R/Misc_Internal.R

Defines functions calc_survival_yr calc_survival Check_custom_SRR agg_data join_HistSampPars join_HistRef join_HistTSdata join_MSERefPoint join_PPD join_list_of_arrays join_list_of_vectors join_arrays join_vectors join_rows Export_customMPs set_parallel CalcDistribution findIntRuns CheckMPs getMP CheckDuplicate PackageFuns getbeta indfit getclass lcs calcRecruitment_int calcRecruitment LinInterp CalcMSYRefs CalcUnfishedRefs calcV dnormal getsel range01 Range getEffhist getmov2 GenerateRandomWalk

Documented in CheckDuplicate CheckMPs dnormal GenerateRandomWalk getclass getEffhist getmov2 getMP getsel LinInterp Range

#' Creates a time series per simulation that has a random normal walk with sigma
#'
#' @param targ mean
#' @param targsd standard deviation
#' @param nyears number of years to simulate
#' @param nsim number of simulations
#' @keywords internal
#'
GenerateRandomWalk <- function(targ, targsd, nyears, nsim, rands=NULL) {
  mutemp <- -0.5 * targsd^2

  if (!is.null(rands)) {
    temp <- rands
  } else {
    temp <- array(exp(rnorm(nsim*nyears, mutemp, targsd)),dim = c(nsim, nyears))
  }
  if (nsim >1) {
    return(targ * temp/apply(temp, 1, mean))
  } else {
    return(targ * temp/mean(temp))
  }

}


#' Optimization function to find a movement model that matches user specified
#' movement characteristics modified for Rcpp.
#'
#' The user specifies the probability of staying in the same area and spatial
#' heterogeneity (both in the unfished state).
#'
#' This is paired with movfit to find the correct movement model.
#'
#' @param x A position in vectors Prob_staying and Frac_area_1
#' @param Prob_staying User specified probability that individuals in area 1
#' remain in that area (unfished conditions)
#' @param Frac_area_1 User specified fraction of individuals found in area 1
#' (unfished conditions)
#' @return A markov movement matrix
#' @author T. Carruthers
#' @export
#' @examples
#'
#' Prob_staying<-0.8 # probability  that individuals remain in area 1 between time-steps
#' Frac_area_1<-0.35 # the fraction of the stock found in area 1 under equilibrium conditions
#' markovmat<-getmov2(1,Prob_staying, Frac_area_1)
#' vec<-c(0.5,0.5) # initial guess at equilibrium distribution (2 areas)
#' for(i in 1:300)vec<-apply(vec*markovmat,2,sum) # numerical approximation to stable distribution
#' c(markovmat[1,1],vec[1]) # pretty close right?
#'
#'
getmov2 <- function(x, Prob_staying, Frac_area_1) {
  test <- optim(par = c(0, 0, 0), movfit_Rcpp, method = "L-BFGS-B",
                lower = rep(-6, 3), upper = rep(6, 3), prb = Prob_staying[x],
                frac = Frac_area_1[x])
  mov <- array(c(test$par[1], test$par[2], 0, test$par[3]), dim = c(2, 2))
  mov <- exp(mov)
  mov/array(apply(mov, 1, sum), dim = c(2, 2))
}

#' Calculate historical fishing mortality
#'
#'
#' @param Esd vector of standard deviation
#' @param nyears number of years
#' @param EffYears index of years
#' @param EffLower vector of lower bound
#' @param EffUpper vector of upper bound
#' @keywords internal
#'
getEffhist <- function(Esd, nyears, EffYears, EffLower, EffUpper) {
  if (length(EffLower) == length(EffUpper) & length(EffUpper) == length(EffYears)) {
    nsim <- length(Esd)  # get nsim
    if (EffYears[1] == 1 & EffYears[length(EffYears)] == nyears & length(EffYears) == nyears) {
      refYear <- EffYears
    } else{
      refYear <- ceiling(range01(EffYears + 0.5) * nyears) # standardize years
      refYear[1] <- 1 # first year is year 1
      refYear[length(refYear)] <- nyears  # first year is year 1
    }

    if (any(EffLower > EffUpper)) {
      ind <- which(EffLower > EffUpper)
      message("Some values in 'EffLower' are higher than 'EffUpper': Years ", paste(ind, ""),
              "\nSetting 'EffLower' to the lower of the two values.")
      tt <- cbind(EffLower, EffUpper)
      EffLower <- apply(tt, 1, min)
      EffUpper <- apply(tt, 1, max)
    }

    # sample Effort
    # fmat <- rbind(EffLower, EffUpper)

    # nyrs <- length(EffLower)
    # Effs <- matrix(0, nsim, nyrs)

    # ind <- which(diff(fmat) > 0)[1]
    # for (X in 1:ind) {
    # Effs[,X] <- runif(nsim, min(fmat[,X]), max(fmat[,X]))
    # }

    # val <- (Effs[,ind] - min(fmat[,ind]))/ diff(fmat[,ind])
    # for (X in 2:nyrs) Effs[,X] <- min(fmat[,X]) + diff(fmat[,X])*val

    Effs <- mapply(runif, n = nsim, min = EffLower, max = EffUpper)  # sample Effort
    if (nsim > 1) {
      if (ncol(Effs) == 1) {
        effort <- matrix(Effs, nrow=nsim, ncol=nyears)
      } else {
        effort <- t(sapply(1:nsim, function(x) approx(x = refYear,
                                                      y = Effs[x, ], method = "linear", n = nyears)$y))  # linear interpolation
      }

    }
    if (nsim == 1) {
      if (length(Effs) == 1) {
        effort <- matrix(Effs, nrow=nsim, ncol=nyears)
      } else {
        effort <- matrix(approx(x = refYear, y = Effs, method = "linear", n = nyears)$y, nrow = 1)
      }
    }

    if (!all(effort == mean(effort))) effort <- range01(effort)

    effort[effort == 0] <- tiny

    Emu <- -0.5 * Esd^2
    Eerr <- array(exp(rnorm(nyears * nsim, rep(Emu, nyears), rep(Esd, nyears))), c(nsim, nyears))  # calc error
    out <- NULL
    eff <- effort * Eerr  # add error
    out[[1]] <- eff
    out[[2]] <- (effort[, nyears] - effort[, nyears - 4])/5
    return(out)
  } else {
    message("Input vectors of effort years and bounds not of same length")
    return(NULL)
  }
}

#' Standardize values
#'
#' Function to standardize to value relative to minimum and maximum values
#' @param x vector of values
#' @param Max Maximum value
#' @param Min Minimum value
#' @keywords internal
Range <- function(x, Max, Min) {
  (x - Min)/(Max - Min)
}

range01 <- function(x) {
  (x - min(x))/(max(x) - min(x))
}

#' Calculate selectivity curve
#'
#' @param x Simulation number
#' @param lens Matrix of lengths (nsim by nlengths)
#' @param lfs Vector of length at full selection (nsim long)
#' @param sls Vector of sigmas of ascending limb (nsim long)
#' @param srs Vector of sigmas of descending limb (nsim long)
#'
#' @export
getsel <- function(x, lens, lfs, sls, srs) {
  if (is.null(ncol(lens))) return(dnormal(lens, lfs[x], sls[x], srs[x]))
  dnormal(lens[x,], lfs[x], sls[x], srs[x])
}


#' Double-normal selectivity curve
#'
#' @param lens Vector of lengths
#' @param lfs Length at full selection
#' @param sl Sigma of ascending limb
#' @param sr Sigma of descending limb
#'
#'
dnormal<-function(lens,lfs,sl,sr){
  cond<-lens<=lfs
  sel<-rep(NA,length(lens))
  sel[cond]<-2.0^-((lens[cond]-lfs)/sl*(lens[cond]-lfs)/sl)
  sel[!cond]<-2.0^-((lens[!cond]-lfs)/sr*(lens[!cond]-lfs)/sr)
  sel
}

# calcV <- function(x, Len_age, LatASD, SLarray, n_age, nyears, proyears, CAL_binsmid) {
#   len_at_age <- Len_age[x,,]
#   len_aa_sd <- LatASD[x,,]
#
#   sel_at_length <- SLarray[x,,]
#   v <- matrix(tiny, n_age, nyears+proyears)
#
#   for (yr in 1:(nyears+proyears)) {
#     ALK <- mapply(dnorm, mean=len_at_age[,yr], sd=len_aa_sd[,yr], MoreArgs=list(x=CAL_binsmid))
#     ALK[ALK<=0] <- tiny
#
#     if (all(ALK[,1]==tiny)) {
#       ALK[,1] <- 0
#       ALK[1,1] <- 1
#     }
#     ALK_t <- matrix(colSums(ALK), nrow=nrow(ALK), ncol=ncol(ALK), byrow = TRUE)
#     ALK <- t(ALK/ALK_t)
#     sela <- ALK %*% sel_at_length[,yr]
#     v[,yr] <- sela[,1]
#   }
#   v
# }

calcV <- function(x, Len_age, LatASD, SLarray, n_age, nyears, proyears, CAL_binsmid) {
  len_at_age <- Len_age[x,,]
  len_aa_sd <- LatASD[x,,]
  sel_at_length <- SLarray[x,,]

  if (!'matrix' %in% class(len_aa_sd)) {
    nrow <- length(len_at_age)
    len_at_age <- matrix(len_at_age, nrow, 1)
    len_aa_sd <- matrix(len_aa_sd, nrow, 1)
    sel_at_length <- matrix(sel_at_length, length(sel_at_length), 1)
  }


  calcVatAge(len_at_age, len_aa_sd, sel_at_length, n_age, nyears, proyears, CAL_binsmid)
}


# calculate average unfished ref points over first A50 years
CalcUnfishedRefs <- function(x, ageM, N0_a, SSN0_a, SSB0_a, B0_a, VB0_a, SSBpRa, SSB0a_a) {
  avg.ind <- 1:(ceiling(ageM[x,1])+1) # unfished eq ref points averaged over these years
  nyears <- dim(N0_a)[2]
  if (length(avg.ind) > nyears) avg.ind <- 1:nyears

  N0 <- mean(N0_a[x, avg.ind])
  SSN0  <- mean(SSN0_a[x, avg.ind])
  SSB0 <- mean(SSB0_a[x, avg.ind])
  B0 <- mean(B0_a[x, avg.ind])
  VB0 <- mean(VB0_a[x, avg.ind])
  SSBpR <- mean(SSBpRa[x, avg.ind])
  if (length(avg.ind)>1) {
    SSB0a <- apply(SSB0a_a[x,avg.ind,], 2, mean)
  } else {
    SSB0a <- SSB0a_a[x,avg.ind,]
  }

  list(N0=N0, SSN0=SSN0, SSB0=SSB0, B0=B0, VB0=VB0, SSBpR=SSBpR, SSB0a=SSB0a)
}


CalcMSYRefs <- function(x, MSY_y, FMSY_y, SSBMSY_y, BMSY_y, VBMSY_y, ageM, nyears) {
  n.yrs <- ceiling(ageM[x,nyears]) # MSY ref points averaged over these years
  nyears1 <- dim(ageM)[2]
  minY <- floor(n.yrs/2)
  maxY <- n.yrs - minY - 1
  avg.ind <- (nyears - minY):(nyears + maxY)
  avg.ind <- avg.ind[avg.ind>0]
  if (max(avg.ind) > nyears1) avg.ind <- avg.ind[avg.ind < nyears1]

  MSY <- mean(MSY_y[x, avg.ind])
  FMSY <- mean(FMSY_y[x, avg.ind])
  SSBMSY <- mean(SSBMSY_y[x, avg.ind])
  BMSY <- mean(BMSY_y[x, avg.ind])
  VBMSY <- mean(VBMSY_y[x, avg.ind])
  data.frame(MSY=MSY, FMSY=FMSY, SSBMSY=SSBMSY, BMSY=BMSY, VBMSY=VBMSY)
}

#' Linear interpolation of a y value at level xlev based on a vector x and y
#'
#' @param x A vector of x values
#' @param y A vector of y values (identical length to x)
#' @param xlev A the target level of x from which to guess y. Can be either a numeric or vector.
#' @param ascending Are the the x values supposed to be ordered before interpolation
#' @param zeroint is there a zero-zero x-y intercept?
#' @details As of version 3.2, this function uses `stats::approx`
#' @author T. Carruthers
#' @keywords internal
LinInterp<-function(x, y, xlev, ascending = FALSE, zeroint = FALSE) {

  if (zeroint) {
    x <- c(0, x)
    y <- c(0, y)
  }

  if (ascending) {
    x_out <- x[1:which.max(x)]
    y_out <- y[1:which.max(x)]
  } else {
    x_out <- x
    y_out <- y
  }

  if (any(xlev < min(x_out))) warning("There are xlev values less than min(x).")
  if (any(xlev > max(x_out))) warning("There are xlev values greater than max(x).")
  approx(x_out, y_out, xlev, rule = 2, ties = "ordered")$y

}

calcRecruitment <- function(x, SRrel, SSBcurr, recdev, hs, aR, bR, R0a, SSBpR, 
                            SRRfun, SRRpars) {
  calcRecruitment_int(SRrel = SRrel[x], SSBcurr = SSBcurr[x, ], recdev = recdev[x], hs = hs[x],
                      aR = aR[x, 1], bR = 1/sum(1/bR[x, ]), R0a = R0a[x, ],
                      SSBpR = SSBpR[x, 1], SRRfun, SRRpars[[x]])
}

calcRecruitment_int <- function(SRrel, SSBcurr, recdev, hs, aR, bR, R0a, SSBpR,
                                SRRfun, SRRpars) {
  R0 <- sum(R0a) # calculate global recruitment and distribute according to R0a
  rdist <- R0a/R0
  SBtot <- sum(SSBcurr)
  if (SRrel == 1) { # BH rec
    rec <- recdev * (4 * R0 * hs * SBtot)/(SSBpR * R0 * (1-hs) + (5*hs-1) * SBtot)
  } else if (SRrel == 2) { # Ricker rec
    rec <- recdev * aR * SBtot * exp(-bR * SBtot)
  } else {
    rec <- recdev * SRRfun(SBtot, SRRpars)
  }
  return(rec * rdist)
}

lcs<-function(x){
  if ("matrix" %in% class(x)) {
    nsim <- nrow(x)
    nyr <- ncol(x)
    x1 <- x/matrix(apply(x, 1, mean, na.rm=TRUE), nrow=nsim, ncol=nyr) # rescale to mean 1
    x2<- log(x1) # log it
    x3 <- x2 -matrix(apply(x2, 1, mean, na.rm=TRUE), nrow=nsim, ncol=nyr) # mean 0
    x3
  } else {
    x1<-x/mean(x, na.rm=TRUE) # rescale to mean 1
    x2<-log(x1)     # log it
    x3<-x2-mean(x2, na.rm=TRUE) # mean 0
    x3
  }

}


#' get object class
#'
#' Internal function for determining if object is of classy
#'
#'
#' @param x Character string object name
#' @param classy A class of object (character string, e.g. 'Fleet')
#' @author T. Carruthers with nasty hacks from A. Hordyk
#' @return TRUE or FALSE
getclass <- function(x, classy) {
  return(any(class(get(x)) == classy)) # inherits(get(x), classy) - this gives a problem since we now inherit Stock etc in OM
}

indfit <- function(sim.index,obs.ind, Year, plot=FALSE, lcex=0.8){
  if (any(obs.ind<0, na.rm=TRUE)) {
    obs.ind <- obs.ind+1-min(obs.ind, na.rm=TRUE)
  }

  if (plot) Year <- Year[!is.na(obs.ind)]
  sim.index <- lcs(sim.index[!is.na(obs.ind)]) # log space conversion of standardized simulated index
  obs.ind <- lcs(obs.ind[!is.na(obs.ind)]) # log space conversion of standardized observed ind

  if(plot){
    par(mfrow=c(1,2),mai=c(0.7,0.5,0.05,0.01),omi=c(0.01,0.2,0.01,0.01))
    plot(exp(sim.index),exp(obs.ind),xlab="",ylab="",pch=19,col=rgb(0,0,0,0.5))
    mtext("Model estimate",1,line=2.2)
    mtext("Index",2,outer=T,line=0)
  }

  opt<-optimize(getbeta,x=exp(sim.index),y=exp(obs.ind),interval=c(0.1,10))
  res<-exp(obs.ind)-(exp(sim.index)^opt$minimum)
  if (length(res)<2) {
    ac <- 0
  } else {
    ac<-acf(res,plot=F)$acf[2,1,1] # lag-1 autocorrelation
  }

  res2<-obs.ind-sim.index                  # linear, without hyperdepletion / hyperstability
  if (length(res2)<2) {
    ac2 <- 0
  } else {
    ac2<-acf(res2,plot=F)$acf[2,1,1] # linear AC
  }


  if(plot){
    SSBseq<-seq(min(exp(sim.index)),max(exp(sim.index)),length.out=1000)
    lines(SSBseq,SSBseq^opt$minimum,col='#0000ff90',pch=19)
    legend('bottomright',legend=round(c(sum((obs.ind-sim.index)^2),opt$objective),3),text.col=c("black","blue"),bty='n',title="SSQ",cex=lcex)
    legend('topleft',legend=round(opt$minimum,3),text.col="blue",bty='n',title='Hyper-stability, beta',cex=lcex)
    legend('left',legend=round(stats::cor(sim.index,obs.ind),3),bty='n',title='Correlation',cex=lcex)

    plot(Year,sim.index,ylab="",xlab="",ylim=range(c(obs.ind,sim.index)),type="l")
    mtext("Year",1,line=2.2)
    points(Year,obs.ind,col='#ff000090',pch=19)
    legend('topleft',legend=round(ac,3),text.col="red",bty='n',title="Lag 1 autocorrelation",cex=lcex)
    legend('bottomleft',legend=round(sd(res),3),text.col="red",bty='n',title="Residual StDev",cex=lcex)
    legend('topright',legend=c("Model estimate","Index"),text.col=c("black","red"),bty='n',cex=lcex)
  }

  df <- data.frame(beta=opt$minimum,AC=ac,sd=sd(exp(obs.ind)/(exp(sim.index)^opt$minimum)),
             cor=stats::cor(sim.index,obs.ind),AC2=ac2,sd2=sd(obs.ind-sim.index))

  df
  # list(stats=data.frame(beta=opt$minimum,AC=ac,sd=sd(exp(obs.ind)/(exp(sim.index)^opt$minimum)),
  #                       cor=cor(sim.index,obs.ind),AC2=ac2,sd2=sd(obs.ind-sim.index)),
  #      mult=exp(obs.ind)/(exp(sim.index)^opt$minimum))

}

getbeta<-function(beta,x,y)sum((y-x^beta)^2, na.rm=TRUE)







PackageFuns <- function() {
  pkg.funs <- as.vector(ls.str('package:MSEtool'))
  if ('package:DLMtool' %in% search())
    pkg.funs <- c(pkg.funs, as.vector(ls.str('package:DLMtool')))
  if ('package:SAMtool' %in% search())
    pkg.funs <- c(pkg.funs, as.vector(ls.str('package:SAMtool')))
  pkg.funs
}

#' Check for duplicated MPs names
#'
#' Custom MPs cannot have the same names of MPs in MSEtool and related packages
#' @param MPs Character vector of MP names
#'
#' @return An error if duplicated MP names, otherwise nothing
CheckDuplicate <- function(MPs) {
  # check if custom MP names already exist in DLMtool
  tt <- suppressWarnings(try(lsf.str(envir=globalenv()), silent=TRUE))
  if (!methods::is(tt, "try-error")) {
    gl.funs <- as.vector(tt)
    pkg.funs <- PackageFuns()

    if (length(gl.funs)>0) {
      gl.clss <- unlist(lapply(lapply(gl.funs, get), class))
      gl.MP <- gl.funs[gl.clss %in% 'MP']
      if (length(gl.MP)>0) {
        inc.gl <- gl.MP[gl.MP %in% MPs]
        if (length(inc.gl)>0) {
          dup.MPs <- inc.gl[inc.gl %in% pkg.funs]
          if (length(dup.MPs)>0) {
            stop("Custom MP names already exist in MSEtool or other packages.\nRename Custom MPs: ",
                 paste0(dup.MPs, collapse=", "))
          }
        }
      }
    }
  }
}



#' Search R session for MP
#'
#' Calls [dynGet()], then [get()] in order to find the MP definition in the R session.
#' @param MP Character of MP name
#' @author Q. Huynh
#' @return The function definition or an error message from [try()] if unsuccessful
getMP <- function(MP) {
  fn <- try(dynGet(MP), silent = TRUE)
  if (is.character(fn)) fn <- get(MP)
  return(fn)  
}

#' Check that specified MPs are valid and will run on MSEtool::SimulatedData
#'
#' @param MPs Character vector of MP names
#' @param silent Logical. Report messages?
#'
#' @return MP names
CheckMPs <- function(MPs=NA, silent=FALSE) {
  if (all(is.na(MPs))) {
    if (!silent) message('Argument `MPs=NA`, using all example MPs in `MSEtool`')
    MPs <- avail("MP", 'MSEtool', msg=!silent)
  }

  # Check for custom MPs with same name as built-it MPs
  CheckDuplicate(MPs)

  if (!silent) message('Checking MPs')

  # Check MP names are valid functions of class MP
  chkMP <- list()
  for (mm in MPs) chkMP[[mm]] <- getMP(mm)

  clss <- unlist(lapply(chkMP, class))
  invalid <- clss[clss!='MP']
  if (length(invalid)>0) {
    stop("Some MPs are not a function of class `MP`: ",
         paste0(names(invalid), collapse=", "), call.=FALSE)
  }

  # Check on simulated data
  pass <- rep(TRUE, length(MPs))
  for (i in seq_along(MPs)) {
    mp <- get(MPs[i])
    tryMP <- try(sapply(1:3, mp, MSEtool::SimulatedData), silent=TRUE)
    err <- unique(unlist(lapply(tryMP, class) ))
    if (err =='character') pass[i] <- FALSE
  }
  if (any(!pass))
    warning('Some MPs fail with MSEtool::SimulatedData: ',
            paste0(MPs[!pass], collapse=", "), call.=FALSE)

  MPs
}


# Calculate consecutive runs
# https://stackoverflow.com/a/16912472/2885462
findIntRuns <- function(run){
  rundiff <- c(1, diff(run))
  difflist <- split(run, cumsum(rundiff!=1))
  unlist(lapply(difflist, function(x){
    if(length(x) %in% 1:2) as.character(x) else paste0(x[1], "-", x[length(x)])
  }), use.names=FALSE)
}


CalcDistribution <- function(StockPars, FleetPars, SampCpars, nyears, maxF, plusgroup, checks) {
  nsim <- length(StockPars$M)

  n_age <- StockPars$maxage + 1 # number of age classes (starting at age-0)
  nareas <- StockPars$nareas
  N <- array(NA, dim = c(nsim, n_age, nyears, nareas))  # stock numbers array
  Biomass <- array(NA, dim = c(nsim, n_age, nyears, nareas))  # stock biomass array
  VBiomass <- array(NA, dim = c(nsim, n_age, nyears, nareas))  # vulnerable biomass array
  SSN <- array(NA, dim = c(nsim, n_age, nyears, nareas))  # spawning stock numbers array
  SSB <- array(NA, dim = c(nsim, n_age, nyears, nareas))  # spawning stock biomass array
  FM <- array(NA, dim = c(nsim, n_age, nyears, nareas))  # fishing mortality rate array
  FMret <- array(NA, dim = c(nsim, n_age, nyears, nareas))  # fishing mortality rate array for retained fish
  Z <- array(NA, dim = c(nsim, n_age, nyears, nareas))  # total mortality rate array
  SPR <- array(NA, dim = c(nsim, n_age, nyears)) # store the Spawning Potential Ratio
  Agearray <- array(rep(0:StockPars$maxage, each = nsim), dim = c(nsim, n_age))  # Age array

  # Set up array indexes sim (S) age (A) year (Y) region/area (R)
  SAYR <- as.matrix(expand.grid(1:nareas, 1, 1:n_age, 1:nsim)[4:1])
  SAY <- SAYR[, 1:3]
  SAR <- SAYR[, c(1,2,4)]
  SA <- Sa <- SAYR[, 1:2]
  SR <- SAYR[, c(1, 4)]
  S <- SAYR[, 1]
  SY <- SAYR[, c(1, 3)]
  Sa[,2]<- n_age-Sa[,2] + 1 # This is the process error index for initial year

  surv <- matrix(1, nsim, n_age)
  surv[, 2:n_age] <- t(exp(-apply(StockPars$M_ageArray[,,1], 1, cumsum)))[, 1:(n_age-1)]  # Survival array

  if (plusgroup) {
    surv[,n_age] <- surv[,n_age]+surv[,n_age]*exp(-StockPars$M_ageArray[,n_age,1])/(1-exp(-StockPars$M_ageArray[,n_age,1])) # indefinite integral
  }
  surv[!is.finite(surv)] <- tiny
  Nfrac <- surv * StockPars$Mat_age[,,1]  # predicted Numbers of mature ages in first year

  SSN[SAYR] <- Nfrac[SA] * StockPars$R0[S] * StockPars$Pinitdist[SR]  # Calculate initial spawning stock numbers
  N[SAYR] <- StockPars$R0[S] * surv[SA] * StockPars$Pinitdist[SR]  # Calculate initial stock numbers
  Neq <- N
  SSB[SAYR] <- SSN[SAYR] * StockPars$Wt_age[SAY]    # Calculate spawning stock biomass
  SSB0 <- apply(SSB[, , 1, ], 1, sum)  # Calculate unfished spawning stock biomass
  SSBpR <- matrix(SSB0/StockPars$R0, nrow=nsim, ncol=nareas)  # Spawning stock biomass per recruit
  SSB0a <- apply(SSB[, , 1, ], c(1, 3), sum)  # Calculate unfished spawning stock numbers

  # Project unfished for Nyrs to calculate equilibrium spatial distribution
  Nyrs <-  ceiling(5 * StockPars$maxage) # Project unfished for 5 x maxage
  bR <- matrix(log(5 * StockPars$hs)/(0.8 * SSB0a), nrow=nsim)  # Ricker SR params
  aR <- matrix(exp(bR * SSB0a)/SSBpR, nrow=nsim)  # Ricker SR params
  R0a <- matrix(StockPars$R0, nrow=nsim, ncol=nareas, byrow=FALSE) * StockPars$Pinitdist # initial distribution of recruits

  # Set up projection arrays
  M_ageArrayp <- array(StockPars$M_ageArray[,,1], dim=c(dim(StockPars$M_ageArray)[1:2], Nyrs))
  Wt_agep <- array(StockPars$Wt_age[,,1], dim=c(dim(StockPars$Wt_age)[1:2], Nyrs))
  Fec_Agep <- array(StockPars$Fec_Age[,,1], dim=c(dim(StockPars$Fec_Age)[1:2], Nyrs))
  Mat_agep <- array(StockPars$Mat_age[,,1], dim=c(dim(StockPars$Mat_age)[1:2], Nyrs))
  Perr_yp <- array(1, dim=c(dim(StockPars$Perr_y)[1], Nyrs+StockPars$maxage)) # no process error

  # update mov if needed
  dimMov <- dim(StockPars$mov)
  movp <- StockPars$mov
  if (dimMov[length(dimMov)] < Nyrs) {
    movp <- array(movp, dim=c(dimMov[1:(length(dimMov)-1)], Nyrs))
  }

  # Not used but make the arrays anyway
  retAp <- array(FleetPars$retA_real[,,1], dim=c(dim(FleetPars$retA_real)[1:2], Nyrs))
  Vp <- array(FleetPars$V_real[,,1], dim=c(dim(FleetPars$V_real)[1:2], Nyrs))
  noMPA <- matrix(1, nrow=Nyrs, ncol=nareas)

  runProj <- lapply(1:nsim, projectEq, StockPars$Asize, nareas=nareas,
                    maxage=StockPars$maxage, N=N, pyears=Nyrs,
                    M_ageArray=M_ageArrayp, Mat_age=Mat_agep,
                    Wt_age=Wt_agep, Fec_Age = Fec_Agep, V=Vp, retA=retAp,
                    Perr=Perr_yp, mov=movp, SRrel=StockPars$SRrel,
                    Find=FleetPars$Find, Spat_targ=FleetPars$Spat_targ,
                    hs=StockPars$hs,
                    R0a=R0a, SSBpR=SSBpR, aR=aR, bR=bR, SSB0=SSB0,
                    MPA=noMPA, maxF=maxF,
                    Nyrs, plusgroup,
                    StockPars$SRRfun, StockPars$SRRpars)

  Neq1 <- aperm(array(as.numeric(unlist(runProj)), dim=c(n_age, nareas, nsim)), c(3,1,2))  # unpack the list

  # --- Equilibrium spatial / age structure (initdist by SAR)
  initdist <- Neq1/array(apply(Neq1, c(1,2), sum), dim=c(nsim, n_age, nareas))

  # check arrays and calculations
  if (checks) {
    if(!all(round(apply(initdist, c(1,2), sum),1)==1)) warning('initdist does not sum to one')
    if(!(all(round(apply(Neq[,,1,], 1, sum) /  apply(Neq1, 1, sum),1) ==1))) warning('eq age structure')
    sim <- sample(1:nsim,1)
    yrval <- sample(1:Nyrs,1)
    if (!all(M_ageArrayp[sim,,yrval] == StockPars$M_ageArray[sim,,1] )) warning('problem with M_ageArrayp')
    if(!all(Wt_agep[sim,,yrval] == StockPars$Wt_age[sim,,1]))  warning('problem with Wt_agep')
    if(!all(Mat_agep[sim,,yrval] == StockPars$Mat_age[sim,,1])) warning('problem with Mat_agep')
  }
  initdist
}

set_parallel <- function(parallel, msg=TRUE) {
  if (any(parallel)) {
    if (snowfall::sfIsRunning()) {
      ncpus <- snowfall::sfCpus()
    } else {
      if (msg)
        message_info('Setting up parallel processing')
      setup()
      ncpus <- snowfall::sfCpus()
    }
  } else {
    if (snowfall::sfIsRunning()) {
      if (msg)
        message_info('Stopping parallel processing')
      snowfall::sfStop()
    }
    ncpus <- 1
  }
  ncpus
}


# export custom MPs
Export_customMPs <- function(MPs) {
  pkg.funs <- PackageFuns()
  cMPs <- MPs[!MPs %in% pkg.funs]
  globalMP <- NULL
  extra_package <- NULL
  for (mm in seq_along(cMPs)) {
    nmspace <- utils::find(cMPs[mm])
    if (nmspace==".GlobalEnv") {
      globalMP <- c(globalMP, cMPs[mm])
    } else {
      extra_package <- c(extra_package, strsplit(nmspace, ":")[[1]][2])
    }
    extra_package <- unique(extra_package)
  }
  if (!is.null(globalMP)) {
    message("Exporting custom MPs in global environment:", paste0(globalMP, collapse = ", "))
    snowfall::sfExport(list=globalMP)
  }
  if (!is.null(extra_package)) {
    message("Exporting additional packages with MPs")
    for (pk in extra_package)
      snowfall::sfLibrary(pk, character.only = TRUE, verbose=FALSE)
  }
}


# Join functions for joinMSE, joinData, joinHist
join_rows <- function(x, name) lapply(x, getElement, name) %>% bind_rows()
join_vectors <- function(x, name) do.call(c, lapply(x, getElement, name))
join_arrays <- function(x, name, along = 1) lapply(x, getElement, name) %>% abind::abind(along = along)

join_list_of_vectors <- function(x) {
  lname <- names(x[[1]])
  varout <- lapply(lname, function(name) join_vectors(x = x, name = name))
  structure(varout, names = lname)
}

join_list_of_arrays <- function(x, along = 1) {
  lname <- names(x[[1]])
  varout <- lapply(lname, function(name) join_arrays(x = x, name = name, along = along))
  structure(varout, names = lname)
}

join_PPD <- function(MSEList) {
  PPD <- lapply(1:MSEList[[1]]@nMPs, function(mm) {
    DataList <- lapply(MSEList, function(x) x@PPD[[mm]])
    Data <- try(joinData(DataList), silent = TRUE)
    return(Data)
  })
  return(PPD)
}

join_MSERefPoint <- function(MSEList) {
  RefPoint <- lapply(MSEList, slot, "RefPoint")
  
  MSY <- join_arrays(RefPoint, "MSY")
  FMSY <- join_arrays(RefPoint, "FMSY")
  SSBMSY <- join_arrays(RefPoint, "SSBMSY")
  F_SPR <- join_arrays(RefPoint, "F_SPR")
  
  Dynamic_Unfished <- lapply(RefPoint, getElement, "Dynamic_Unfished") %>% join_list_of_arrays()
  ByYear <- lapply(RefPoint, getElement, "ByYear") %>% join_list_of_arrays()
  
  list(MSY = MSY, FMSY = FMSY, SSBMSY = SSBMSY, F_SPR = F_SPR,
       Dynamic_Unfished = Dynamic_Unfished, ByYear = ByYear)
}

join_HistTSdata <- function(Hist_List) {
  TSdata <- lapply(Hist_List, slot, "TSdata")
  
  array_names <- c("Number", "Biomass", "VBiomass", "SBiomass", "Removals", "Landings", "Discards", "Find", "RecDev")
  
  TSout <- array_names %>%
    lapply(function(name) join_arrays(TSdata, name)) %>%
    structure(names = array_names)
  
  TSout$SPR <- lapply(TSdata, getElement, "SPR") %>% join_list_of_arrays()
  TSout$Unfished_Equilibrium <- lapply(TSdata, getElement, "Unfished_Equilibrium") %>% join_list_of_arrays()
  
  return(TSout)
}

join_HistRef <- function(Hist_List) {
  Ref <- lapply(Hist_List, slot, "Ref")
  
  ByYear <- lapply(Ref, getElement, "ByYear")
  Dynamic_Unfished <- lapply(Ref, getElement, "Dynamic_Unfished")
  ReferencePoints <- lapply(Ref, getElement, "ReferencePoints")
  
  list(ByYear = join_list_of_arrays(ByYear),
       Dynamic_Unfished = join_list_of_arrays(Dynamic_Unfished),
       ReferencePoints = join_list_of_vectors(ReferencePoints))
  
}

join_HistSampPars <- function(Hist_List) {
  SampPars <- lapply(Hist_List, slot, "SampPars")
  
  Stock <- lapply(SampPars, getElement, "Stock")
  unique_s <- c("maxage", "a", "b", "nCALbins", "nareas", "n_age", "plusgroup", "maxF")
  Stock_names <- names(Stock[[1]])
  Stockout <- lapply(Stock_names, function(name, x) {
    if (name %in% unique_s) {
      
      identical_test <- length(unique(sapply(x, getElement, name))) == 1
      if (!identical_test) {
        warning(paste0("joinHist() found different values of Hist@SampPars$Stock$", name, ". Returning value from the first object in the list."))
      }
      return(x[[1]][[name]])
      
    } else if (name %in% c("CAL_binsmid", "CAL_bins", "binWidth")) {
      
      templist <- lapply(x, getElement, name)
      
      for(X in 2:length(templist)) {
        if(length(templist[[X]]) != length(templist[[X - 1]]) || any(templist[[X]] != templist[[X - 1]])) {
          warning(paste0("joinHist() found different values of Hist@SampPars$Stock$", name, ". Returning value from the first object in the list."))
        }
      }
      return(x[[1]][[name]])
      
    } else if (is.array(x[[1]][[name]])) {
      return(join_arrays(x, name))
    } else {
      return(join_vectors(x, name))
    }
  }, x = Stock) %>% structure(names = Stock_names)
  
  Fleet <- lapply(SampPars, getElement, "Fleet")
  Fleet_names <- names(Fleet[[1]])
  arr_len <- c("retL_real", "retL", "SLarray_real", "SLarray", "Fdisc_array2")
  Fleetout <- lapply(Fleet_names, function(name, x) {
    if (name == "MPA") {
      return(x[[1]][["MPA"]])
    } else if(name %in% arr_len) {
      
      out <- try(join_arrays(x, name), silent = TRUE)
      if (inherits(out, "try-error")) {
        warning(paste0("joinHist() could not join Hist@SampPars$Fleet$", name, ". Returning NULL."))
        return(NULL)
      } else {
        return(out)
      }
      
    } else if(is.array(x[[1]][[name]])) {
      return(join_arrays(x, name))
    } else {
      return(join_vectors(x, name))
    }
  }, x = Fleet) %>% structure(names = Fleet_names)
  
  Obs <- lapply(SampPars, getElement, "Obs")
  Obs_names <- names(Obs[[1]])
  Obsout <- lapply(Obs_names, function(name, x) {
    
    if (name == "Sample_Area") {
      return(lapply(x, getElement, "Sample_Area") %>% join_list_of_arrays())
    } else if (is.array(x[[1]][[name]])) {
      return(join_arrays(x, name))
    } else {
      return(join_vectors(x, name))
    }
    
  }, x = Obs) %>% structure(names = Obs_names)
  
  Imp <- lapply(SampPars, getElement, "Imp")
  Imp_names <- names(Imp[[1]])
  Impout <- lapply(Imp_names, function(name, x) {
    
    if (is.array(x[[1]][[name]])) {
      return(join_arrays(x, name))
    } else {
      return(join_vectors(x, name))
    }
    
  }, x = Imp) %>% structure(names = Imp_names)
  
  list(Stock = Stockout, Fleet = Fleetout, Obs = Obsout, Imp = Impout)
}


agg_data <- function(array, out.dim, map.stocks) {
  # way faster than apply ...
  out <- array(0, dim=out.dim)
  for (pp in seq_along(map.stocks)) {
    out <- out + array[,map.stocks[pp],,,]
  }
  out 
}



Check_custom_SRR <- function(StockPars, SampCpars, nsim) {
  if (!is.null(SampCpars$SRR)) {
    req_names <- c('SRRfun', 'SRRpars')
    if (any(!(req_names %in% names(SampCpars$SRR))))
      stop('`cpars$SRR` must be a list with names: ', paste(req_names, collapse=", "))
    
    if (!inherits(SampCpars$SRR$SRRfun, 'function'))
      stop('`cpars$SRR$SRRfun` must be a function')
    
    if (!inherits(SampCpars$SRR$SRRpars, 'data.frame'))
      stop('`cpars$SRR$SRRpars` must be a data.frame with `nsim` rows')
    
    if (nrow(SampCpars$SRR$SRRpars)!=nsim)
      stop('`cpars$SRR$SRRpars` must be a data.frame with `nsim` rows')
    
    req_args <- c("SB", "SRRpars")
    fun_args <- formalArgs(SampCpars$SRR$SRRfun)
    if (any(!fun_args%in%req_args)) 
      stop('Arguments for `cpars$SRR$SRRfun` must be: ', paste(req_args, collapse=', '))
    StockPars$SRRfun <- SampCpars$SRR$SRRfun
    StockPars$SRRpars <- split(SampCpars$SRR$SRRpars, seq(nrow(SampCpars$SRR$SRRpars)))
    StockPars$SRrel <- rep(3, nsim)
    
    # Test the function
    test <- try(StockPars$SRRfun(100, StockPars$SRRpars[[1]]), silent=TRUE)
    if (inherits(test, 'try-error')) {
      stop( test, .call=FALSE)
    }
    if (!is.finite(test))
      stop("`OM@cpars$SRR$SRRfun did not return a finite value for first set of parameters")
    
    # Check if rel Rec function exists and test
    if(!is.null(SampCpars$SRR$relRfun)) {
      if (!inherits(SampCpars$SRR$relRfun, 'function'))
        stop('`cpars$SRR$relRfun` must be a function')
      StockPars$relRfun <- SampCpars$SRR$relRfun
      req_args <- c('SSBpR', 'SRRpars')
      fun_args <- formalArgs(SampCpars$SRR$relRfun)
      if (length(fun_args)!=2)
        stop('`cpars$SRR$relRfun` must have 2 arguments: ', paste(req_args, collapse=", "))
      if (any(fun_args!=req_args)) 
        stop('Arguments for `cpars$SRR$relRfun` must be: ', paste(req_args, collapse=', '))
      
      test <- try(StockPars$relRfun(100, StockPars$SRRpars[[1]]), silent=TRUE)
      if (inherits(test, 'try-error')) {
        stop( test, .call=FALSE)
      }
      if (!is.finite(test))
        stop("`OM@cpars$SRR$relRfun did not return a finite value for first set of parameters")
    } else {
      StockPars$relRfun <- function() NULL
    }
    
    # Check if SPRcrash function exists and test
    if(!is.null(SampCpars$SRR$SPRcrashfun)) {
      if (!inherits(SampCpars$SRR$SPRcrashfun, 'function'))
        stop('`cpars$SRR$SPRcrashfun` must be a function')
      StockPars$SPRcrashfun <- SampCpars$SRR$SPRcrashfun
      req_args <- c('SSBpR0', 'SRRpars')
      fun_args <- formalArgs(SampCpars$SRR$SPRcrashfun)
      if (length(fun_args)!=2)
        stop('`cpars$SRR$SPRcrashfun` must have 2 arguments: ', paste(req_args, collapse=", "))
      if (any(fun_args!=req_args)) 
        stop('Arguments for `cpars$SRR$SPRcrashfun` must be: ', paste(req_args, collapse=', '))
      
      test <- try(StockPars$SPRcrashfun(100, StockPars$SRRpars[[1]]), silent=TRUE)
      if (inherits(test, 'try-error')) {
        stop( test, .call=FALSE)
      }
      if (!is.finite(test))
        stop("`OM@cpars$SRR$SPRcrashfun did not return a finite value for first set of parameters")
    } else {
      StockPars$SPRcrashfun <- function() NULL
    }
    
  } else {
    StockPars$SRRfun <- function() NULL
    StockPars$SRRpars <- vector('list', nsim)
    StockPars$relRfun <- function() NULL
    StockPars$SPRcrashfun <- function() NULL
  } 
  
  if (StockPars$SRrel[1]==3 & is.null(formalArgs(StockPars$SRRfun)))
    stop('If `SRrel=3`, a custom stock-recruit function must be provided in `cpars$SRR`')
  
  StockPars
}



calc_survival <- function(x, StockPars, plusgroup=TRUE, inc_spawn_time=FALSE) {
  dd <- dim(StockPars$M_ageArray)
  all_years <- dd[3]
  sapply(1:all_years, calc_survival_yr, x=x, StockPars=StockPars, 
         plusgroup=plusgroup, inc_spawn_time=inc_spawn_time)
}


calc_survival_yr <- function(yr, x, StockPars, plusgroup=TRUE, inc_spawn_time=FALSE) {
  n_age <- StockPars$n_age
  lst.age <- max(which(StockPars$M_ageArray[1,,1]>0))
  
  if (inc_spawn_time) {
    spawn_time_frac <- StockPars$spawn_time_frac[x]  
  } else {
    spawn_time_frac <- 0 
  }
  surv <- (rep(NA, n_age))
  surv[1] <- 1 * exp(-StockPars$M_ageArray[x,1,yr]*spawn_time_frac)
  for (a in 2:n_age) {
    surv[a] <- surv[a-1]*exp(-(StockPars$M_ageArray[x,a-1,yr]*(1-spawn_time_frac)+StockPars$M_ageArray[x,a,yr]*spawn_time_frac))
  }
  if (plusgroup)
    surv[lst.age] <- surv[n_age]/(1-exp(-StockPars$M_ageArray[x,lst.age,yr]))
  
  if (lst.age<n_age) 
    surv[(lst.age+1):n_age] <- 0
  
  surv
}

Try the MSEtool package in your browser

Any scripts or data that you put into this service are public.

MSEtool documentation built on Sept. 30, 2024, 9:22 a.m.