Nothing
# ---------------------------------------------------------------------------------------
# The one inflated beta distribution (BEOI)
# created by Raydonal Ospina 01 June of 2006
# IME-USP. University of San Paulo,
# Department of Statistics. San Paulo-Brazil
# rospina@ime.usp.br
# ---------------------------------------------------------------------------------------
BEOI = function (mu.link = "logit", sigma.link = "log", nu.link = "logit")
{
mstats <- checklink("mu.link", "BEOI", substitute(mu.link),
c("logit", "probit", "cloglog", "log", "own"))
dstats <- checklink("sigma.link", "BEOI", substitute(sigma.link),
c("inverse", "log", "identity"))
vstats <- checklink("nu.link", "BEOI", substitute(nu.link),
c("logit", "probit", "cloglog", "log", "own"))
structure(list(family = c("BEOI", "One Inflated Beta"),
parameters = list(mu = TRUE, sigma = TRUE, nu = TRUE),
nopar = 3,
type = "Mixed",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
dldm = function(y, mu, sigma) #first derivate of log-density respect to mu
{
p <- mu * sigma
q <- (1-mu)*sigma
mustart <-digamma(p)-digamma(q)
ystart <- log(y) - log(1 - y)
dldm <- ifelse((y == 1) , 0, sigma * (ystart-mustart))
dldm
},
d2ldm2 = function(y,mu,sigma) { #second derivate of log-density respect to mu
p <- mu * sigma
q <- (1-mu)*sigma
d2ldm2 <- ifelse((y == 1) , 0,-sigma^2 * (trigamma(p)+trigamma(q)))
d2ldm2
},
dldd = function(y,mu,sigma) { #first derivate log-density respect to sigma
p <- mu * sigma
q <- (1-mu)*sigma
mustart <-digamma(p)-digamma(q)
ystart <- log(y) - log(1 - y)
dldd <- ifelse((y == 1),0,mu * (ystart-mustart)+log(1-y)-digamma(q)+digamma(sigma))
dldd
},
d2ldd2 = function(y,mu,sigma) { #second derivate log-density respect to sigma
p <- mu * sigma
q <- (1-mu)*sigma
#mustart <-digamma(p)-digamma(q)
d2ldd2 <- ifelse((y == 1) , 0, -(mu^2 * trigamma(p)+
(1 - mu)^2 * trigamma(q) -trigamma(sigma)))
d2ldd2
},
dldv = function(y,nu) { #first derivate log-density respect to nu
dldv <- ifelse(y == 1, 1/nu, -1/(1 - nu))
dldv
},
d2ldv2 = function(nu) { #second derivate log-density respect to nu
d2ldv2 <- -1/(nu * (1 - nu))
d2ldv2
},
d2ldmdd = function(y,mu,sigma) { #partial derivate of log-density respect to mu and sigma
p <- mu * sigma
q <- (1-mu)*sigma
d2ldmdd <- ifelse((y == 1), 0, -sigma*(trigamma(p)*mu)-(trigamma(q)*(1-mu)))
d2ldmdd
},
d2ldmdv = function(y) { #partial derivate of log-density respect to mu and alpha
d2ldmdv <- rep(0, length=y)
d2ldmdv
},
d2ldddv = function(y) { #partial derivate of log-density respect to sigma and alpha
d2ldddv <- rep(0, length=y)
d2ldddv
},
G.dev.incr = function(y, mu, sigma, nu, ...){ # Global deviance
-2 * dBEOI(y, mu, sigma, nu, log = TRUE)
},
rqres = expression({ # (Normalize quantile) residuals
uval <- ifelse(y == 1, nu * runif(length(y), 0, 1),
(1 - nu) * pBEOI(y, mu, sigma, nu))
rqres <- qnorm(uval)
}),
mu.initial = expression(mu <- (y + mean(y))/2),
sigma.initial = expression(sigma <- rep(1, length(y))),
nu.initial = expression(nu <- rep(0.3, length(y))),
mu.valid = function(mu) all(mu > 0 & mu < 1),
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) all(nu > 0 & nu < 1),
y.valid = function(y) all(y > 0 & y <= 1)),
class = c("gamlss.family", "family"))
}
#----------------------------------------------------------------------------------------
########## Densitx function of One Inflated Beta ##########
dBEOI = function (x, mu = 0.5, sigma = 1, nu = 0.1, log = FALSE)
{
if (any(mu <= 0)|any(mu >= 1))
stop(paste("mu must be beetwen 0 and 1 ", "\n", ""))
if (any(sigma < 0)) #In this parametrization sigma = phi
stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0)|any(nu >= 1)) #In this parametrization nu = alpha
stop(paste("nu must be beetwen 0 and 1 ", "\n", ""))
# if (any(x <= 0)|any(x >1) )
# stop(paste("x must be beetwen (0, 1]", "\n", ""))
a = mu * sigma
b = (1 - mu) * sigma
log.beta = dbeta(x, shape1 = a, shape2 = b, ncp = 0, log = TRUE)
log.lik <- ifelse(x == 1, log(nu), log(1 - nu) + log.beta)
if (log == FALSE)
fy <- exp(log.lik)
else fy <- log.lik
fy <- ifelse( x <= 0 | x > 1, 0, fy)
fy
}
#----------------------------------------------------------------------------------------
########## Acumulate function distribution of One Inflated Beta ##########
pBEOI = function (q, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)
{
if (any(mu <= 0)|any(mu >= 1))
stop(paste("mu must be beetwen 0 and 1 ", "\n", ""))
if (any(sigma < 0)) #In this parametrization sigma = phi
stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0)|any(nu >= 1)) #In this parametrization nu = alpha
stop(paste("nu must be beetwen 0 and 1 ", "\n", ""))
a = mu * sigma
b = (1 - mu) * sigma
cdf <- ifelse((q > 0 & q < 1), (1-nu)*pbeta(q, shape1 = a,
shape2 = b, ncp = 0, lower.tail = TRUE, log.p = FALSE), 0)
# cdf <- ifelse((q == 0), nu, cdf) ##Estou aqui
cdf <- ifelse((q >= 1), 1, cdf)
if (lower.tail == TRUE)
cdf <- cdf
else cdf = 1 - cdf
if (log.p == FALSE)
cdf <- cdf
else cdf <- log(cdf)
cdf <- ifelse( q<= 0, 0, cdf)
cdf <- ifelse( q > 01, 01, cdf)
cdf
}
#----------------------------------------------------------------------------------------
########## Quantile function of One Inflated Beta ##########
qBEOI = function (p, mu = 0.5, sigma = 1, nu = 0.1, lower.tail = TRUE,
log.p = FALSE)
{
if (any(mu <= 0)|any(mu >= 1))
stop(paste("mu must be beetwen 0 and 1 ", "\n", ""))
if (any(sigma < 0)) #In this parametrization sigma = phi
stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0)|any(nu >= 1)) #In this parametrization nu = alpha
stop(paste("nu must be beetwen 0 and 1 ", "\n", ""))
if (log.p == TRUE)
p <- exp(p)
else p <- p
if (lower.tail == TRUE)
p <- p
else p <- 1 - p
if (any(p < 0) | any(p > 1))
stop(paste("p must be between 0 and 1", "\n", ""))
a = mu * sigma
b = (1 - mu) * sigma
suppressWarnings(q <- ifelse( p <= 1-nu, qbeta(p/(1-nu),
shape1 = a, shape2 = b, lower.tail = TRUE, log.p = FALSE),1))
q
}
#----------------------------------------------------------------------------------------
######## Random generation function of One Inflated Beta ########
rBEOI = function (n, mu = 0.5, sigma = 1, nu = 0.1)
{
if (any(mu <= 0) | any(mu >= 1))
stop(paste("mu must be between 0 and 1", "\n", ""))
if (any(sigma < 0)) #In this parametrization sigma = phi
stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0)|any(nu >= 1)) #In this parametrization nu = alpha
stop(paste("nu must be beetwen 0 and 1 ", "\n", ""))
if (any(n <= 0))
stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qBEOI(p, mu = mu, sigma = sigma, nu = nu)
r
}
#dat<-rBEOI(100, mu=.5, sigma=5, nu=0.1)
#----------------------------------------------------------------------------------------
########## plot the function density of One Inflated Beta ##########
plotBEOI = function (mu = .5, sigma = 1, nu = 0.1, from = 0.001, to = 1, n = 101,
...)
{
y = seq(from = 0.001, to = to, length.out = n)
pdf <- dBEOI(y, mu = mu, sigma = sigma, nu = nu)
pr1 <- c(dBEOI(1, mu = mu, sigma = sigma, nu = nu))
print(pr1)
p1 <- c(1)
plot(pdf ~ y, main = "One Inflated Beta", ylim = c(0, max(pdf,
pr1)), type = "l")
points(p1, pr1, type = "h")
points(p1, pr1, type = "p", col = "blue")
}
#----------------------------------------------------------------------------------------
#calculates the expected value of the response for a One Inflated Beta fitted model
meanBEOI = function (obj)
{
if (obj$family[1] != "BEOI")
stop("the object do not have a BEOI distribution")
meanofY <- (fitted(obj, "nu"))+((1 - fitted(obj, "nu")) * fitted(obj, "mu"))
meanofY
}
#----------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------
#Examples
#BEOI()# gives information about the default links for the BEOI distribution
#dat<-rBEOI(1000, mu=.5, sigma=5, nu=0.1)
#hist(dat)
#mod1<-gamlss(dat~1,sigma.formula=~1, nu.formula=~1, family=BEOI) # fits a constant for mu, sigma and nu
#
#fitted(mod1)[1]
#
#summary(mod1)
#
#fitted(mod1,"mu")[1]
#fitted(mod1,"sigma")[1]
#fitted(mod1,"nu")[1]
#plot(function(y) dBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.001, 1,type="p")
#plot(function(y) pBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.0001, 0.9999)
#plot(function(y) qBEOI(y, mu=.5 ,sigma=5, nu=0.1), 0.0001, 0.9999)
#plot(function(y) qBEOI(y, mu=.5 ,sigma=5, nu=0.1, lower.tail=FALSE), 0.0001, 0.9999)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.