighbor spots/cells
#' @importFrom BiocNeighbors queryKNN KmknnParam
#' @return A square matrix giving the pairwise region distance
#'
#' @export
computeRegionDistance <- function(coordinates, group, trim = 0.1,
interaction.length = NULL, spot.size = NULL, spot.size.fullres = NULL, k.min = 10
) {
if (ncol(coordinates) != 2) {
stop("Please check the input 'coordinates' and make sure it is a two column matrix.")
}
if (!is.factor(group)) {
stop("Please input the `group` as a factor!")
}
# type <- match.arg(type)
type <- "truncatedMean"
FunMean <- switch(type,
triMean = triMean,
truncatedMean = function(x) mean(x, trim = trim, na.rm = TRUE),
thresholdedMean = function(x) thresholdedMean(x, trim = trim, na.rm = TRUE),
median = function(x) median(x, na.rm = TRUE))
numCluster <- nlevels(group)
level.use <- levels(group)
level.use <- level.use[level.use %in% unique(group)]
d.spatial <- matrix(NaN, nrow = numCluster, ncol = numCluster)
adj.spatial <- matrix(0, nrow = numCluster, ncol = numCluster)
for (i in 1:numCluster) {
for (j in 1:numCluster) {
data.spatial.i <- coordinates[group %in% level.use[i], , drop = FALSE]
data.spatial.j <- coordinates[group %in% level.use[j], , drop = FALSE]
qout <- suppressWarnings(BiocNeighbors::queryKNN(data.spatial.j, data.spatial.i, k = 1, BNPARAM = BiocNeighbors::KmknnParam(), get.index = TRUE))
if (!is.null(spot.size) & !is.null(spot.size.fullres)) {
qout$distance <- qout$distance*spot.size/spot.size.fullres
idx <- qout$distance - interaction.length < spot.size/2
adj.spatial[i,j] <- (length(unique(qout$index[idx])) >= k.min) * 1
}
d.spatial[i,j] <- FunMean(qout$distance) # since distances are positive values, different ways for computing the mean have little effects.
}
}
d.spatial <- (d.spatial + t(d.spatial))/2
if (!is.null(spot.size) & !is.null(spot.size.fullres)) {
adj.spatial <- adj.spatial * t(adj.spatial) # if one is zero, then both are zeros.
adj.spatial[adj.spatial == 0] <- NaN
d.spatial <- d.spatial * adj.spatial
}
rownames(d.spatial) <- levels(group); colnames(d.spatial) <- levels(group)
return(d.spatial)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.