Nothing
# the ZIPF distrbution
# The pdf could have used the zeta() function on package require(Rmpfr)
# here we have used the function zetaP() which is a
# simplify version of Thomas Lee zeta()
#------------------------------------------------------------
# the fitting function
#-------------------------------------------------------------
ZIPF <- function (mu.link = "log")
{
mstats <- checklink("mu.link", "ZIPF", substitute(mu.link),c("inverse", "log", "sqrt", "identity"))
structure(
list( family = c("ZIPF", "zipf distribution"),
parameters = list(mu = TRUE),
nopar = 1,
type = "Discrete",
mu.link = as.character(substitute(mu.link)),
mu.linkfun = mstats$linkfun,
mu.linkinv = mstats$linkinv,
mu.dr = mstats$mu.eta,
dldm = function(y,mu)
{
nd <- numeric.deriv(dZIPF(y, mu, log=TRUE), "mu", delta=0.001)
dldm <- as.vector(attr(nd, "gradient"))
dldm
},
d2ldm2 = function(y,mu)
{
nd <- numeric.deriv(dZIPF(y, mu, log=TRUE), "mu", delta=0.001)
dldm <- as.vector(attr(nd, "gradient"))
d2ldv2 <- -dldm*dldm
d2ldv2
},
G.dev.incr = function(y,mu,...) -2*dZIPF(x = y, mu = mu, log = TRUE),
rqres = expression(rqres(pfun="pZIPF", type="Discrete", ymin=1, y=y, mu=mu)),
mu.initial =expression({mu <- rep(.1,length(y)) } ),
mu.valid = function(mu) all(mu > 0),
y.valid = function(y) all(y >= 1),
mean = function(mu) ifelse(mu > 1, zetaP(mu) / zetaP(mu +1), Inf),
variance = function(mu) ifelse(mu > 2, (zetaP(mu + 1) * zetaP(mu - 1) - (zetaP(mu))^2) / (zetaP(mu + 1))^2, Inf)
),
class = c("gamlss.family","family"))
}
#-----------------------------------------------------------------------------------------
dZIPF<- function(x, mu = 1, log = FALSE)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
# if (any(x < 1) ) stop(paste("x must be >=1", "\n", ""))
ly <- max(length(x),length(mu))
x <- rep(x, length = ly)
mu <- rep(mu, length = ly)
logL <- -(mu+1)*log(x)-log(zetaP(mu+1)) # or zeta
lik <- if (log) logL else exp(logL)
lik <-ifelse(x < 1, 0, lik)
as.numeric(lik)
}
#----------------------------------------------------------------------------------------
pZIPF <- function(q, mu = 1, lower.tail = TRUE, log.p = FALSE)
{
#----------
Zeta.aux<- function (shape, qq)
{
LLL <- max(length(shape), length(qq))
if (length(shape) != LLL)
shape <- rep_len(shape, LLL)
if (length(qq) != LLL)
qq <- rep_len(qq, LLL)
if (any(qq < 12 - 1))
warning("all values of argument 'q' should be 12 or more")
aa <- qq
B2 <- c(1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510)
kk <- length(B2)
ans <- 1/((shape - 1) * (1 + aa)^(shape - 1)) + 0.5/(1 + aa)^shape
term <- (shape/2)/(1 + aa)^(shape + 1)
ans <- ans + term * B2[1]
for (mm in 2:kk)
{
term <- term * (shape + 2 * mm - 3) * (shape + 2 * mm -
2)/((2 * mm - 1) * 2 * mm * (1 + aa)^2)
ans <- ans + term * B2[mm]
}
ifelse(aa - 1 <= qq, ans, rep(0, length(ans)))
}
#--------------------------------------------------
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
# if (any(q < 1) ) stop(paste("y must be >=0", "\n", ""))
ly <- max(length(q),length(mu))
q <- rep(q, length = ly)
mu <- rep(mu, length = ly)
ans <- rep_len(0, ly)
qfloor <- floor(q)
for (nn in 1:(12 - 1)) ans <- ans + as.numeric(nn <= qfloor)/nn^(mu + 1)
vecTF <- (12 - 1 <= qfloor)
if (lower.tail)
{
if (any(vecTF))
ans[vecTF] <- zetaP(mu[vecTF] + 1) - Zeta.aux(mu[vecTF] +
1, qfloor[vecTF] + 1)
}
else
{
ans <- zetaP(mu + 1) - ans
if (any(vecTF))
ans[vecTF] <- Zeta.aux(mu[vecTF] + 1, qfloor[vecTF] +
1)
}
cdf <- ans/zetaP(mu + 1)
cdf <-ifelse(q < 1, 0, cdf)
cdf
}
#----------------------------------------------------------------------------------------
qZIPF <- function(p, mu = 1, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(p < 0) | any(p > 1.0001)) stop(paste("p must be between 0 and 1", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (lower.tail==TRUE) p <- p else p <- 1-p
ly <- length(p)
QQQ <- rep(0,ly)
nmu <- rep(mu, length = ly)
for (i in seq(along=p))
{
cumpro <- 0
if (p[i]+0.000000001 >= 1) QQQ[i] <- Inf
else
{
for (j in seq(from = 1, to = max.value))
{
cumpro <- pZIPF(j, mu = nmu[i], log.p = FALSE)
# else cumpro+dSICHEL(j, mu = nmu[i], sigma = nsigma[i], nu = nnu[i], log = FALSE)# the above is faster
QQQ[i] <- j
if (p[i] <= cumpro ) break
}
}
}
QQQ
}
#----------------------------------------------------------------------------------------
rZIPF <- function(n, mu = 1, max.value = 10000)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qZIPF(p, mu = mu, max.value = max.value)
as.integer(r)
}
#----------------------------------------------------------------------------------------
#---------------------------------------------------------------------
# this is the function from VGAM
# it also need the function Zeta.derivative() which need C code
zetaP <-function (x)
{
Zeta.aux<- function (shape, qq)
{
LLL <- max(length(shape), length(qq))
if (length(shape) != LLL)
shape <- rep_len(shape, LLL)
if (length(qq) != LLL)
qq <- rep_len(qq, LLL)
if (any(qq < 12 - 1))
warning("all values of argument 'q' should be 12 or more")
aa <- qq
B2 <- c(1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510)
kk <- length(B2)
ans <- 1/((shape - 1) * (1 + aa)^(shape - 1)) + 0.5/(1 + aa)^shape
term <- (shape/2)/(1 + aa)^(shape + 1)
ans <- ans + term * B2[1]
for (mm in 2:kk)
{
term <- term * (shape + 2 * mm - 3) * (shape + 2 * mm -
2)/((2 * mm - 1) * 2 * mm * (1 + aa)^2)
ans <- ans + term * B2[mm]
}
ifelse(aa - 1 <= qq, ans, rep(0, length(ans)))
}
aa <- 12
ans <- 0
for (ii in 0:(aa - 1)) ans <- ans + 1/(1 + ii)^x
ans <- ans + Zeta.aux(shape = x, aa)
ans
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.