One Sample Mean Test for Non-Inferiority/Superiority

Description

Ho: margin ≤ delta Ha: margin > delta

if delta >0, the rejection of Null Hypothesis indicates the true mean is superior over the reference value mu0;

if delta <0, the rejection of the null hypothesis implies the true mean is non-inferior against the reference value mu0.

Usage

1
OneSampleMean.NIS(alpha, beta, sigma, margin, delta)

Arguments

alpha

significance level

beta

power = 1-beta

sigma

standard deviation

delta

the superiority or non-inferiority margin

margin

margin=\bar{x}-μ_0

the difference between the true mean response of a test \bar{x} and a reference value μ_0

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

1
2
Example.3.1.4<-OneSampleMean.NIS(0.05,0.2,1,0.5,-0.5)
Example.3.1.4 # 7

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.