R/calibrate.R

Defines functions calibrate.rrvglm.control .my.calib.objfunction.rrvglm calibrate.rrvglm dzwald.rrvglm forG.calib.rrvglm .my.calib.objfunction.rrvgam .my.calib.objfunction.qrrvglm calibrate.qrrvglm calibrate.qrrvglm.control dzwald.qrrvglm forG.calib.qrrvglm fnumat2R charfun.clo.cdf charfun.cqo.cdf cdffun.integrand phifun.integrand

Documented in calibrate.qrrvglm calibrate.qrrvglm.control calibrate.rrvglm calibrate.rrvglm.control fnumat2R

# These functions are
# Copyright (C) 1998-2024 T.W. Yee, University of Auckland.
# All rights reserved.


























phifun.integrand <- function(charfun, muvec, parlink, earg,
                             cc, xi, ee, ss, sigma2.fuzz = 1e-8) {
  cnew <- cc / ss

  eta.use <- theta2eta(muvec, link = parlink, earg = earg)  # Dangerous
  chfw <- charfun(x = xi * cnew, eta = eta.use, extra = list())
  chfw <- prod(chfw)
  phi <- chfw * exp(-1i * ee * cnew) * exp(-sigma2.fuzz * (cnew^2) / 2)
  phi
}  # phifun.integrand 



cdffun.integrand <-
  function(Object, A.qnorm = 4, wtil, lam, xi, ee, ss,
           sigma2.fuzz = 1e-8,
           nodes = sqrt(2) * ghn100,
           qwts  = sqrt(2) * ghw100 / (2 * pi)) {
  if (!(is(Object, "qrrvglm") || is(Object,  "rrvglm")))
    stop("argument 'Object' must be a 'qrrvglm' or 'rrvglm' Object")
  famfun <- Object@family
  infos <- famfun@infos()
  charfun <- if (is.logical(infos$charfun) && infos$charfun)
    famfun@charfun else stop("the family function has no charfun slot")
  parlink <- linkfun(Object)[1]  # All the same, choose the first
  Earg <- Object@misc$earg[[1]]  # Dangerous

  N <- length(nodes)
  intgrnd <- numeric(N)
  for (k in 1:N) {
    curnode <- nodes[k]
    exptrm <- (exp( 1i * curnode * A.qnorm) -
               exp(-1i * curnode * wtil)) / (1i * curnode) 
    intgrnd[k] <- phifun.integrand(charfun = charfun,
        muvec = lam, parlink = parlink, earg = Earg,  # Dangerous
        cc = curnode, xi = xi,
        ee = ee, ss = ss, sigma2.fuzz = sigma2.fuzz) *
                  exptrm * exp(0.5 * curnode^2)
  }
  sum(qwts * intgrnd)
}  # cdffun.integrand 




charfun.cqo.cdf <-
  function(
                bnu,
                y0,
                extra ,
                objfun,
                Object,
                Coefs,
                B1bix,
                misc.list = list(),
                Everything,
                mu.function,


           A.qnorm = 4,
           sigma2.fuzz = 1e-8, lower.latvar = NULL, upper.latvar = NULL,
           nodes = sqrt(2) * ghn100,
           qwts  = sqrt(2) * ghw100 / (2 * pi)) {
  wt.mean <- function(x, y, alpha = 0.5) (1 - alpha) * x + alpha * y
  site.scores <- latvar(Object)
  range.ss <- range(site.scores)
  if (is.null(lower.latvar))
    lower.latvar <- wt.mean(range.ss[1], range.ss[2],  0.0)
  if (is.null(upper.latvar))
    upper.latvar <- wt.mean(range.ss[1], range.ss[2],  1.0)

  famfun <- Object@family
  infos <- famfun@infos()
  charfun <- if (is.logical(infos$charfun) && infos$charfun)
    famfun@charfun else stop("the family function has no charfun slot")
  Earg <- Object@misc$earg[[1]]  # Dangerous
  
  uopt <- Opt(Object)
  tol <- Tol(Object)[1, 1, ]  # Interpreted as a variance, not SDs
  parlink <- linkfun(Object)[1]  # All the same, choose the first
  alf <- theta2eta(Max(Object), parlink, earg = list())




    nu0 <- bnu
    qtrm <- (nu0 - uopt) / sqrt(tol)  # sqrt(tol), not tol
    eta <- alf - 0.5 * qtrm^2

    muvec <- eta2theta(eta, parlink, earg = Earg)  # Dangerous
    lam <- muvec

    xi <- -qtrm / sqrt(tol)  # sqrt(tol), not tol

    nxi <- sqrt(sum(xi^2))
    xi <- xi / nxi

    ee <- sum(lam * xi)
    varfun <- charfun(eta = eta,  # log(muvec),
                      extra = list(),  # Object@extra,  # For now
                      varfun = TRUE)
    ss <- sqrt(sum(varfun * xi^2))  # For both poissonff and binomialff
    w.obs <- sum(y0 * xi)
    wtil <- (w.obs - ee) / ss
    if (is.na(wtil)) {
      prb <- 1  # zz
      prb <- 0  # zz
    } else {
      nrm.prb <- pnorm(wtil)
      prb <- if (wtil < -A.qnorm) 0 else
             if ( A.qnorm < wtil) 1 else {
        prbc <- cdffun.integrand(Object, A.qnorm = A.qnorm,
                                 wtil = wtil, lam = lam, xi = xi,
                                 ee = ee, ss = ss,
                                 sigma2.fuzz = sigma2.fuzz)
        Re(prbc)
      }
    }
    prb
}  # charfun.cqo.cdf








charfun.clo.cdf <-
  function(
           bnu,
           y0,
           extra ,
           objfun,
           Object,
           Coefs,
           B1bix,
           misc.list = list(),
           Everything,
           mu.function,


           A.qnorm = 4,
           sigma2.fuzz = 1e-8, lower.latvar = NULL, upper.latvar = NULL,
           nodes = sqrt(2) * ghn100,
           qwts  = sqrt(2) * ghw100 / (2 * pi)) {
  if (length(bnu) > 1)
    stop("can only handle rank-1 objects")
  vfam <- intersect(Object@family@vfamily, c("binomialff", "poissonff"))
  if (!length(vfam))
    stop("only 'poissonff' and 'binomialff' families allowed")
  all.links <- linkfun(Object)
  parlink <- all.links[1]  # All the same, choose the first
  canon.link <- switch(vfam,
                       binomialff = all(all.links == "logitlink"),
                       poissonff  = all(all.links == "loglink"))
  if (!canon.link) stop("model does not use the canonical link")  # else
  A.mat <- Coefs@A
  B1.mat <- Coefs@B1
  Index.corner <- Object@control$Index.corner  # Corner constraints


  wt.mean <- function(x, y, alpha = 0.5) (1 - alpha) * x + alpha * y
  site.scores <- latvar(Object)
  range.ss <- range(site.scores)
  if (is.null(lower.latvar))
    lower.latvar <- wt.mean(range.ss[1], range.ss[2],  0.0)
  if (is.null(upper.latvar))
    upper.latvar <- wt.mean(range.ss[1], range.ss[2],  1.0)

  famfun <- Object@family
  infos <- famfun@infos()
  charfun <- if (is.logical(infos$charfun) && infos$charfun)
    famfun@charfun else stop("the family function has no charfun slot")
  Earg <- Object@misc$earg[[1]]  # Dangerous


  
if (FALSE) {
  uopt <- Opt(Object)
  tol <- Tol(Object)[1, 1, ]  # Interpreted as a variance, not SDs
  parlink <- linkfun(Object)[1]  # All the same, choose the first
  alf <- theta2eta(Max(Object), parlink, earg = list())
}


  







    nu0 <- bnu


    eta <- Coefs@B1["(Intercept)", ] + A.mat %*% nu0
    eta <- rbind(c(eta))  # Make sure it is 1 x M


    muvec <- eta2theta(eta, parlink, earg = Earg)  # Dangerous
    lam <- muvec

    xi <- A.mat[, 1]



    nxi <- sqrt(sum(xi^2))
    xi <- xi / nxi



    ee <- sum(lam * xi)
    varfun <- charfun(eta = eta,  # log(muvec),
                      extra = list(),  # Object@extra,  # For now
                      varfun = TRUE)
    ss <- sqrt(sum(varfun * xi^2))  # For both poissonff and binomialff
    w.obs <- sum(y0 * xi)
    wtil <- (w.obs - ee) / ss
    if (is.na(wtil)) {
      prb <- 1  # zz
      prb <- 0  # zz
    } else {
      nrm.prb <- pnorm(wtil)
      prb <- if (wtil < -A.qnorm) 0 else
             if ( A.qnorm < wtil) 1 else {
        prbc <- cdffun.integrand(Object, A.qnorm = A.qnorm,
                                 wtil = wtil, lam = lam, xi = xi,
                                 ee = ee, ss = ss,
                                 sigma2.fuzz = sigma2.fuzz)
        Re(prbc)
      }
    }
    prb
}  # charfun.clo.cdf
















fnumat2R <- 
  function(object,
           refit.model = FALSE) {



  numat <- latvar(object)  # After scaling
  Rank <- Rank(object)
  control <- object@control

  M <- npred(object)
  M1 <- npred(object, type = "one.response")
  if (M1 > 1)
    stop("this function only works with M1==1 models")
  nsmall <- nobs(object)

  X.lm <- model.matrix(object, type = "lm")  # Has latvar vars too.
  etol <- control$eq.tolerances
  Itol <- control$I.tolerances
  colx1.index <- control$colx1.index
  colx2.index <- control$colx2.index
  NOS <- M / M1

  if (!etol) {
    index.rc <- iam(NA, NA, M = Rank, both = TRUE)
    numat2 <- numat[, index.rc$row.index, drop = FALSE] *
              numat[, index.rc$col.index, drop = FALSE]
    if (Rank > 1)
      numat2[, -(1:Rank)] <- numat2[, -(1:Rank)] * 2
  }  # !etol
  if (etol && !Itol) {
    numat2 <- numat[, 1:Rank, drop = FALSE] *
              numat[, 1:Rank, drop = FALSE]  # Same as Itol
  }
  if (Itol) {
    numat2 <- numat[, 1:Rank, drop = FALSE] *
              numat[, 1:Rank, drop = FALSE]
  }  # Itol



  if (Rank >= 2 && (!etol || (etol && !Itol)))
    stop("cannot currently handle the given scalings")




  ansA <- kronecker(numat, diag(M))
  colnames(ansA) <- param.names("A", NCOL(ansA), skip1 = FALSE)


  ansD <- kronecker(numat2, if (Itol || etol) matrix(1, M, 1) else
                            diag(M)) * (-0.5)
  colnames(ansD) <- param.names("D", NCOL(ansD), skip1 = FALSE)
  ansx1 <- if (length(colx1.index))
           kronecker(X.lm[, colx1.index, drop = FALSE], diag(M)) else
           NULL  # Trivial constraints are assumed.
  if (length(ansx1))
    colnames(ansx1) <- param.names("x1.", NCOL(ansx1), skip1 = FALSE)
  X.vlm <- cbind(ansA, ansD, ansx1)
  if (!refit.model)
    return(X.vlm)


  mf <- model.frame(object)
  mt <- attr(mf, "terms")
  clist <- vector("list", ncol(X.vlm))
  names(clist) <- colnames(X.vlm)
  for (ii in seq(length(clist)))
    clist[[ii]] <- diag(M)  # Wrong but doesnt matter; trivial constraints

  somejunk <- clist
  inci <- 0
  for (ii in seq(length(somejunk))) {
    inci <- inci + 1
    somejunk[[ii]] <- inci
  }
  attr(numat, "assign") <- somejunk
  attr(X.vlm, "assign") <- somejunk
  control$Check.cm.rank <- FALSE
  control$stepsize <- 1
  control$half.stepsizing <- FALSE
  control$Check.rank <- FALSE

  eta.mat.orig <- predict(object)
  OOO.orig <- object@offset
  if (!length(OOO.orig) || all(OOO.orig == 0))
    OOO.orig <- matrix(0, nsmall, M)

  fit1 <-
    vglm.fit(x = numat, y = depvar(object),
             w = c(weights(object, type = "prior")),
             X.vlm.arg = X.vlm,
             Xm2 = NULL, Terms = mt,
             constraints = clist, extra = object@extra,
             etastart = eta.mat.orig,
             offset = OOO.orig, family = object@family,
             control = control)
  if (fit1$iter > 3)
    warning("refitted model took an unusually large number of ",
            "iterations to converge")  # Usually 1 iteration is needed
  return(fit1)
}  # fnumat2R






forG.calib.qrrvglm <-
  function(bnu0,  # coeff3 = NULL, 
           numerator = c("xi", "eta"),
           lenb1bix = 1) {



  numerator <- match.arg(numerator, c("xi", "eta"))[1]

  if (FALSE) {
    if (!is.null(coeff3)) {
      if (length(coeff3) != 3 || coeff3[3] > 0)
        stop("bad input for argument 'coeff3'")
      beta1 <- coeff3[2]  # beta0 <- coeff3[1] is unneeded
      beta2 <- coeff3[3]
    }
    if (is.null(uj))     uj <- -0.5 * beta1 / beta2
    if (is.null(tolj))   tolj <- 1 / sqrt(-2 * beta2)
  }  # FALSE





  Rank <- length(bnu0)  # Usually 1, sometimes 2.
  switch(numerator,
    "xi"  = cbind(rep_len(1, Rank), 2 * bnu0, matrix(0, Rank, lenb1bix)),
    "eta" = cbind(bnu0,               bnu0^2, matrix(1, Rank, lenb1bix)))
}  # forG.calib.qrrvglm








dzwald.qrrvglm <-
  function(bnu0, y0, Object, CoefsObject,
           B1bix, mu.function) {




  M <- npred(Object)
  if ((M1 <- npred(Object, type = "one.response")) > 1)
    stop("this function only works with M1==1 models")
  nsmall <- nobs(Object)
  NOS <- M / M1
  etol <- Object@control$eq.tolerances
  Itol <- Object@control$I.tolerances
  Earg <- Object@misc$earg
  all.links <- linkfun(Object)

  if ((Rank <- Rank(Object)) >= 2 && !Itol)
    warning("can only handle rank-1 (or rank-2 Itol) objects")

  linkfun <- Object@family@linkfun
  if (!is.function(linkfun))
    stop("could not obtain @linkfun")


  vfam <- intersect(Object@family@vfamily, c("binomialff", "poissonff"))
  if (!length(vfam))
    stop("only 'poissonff' and 'binomialff' families allowed")

  canon.link <- switch(vfam,
                       binomialff = all(all.links == "logitlink"),
                       poissonff  = all(all.links == "loglink"))
  if (!canon.link) stop("model does not use the canonical link")  # else
 


  Omegamat <- vcov(Object)
  dimn <- colnames(Omegamat)


  DD <- 0  # Later becomes a matrix.
  Gmat <- matrix(0, ncol(Omegamat), Rank)
  for (spp. in 1:NOS) {
    index.A.spp. <- spp. + (seq(Rank) - 1) * M  # Rank-vector
    index.D.spp. <- if (Itol || etol) (Rank * M) + seq(Rank) else
    if (!etol) (Rank * M) +
      spp. + (seq(Rank * (Rank+1) / 2) - 1) * M  # Rank-vector
    dd <- min(which(substr(dimn, 1, 3) == "x1."))
    index.B1.spp. <- dd - 1 + spp. + (seq(1000) - 1) * M
    index.B1.spp. <- index.B1.spp.[index.B1.spp. <= ncol(Omegamat)]
    all.index <- c(index.A.spp., index.D.spp., index.B1.spp.)






  if (!all(should.be.TRUE <- substr(dimn[index.D.spp.], 1, 1) == "D"))
    stop("encountered a bookkeeping error; failed to pick up the ",
         "D array coefficients")





    uj.jay <- CoefsObject@Optimum[, spp.]  # Rank-vector
    tolj.jay <- if (Rank == 1) sqrt(CoefsObject@Tolerance[, , spp.]) else
                diag(sqrt(CoefsObject@Tolerance[, , spp.]))  # Ditto
    alphaj.jay <- linkfun(CoefsObject@Maximum,
                          extra = Object@extra)[spp.]  # Scalar


    eta0.jay <- alphaj.jay - 0.5 * sum(((bnu0 - uj.jay) / tolj.jay)^2)
    eta0.jay <- rbind(eta0.jay)
    fv0.jay <- mu.function(eta0.jay, extra = Object@extra)
    fv0.jay <- c(fv0.jay)  # Remove array attributes
    dTheta.deta0j <- dtheta.deta(fv0.jay,
                                 all.links[spp.],
                                 earg = Earg[[spp.]])  # Scalar
    dTheta.deta0j <- c(dTheta.deta0j)  # Remove array attributes


    xi0.jay <- -(bnu0 - uj.jay) / tolj.jay^2  # Rank-vector
    DD <- DD + dTheta.deta0j *
        (cbind(xi0.jay) %*% rbind(xi0.jay))  # More general
    dxi0.dtheta <- forG.calib.qrrvglm(bnu0, numerator = "xi")  # R x dim11
    deta0.dtheta <- forG.calib.qrrvglm(bnu0, numerator = "eta")  # Rxdim11
    Index.All <- cbind(index.A.spp., index.D.spp.,
                       rep_len(index.B1.spp., Rank))  # Just to make sure
    for (rlocal in seq(Rank)) {
      Gmat[Index.All[rlocal, ], rlocal] <-
      Gmat[Index.All[rlocal, ], rlocal] +
      (y0[1, spp.] - fv0.jay) * dxi0.dtheta[rlocal, ] -
      xi0.jay[rlocal] * dTheta.deta0j * deta0.dtheta[rlocal, ]
    }  # rlocal

  }  #  for spp.




  DDinv <- solve(DD)
  muxf <- diag(Rank) + t(Gmat) %*% Omegamat %*% Gmat %*% DDinv
  Vmat <- DDinv %*% muxf
  Vmat
}  # dzwald.qrrvglm












calibrate.qrrvglm.control <-
  function(object,
           trace = FALSE,  # passed into optim()
           method.optim = "BFGS",  # passed into optim(method = Method)
           gridSize = ifelse(Rank == 1, 21, 9),
           varI.latvar = FALSE, ...) {

  Rank <- object@control$Rank
  eq.tolerances <- object@control$eq.tolerances
  if (!is.Numeric(gridSize, positive = TRUE,
                  integer.valued = TRUE, length.arg = 1))
    stop("bad input for argument 'gridSize'")
  if (gridSize < 2)
    stop("'gridSize' must be >= 2")

  list(
       trace = as.numeric(trace)[1],
       method.optim = method.optim,
       gridSize = gridSize,
       varI.latvar = as.logical(varI.latvar)[1])
}  # calibrate.qrrvglm.control





 if (!isGeneric("calibrate"))
     setGeneric("calibrate",
                function(object, ...) standardGeneric("calibrate"))





calibrate.qrrvglm <-
  function(object,
           newdata = NULL,
           type = c("latvar", "predictors", "response", "vcov",
                    "everything"),
           lr.confint = FALSE,  # 20180430
           cf.confint = FALSE,  # 20180602
           level = 0.95,        # 20180430
           initial.vals = NULL,
           ...) {




      

  se.type <- c("dzwald", "asbefore")  # Effectively only the 1st one used
  Quadratic <- if (is.logical(object@control$Quadratic))
               object@control$Quadratic else FALSE  # T if CQO, F if CAO


  newdata.orig <- newdata
  if (!length(newdata)) {
    newdata <- data.frame(depvar(object))
  }


  if (mode(type) != "character" && mode(type) != "name")
    type <- as.character(substitute(type))
  type <- match.arg(type, c("latvar", "predictors",
                            "response", "vcov", "everything"))[1]




  get.SEs <- Quadratic && type %in% c("vcov", "everything")



  if (mode(se.type) != "character" && mode(se.type) != "name")
    se.type <- as.character(substitute(se.type))
  se.type <- match.arg(se.type, c("dzwald", "asbefore"))[1]
  if (se.type == "asbefore") warning("'asbefore' is buggy")

  if (!Quadratic && type == "vcov")
    stop("cannot have 'type=\"vcov\"' when object is ",
         "a \"rrvgam\" object")



  if (!all(weights(object, type = "prior") == 1))
    warning("not all the prior weights of 'object' are 1; assuming ",
            "they all are here")


  


  if (!is.data.frame(newdata))
    newdata <- data.frame(newdata)
  if (!all(object@misc$ynames %in% colnames(newdata)))
    stop("need the following colnames in 'newdata': ",
         paste(object@misc$ynames, collapse = ", "))
  newdata <- newdata[, object@misc$ynames, drop = FALSE]



  if (!is.matrix(newdata))
    newdata <- as.matrix(newdata)


  nn <- nrow(newdata)  # Number of sites to calibrate




  obfunct <- slot(object@family, object@misc$criterion)  # deviance
  minimize.obfunct <-
    if (Quadratic) object@control$min.criterion else
    TRUE  # Logical; TRUE for CAO objects because deviance is minimized
  if (!is.logical(minimize.obfunct))
    stop("object@control$min.criterion is not a logical")
  optim.control <- calibrate.qrrvglm.control(object = object, ...)

  use.optim.control <- optim.control
  use.optim.control$method.optim <-
  use.optim.control$gridSize     <-
  use.optim.control$varI.latvar  <- NULL


  if ((Rank <- object@control$Rank) > 2)
    stop("currently can only handle Rank = 1 and Rank = 2")
  Coefobject <- if (Quadratic) {
    Coef(object, varI.latvar = optim.control$varI.latvar)
  } else {
    Coef(object)
  }



  if (!length(initial.vals)) {
    Lvec <- apply(latvar(object), 2, min)
    Uvec <- apply(latvar(object), 2, max)
    initial.vals <- if (Rank == 1)
      cbind(seq(Lvec, Uvec, length = optim.control$gridSize)) else
      expand.grid(seq(Lvec[1], Uvec[1], length = optim.control$gridSize),
                  seq(Lvec[2], Uvec[2], length = optim.control$gridSize))
  }






  M <- npred(object)
  v.simple <- if (Quadratic) {
    length(object@control$colx1.index) == 1 &&
     names(object@control$colx1.index) == "(Intercept)" &&
    (if (any(names(constraints(object)) == "(Intercept)"))
    trivial.constraints(constraints(object))["(Intercept)"] == 1 else
    TRUE)
  } else {
    FALSE  # To simplify things for "rrvgam" objects
  }
  B1bix <- if (v.simple) {
    matrix(Coefobject@B1, nn, M, byrow = TRUE)
  } else {
    Xlm <- predict.vlm(as(object, "vglm"),  # object,
                       newdata = newdata.orig,
                       type = "Xlm")
    if (se.type == "dzwald" && (type == "everything" || type == "vcov"))
      stop("only noRRR = ~ 1 models are handled for ",
           "type = 'everything' or type = 'vcov'")

    Xlm[, names(object@control$colx1.index), drop = FALSE] %*%
    (if (Quadratic) Coefobject@B1 else object@coefficients[1:M])
  }  # !v.simple







  objfun1 <- function(lv1val,
                      x = NULL, y, w = 1, extraargs) {
      ans <- sum(c(w) * extraargs$Obfunction(
              bnu = c(lv1val),
              y0 = y,
              extra = extraargs$object.extra,
              objfun = extraargs$obfunct,
              Object = extraargs$Object,  # Needed for "rrvgam" objects
              Coefs = extraargs$Coefobject,
              B1bix = extraargs$B1bix,
              misc.list = extraargs$object.misc,
              Everything = FALSE,
              mu.function = extraargs$mu.function))
    ans
  }  # objfun1

  objfun2 <- function(lv1val, lv2val,
                      x = NULL, y, w = 1, extraargs) {
      ans <- sum(c(w) * extraargs$Obfunction(
              bnu = c(lv1val, lv2val),
              y0 = y,
              extra = extraargs$object.extra,
              objfun = extraargs$obfunct,
              Object = extraargs$Object,  # Needed for "rrvgam" objects
              Coefs = extraargs$Coefobject,
              B1bix = extraargs$B1bix,
              misc.list = extraargs$object.misc,
              Everything = FALSE,
              mu.function = extraargs$mu.function))
    ans
  }  # objfun2


  choose.fun <- if (Quadratic) .my.calib.objfunction.qrrvglm else
                               .my.calib.objfunction.rrvgam
  mu.function <- slot(object@family, "linkinv")
  wvec <- 1  # zz; Assumed here
  mylist <-
    list(object.extra = object@extra,
         Obfunction   = choose.fun,  # e.g. .my.calib.objfunction.qrrvglm
         Coefobject   = Coefobject,
         B1bix        = NA,  # Will be replaced below
         obfunct      = obfunct,  # deviance
         object.misc  = object@misc,
         Object       = if (Quadratic) 777 else object,
         mu.function  = mu.function)



  init.vals <- matrix(NA_real_, nn, Rank)
  for (i1 in 1:nn) {
    if (optim.control$trace)
      cat("Grid searching initial values for observation",
          i1, "-----------------\n")


    y0 <- newdata[i1, , drop = FALSE]  # drop added 20150624
    mylist$B1bix <- B1bix[i1, ]
    try.this <- if (Rank == 1)
      grid.search(initial.vals[, 1],
                  objfun = objfun1, y = y0 , w = wvec,
                  ret.objfun = TRUE,
                  maximize = !minimize.obfunct,  # Most general.
                  extraargs = mylist) else
      grid.search2(initial.vals[, 1], initial.vals[, 2],
                   objfun = objfun2, y = y0, w = wvec,
                   ret.objfun = TRUE,
                   maximize = !minimize.obfunct,  # Most general.
                   extraargs = mylist)
    lv1.init <- try.this[if (Rank == 1) "Value" else "Value1"]
    lv2.init <- if (Rank >= 2) try.this["Value2"] else NULL

    init.vals[i1, ] <- c(lv1.init, lv2.init)
  }  # for i1





 
  BestOFpar <- matrix(NA_real_, nn, Rank)
  BestOFvalues <- rep(NA_real_, nn)  # Best OF objective function values

  for (i1 in 1:nn) {
    if (optim.control$trace) {
      cat("\nOptimizing for observation", i1, "-----------------\n")
      flush.console()
    }

    ans <-
      optim(par = init.vals[i1, ],
            fn  = choose.fun,
            method = optim.control$method.optim,  # "BFGS" or "CG" or...
            control = c(fnscale = ifelse(minimize.obfunct, 1, -1),
                        use.optim.control),  # as.vector() needed
              y0 = newdata[i1, , drop = FALSE],  # drop added 20150624
              extra = object@extra,
              objfun = obfunct,  # deviance
              Object = if (Quadratic) 777 else object,
              Coefs = Coefobject,
              B1bix = B1bix[i1, , drop = FALSE],
              misc.list = object@misc,
              Everything = FALSE,  # Differs from Step 6. below
              mu.function = mu.function)

    if (optim.control$trace) {
      if (ans$convergence == 0)
        cat("Successful convergence\n") else
        cat("Unsuccessful convergence\n")
      flush.console()
    }
    if (ans$convergence == 0) {
      BestOFpar[i1, ] <- ans$par
      BestOFvalues[i1] <- ans$value
    }  # else do nothing since NA_real_ signifies convergence failure
  }  # for i1







  prettyCQO <- function(BestOFpar, newdata, Rank) {
    if (Rank == 1) {
      BestOFpar <- c(BestOFpar)  # Drop the dimension
      if (!is.null(dimnames(newdata)[[1]])) {
        names(BestOFpar) <- dimnames(newdata)[[1]]
      }
    } else {
      dimnames(BestOFpar) <- list(dimnames(newdata)[[1]],
                             param.names("latvar", Rank, skip1 = TRUE))
    }
    BestOFpar
  }  # prettyCQO

  BestOFpar <- prettyCQO(BestOFpar, newdata, Rank)
  attr(BestOFpar,"objectiveFunction") <-
    prettyCQO(BestOFvalues, newdata, Rank = 1)
  if (type == "latvar" && (!cf.confint && !lr.confint)) {
    return(BestOFpar)
  }



  
   


  if (lr.confint && Rank > 1) {
    warning("argument 'lr.confint' should only be TRUE if Rank == 1. ",
            "Setting 'lr.confint = FALSE'.")
    lr.confint <- FALSE
  }


  if (lr.confint && !(type %in% c("latvar", "everything"))) {
    warning("argument 'lr.confint' should only be TRUE if ",
            "'type = \"latvar\"' or 'type = \"everything\"'. ",
            "Setting 'lr.confint = FALSE'.")
    lr.confint <- FALSE
  }
  if (lr.confint && Rank == 1) {

    format.perc <- function(probs, digits)
      paste(format(100 * probs, trim = TRUE, scientific = FALSE,
            digits = digits), "%")
    aa <- (1 - level) / 2
    aa <- c(aa, 1 - aa)

    pct <- format.perc(aa, 3)
    cimat <- array(NA, dim = c(nn, 2L),
                   dimnames = list(dimnames(newdata)[[1]], pct))

    for (i1 in 1:nn) {
      if (optim.control$trace) {
        cat("\nSolving for the roots for obsn", i1, "---------------\n")
        flush.console()
      }


      foo1.lhs.rhs <-
      function(bnu,
               y0, extra = NULL,
               objfun, Coefs,
               Object,  # Not needed
               B1bix,
               misc.list,
               Everything = FALSE,
               mu.function,
               BestOFvalues = NA,
               level = 0.95,
               criterion.arg = "loglikelihood") {
        if (!(criterion.arg %in% c("deviance", "loglikelihood")))
          stop("'criterion.arg' must be 'deviance' or 'loglikelihood'")
        ifelse(criterion.arg == "deviance", 1, -2) *
        (-BestOFvalues +
             .my.calib.objfunction.qrrvglm(bnu = bnu,
                y0 = y0,
                extra = extra,
                objfun = objfun,
                Object = Object,
                Coefs = Coefs,
                B1bix = B1bix,
                misc.list = misc.list,
                Everything = Everything,
                mu.function = mu.function)) -
        qchisq(level, df = 1)
      }


      for (Side in 1:2) {
        ans.lhs.rhs <-
        uniroot(f = foo1.lhs.rhs,
                interval = if (Side == 1) c(Lvec, BestOFpar[i1]) else
                                          c(BestOFpar[i1], Uvec),
                extendInt = ifelse(Side == 1, "downX", "upX"),
                y0 = newdata[i1, , drop = FALSE],  # drop added 20150624
                extra = object@extra,
                objfun = obfunct,
                Coefs = Coefobject,
                Object = 777,  # object,
                B1bix = B1bix[i1, , drop = FALSE],
                misc.list = object@misc,
                Everything = FALSE,
                mu.function = mu.function,
                BestOFvalues = BestOFvalues[i1], level = level,
                criterion.arg = object@misc$criterion)
        cimat[i1, Side] <- ans.lhs.rhs$root
      }  # Side
    }  # for i1

    if (type == "latvar")
      return(cbind(estimate = BestOFpar,
                   objfun   = BestOFvalues,
                   cimat))
  }  # if (lr.confint && Rank == 1)




  
   



  if (cf.confint && Rank > 1) {
    warning("argument 'cf.confint' should only be TRUE if Rank == 1. ",
            "Setting 'cf.confint = FALSE'.")
    cf.confint <- FALSE
  }


  if (cf.confint && !(type %in% c("latvar", "everything"))) {
    warning("argument 'cf.confint' should only be TRUE if ",
            "'type = \"latvar\"' or 'type = \"everything\"'. ",
            "Setting 'cf.confint = FALSE'.")
    cf.confint <- FALSE
  }
  if (cf.confint && Rank == 1) {

    format.perc <- function(probs, digits)
      paste(format(100 * probs, trim = TRUE, scientific = FALSE,
            digits = digits), "%")
    aa <- (1 - level) / 2
    aa <- c(aa, 1 - aa)
    pct <- format.perc(aa, 3)
    cimat2 <- array(NA, dim = c(nn, 2L),
                    dimnames = list(dimnames(newdata)[[1]], pct))



    for (i1 in 1:nn) {
      if (optim.control$trace) {
        cat("\nSolving for the roots for obsn", i1, "---------------\n")
        flush.console()
      }


      foo2.lhs.rhs <-
      function(bnu,
               y0, extra = NULL,
               objfun, Coefs,
               Object,  # Not needed
               B1bix,
               misc.list,
               Everything = FALSE,
               mu.function,
               BestOFvalues = NA,
               pr.level = c(0.05, 0.95)[1]
               ) {
    charfun.cqo.cdf(bnu = bnu,
                y0 = y0,
                extra = extra,
                objfun = objfun,
                Coefs = Coefs,
                Object = Object,
                B1bix = B1bix,
                misc.list = misc.list,
                Everything = Everything,
                mu.function = mu.function
                ) -
        pr.level
      }





      

      for (Side in 1:2) {
        ans.lhs.rhs <-
        uniroot(f = foo2.lhs.rhs,
                interval = if (Side == 1) c(Lvec, BestOFpar[i1]) else
                                          c(BestOFpar[i1], Uvec),
                extendInt = "yes",  # Might be worse than above.
                y0 = newdata[i1, , drop = FALSE],  # drop added 20150624
                extra = object@extra,
                objfun = obfunct,
                Coefs = Coefobject,
                Object = object,
                B1bix = B1bix[i1, , drop = FALSE],
                misc.list = object@misc,
                Everything = FALSE,
                mu.function = mu.function,
                BestOFvalues = BestOFvalues[i1],
                pr.level = ifelse(Side == 1, aa[1], aa[2])
               )
        cimat2[i1, Side] <- ans.lhs.rhs$root
      }  # Side
    }  # for i1

    vecTF <- cimat2[, 2] < cimat2[, 1]
    if (any(vecTF)) {
      temp <- cimat2[vecTF, 1]
      cimat2[vecTF, 1] <- cimat2[vecTF, 2]
      cimat2[vecTF, 2] <- temp
    }
    if (type == "latvar")
      return(cbind(estimate = BestOFpar,
                   objfun   = BestOFvalues,
                   cimat2))

  }  # if (cf.confint && Rank == 1)




      



  etaValues <- matrix(NA_real_, nn, M)
  muValues <- matrix(NA_real_, nn, ncol(fitted(object)))
  vcValues <- if (get.SEs) array(0, c(Rank, Rank, nn)) else NULL


  if (optim.control$trace)
    cat("\n")

  for (i1 in 1:nn) {
    if (optim.control$trace) {
      cat("Evaluating quantities for observation", i1,
          "-----------------\n")
      flush.console()
    }
    ans5 <- choose.fun(
              bnu = if (Rank == 1) BestOFpar[i1] else BestOFpar[i1, ],
              y0 = newdata[i1, , drop = FALSE],  # drop added 20150624
              extra = object@extra,
              objfun = obfunct,  # deviance
              Object = if (Quadratic) 777 else object,
              Coefs = Coefobject,
              B1bix = B1bix[i1, , drop = FALSE],
              misc.list = object@misc,
              Everything = TRUE,  # Differs from Step 3.
              mu.function = mu.function)

     muValues[i1, ] <- ans5$mu
    etaValues[i1, ] <- ans5$eta


    if (get.SEs) {
      vcValues[, , i1] <- if (se.type == "dzwald")
        dzwald.qrrvglm(
              bnu0 = if (Rank == 1) BestOFpar[i1] else BestOFpar[i1, ],
              y0 = newdata[i1, , drop = FALSE],  # drop added 20150624
              Object = object,
              CoefsObject = Coefobject,
              B1bix = B1bix[i1, , drop = FALSE],
              mu.function = mu.function) else
        ans5$vcmat  # Might be NULL, e.g., "rrvgam"
    }  # if (get.SEs)
  }  # for i1







  dimnames(muValues) <- dimnames(newdata)
  dimnames(etaValues) <- list(dimnames(newdata)[[1]],
                              dimnames(object@predictors)[[2]])
  if (get.SEs)
    dimnames(vcValues) <- list(as.character(1:Rank),
                               as.character(1:Rank),
                               dimnames(newdata)[[1]])

  switch(type,
         latvar     = BestOFpar,  # Done already, so not really needed
         predictors = etaValues,
         response   = muValues,
         vcov       = vcValues,
         everything = list(
             latvar     = BestOFpar,
             predictors = etaValues,
             response   = muValues,
             vcov       = vcValues,
             lr.confint = if (lr.confint)
                            cbind(estimate = BestOFpar,
                                  objfun   = BestOFvalues,
                                  cimat) else NULL,
             cf.confint = if (cf.confint)
                            cbind(estimate = BestOFpar,
                                  objfun   = BestOFvalues,
                                  cimat2) else NULL)
        )
}  # calibrate.qrrvglm











.my.calib.objfunction.qrrvglm <-
  function(bnu, y0, extra = NULL,
           objfun, Coefs, Object,
           B1bix,
           misc.list,
           Everything = TRUE,
           mu.function) {

 
  bnumat <- cbind(bnu)
  Rank <- length(bnu)
  eta <- cbind(c(B1bix)) + Coefs@A %*% bnumat
  M <- misc.list$M
  check.eta <- matrix(0, M, 1)
    for (ss in 1:M) {
      temp <- Coefs@D[, , ss, drop = FALSE]
      dim(temp) <- dim(temp)[1:2]  # c(Rank, Rank)
      eta[ss, 1] <- eta[ss, 1] + t(bnumat) %*% temp %*% bnumat

    if (FALSE) {
      warning("this line is wrong:")
      alf <- loglink(Coefs@Maximum[ss])  # zz get the link function
      tolmat <- Coefs@Tolerance[, , ss, drop = FALSE]
      check.eta[ss, 1] <- alf - 0.5 * t(bnumat) %*%
                          solve(tolmat) %*% bnumat  
    }  # FALSE
    }  # for ss
  eta <- matrix(eta, 1, M, byrow = TRUE)
  mu <- matrix(mu.function(eta, extra = extra), nrow = 1)
  obvalue <- objfun(mu = mu, y = y0,
                    w = 1,  # ignore prior.weights on the object
                    residuals = FALSE, eta = eta, extra = extra)
  if (Everything) {
    vcmat <- diag(Rank)
    if (FALSE && M == NCOL(mu)) {
      for (ss in 1:M) {
        vec1 <- cbind(Coefs@A[ss, ]) +
                      2 * matrix(Coefs@D[, , ss], Rank, Rank) %*% bnumat
        vcmat <- vcmat + mu[1, ss] * vec1 %*% t(vec1)
      }  # ss
    }  # if (M == NCOL(mu))
    vcmat <- solve(vcmat)
  } else {
    vcmat <- NULL
  }
  if (Everything)
    list(eta     = eta,
         mu      = mu,
         obvalue = obvalue,
         vcmat   = vcmat) else
    obvalue
}  # .my.calib.objfunction.qrrvglm






.my.calib.objfunction.rrvgam <-
  function(bnu, y0, extra = NULL,
           objfun,
           Object,  # Needed for "rrvgam" objects
           Coefs,
           B1bix,  # Actually not needed here
           misc.list,
           Everything = TRUE,
           mu.function) {
    Rank <- length(bnu)
    NOS <- Coefs@NOS
    eta <- matrix(NA_real_, 1, NOS)
    for (jlocal in 1:NOS) {
      eta[1, jlocal] <- predictrrvgam(Object, grid = bnu,
                          sppno = jlocal, Rank = Rank, deriv = 0)$yvals
    }
    mu <- rbind(mu.function(eta, extra))  # Make sure it has one row
    obvalue <- objfun(mu = mu, y = y0,
                      w = 1,  # ignore prior.weights on the object
                      residuals = FALSE, eta = eta, extra = extra)
    vcmat <- NULL  # No theory as of yet to compute the vcmat
  if (Everything)
    list(eta = eta,
         mu = mu,
         obvalue = obvalue,
         vcmat = vcmat) else
    obvalue
}  # .my.calib.objfunction.rrvgam













forG.calib.rrvglm <-
  function(bnu0,
           numerator = c("xi", "eta"),
           lenb1bix = 1) {

  numerator <- match.arg(numerator, c("xi", "eta"))[1]

  Rank <- length(bnu0)  # Usually 1, sometimes 2.
  switch(numerator,
    "xi"  = cbind(rep_len(1, Rank), matrix(0, Rank, lenb1bix)),
    "eta" = cbind(bnu0,             matrix(1, Rank, lenb1bix)))
}  # forG.calib.rrvglm






dzwald.rrvglm <-
  function(bnu0, y0,  # extra = NULL, objfun,
           Object,  CoefsObject,
           B1bix,
           mu.function
           ) {

  
  M <- npred(Object)
  if ((M1 <- npred(Object, type = "one.response")) > 1)
    stop("this function only works with M1==1 models")
  NOS <- M / M1
  Earg <- Object@misc$earg
  all.links <- linkfun(Object)




  Rank <- Rank(Object)

  linkfun <- Object@family@linkfun
  if (!is.function(linkfun))
    stop("could not obtain @linkfun")


  vfam <- intersect(Object@family@vfamily, c("binomialff", "poissonff"))
  if (!length(vfam))
    stop("only 'poissonff' and 'binomialff' families allowed")

  canon.link <- switch(vfam,
                       binomialff = all(all.links == "logitlink"),
                       poissonff  = all(all.links == "loglink"))
  if (!canon.link) stop("model does not use the canonical link")  # else
 


  Omegamat <- vcov(Object)  # Numerical problems might occur to get this.
  dimn <- colnames(Omegamat)
  A.mat <- CoefsObject@A
  B1.mat <- CoefsObject@B1
  Index.corner <- Object@control$Index.corner  # Corner constraints

  DD <- 0  # Later becomes a matrix.
  Gmat <- matrix(0, ncol(Omegamat), Rank)
  icounter <- 0  # Number of rows of \bigtilde{\bA}.
  for (spp. in 1:NOS) {
    index.A.spp. <- if (any(spp. == Index.corner)) NULL else {
      icounter <- icounter + 1
      icounter + (M - Rank) * (seq(Rank) - 1)
    }
    index.D.spp. <- NULL
    dd <- max(which(substr(dimn, 1, 8) == "I(latvar"))
    index.B1.spp. <- dd + spp. + (seq(nrow(B1.mat)) - 1) * M


    all.index <- c(index.A.spp., index.D.spp., index.B1.spp.)







    alphaj.jay <- CoefsObject@B1["(Intercept)", spp.]  # Scalar


    eta0.jay <- alphaj.jay + A.mat[spp., , drop = FALSE] %*% bnu0
    eta0.jay <- rbind(eta0.jay)
    fv0.jay <- mu.function(eta0.jay, extra = Object@extra)
    fv0.jay <- c(fv0.jay)  # Remove array attributes
    dTheta.deta0j <- dtheta.deta(fv0.jay,
                                 all.links[spp.],
                                 earg = Earg[[spp.]])  # Scalar
    dTheta.deta0j <- c(dTheta.deta0j)  # Remove array attributes


    xi0.jay <- A.mat[spp., ]  # Rank-vector
    DD <- DD + dTheta.deta0j *
        (cbind(xi0.jay) %*% rbind(xi0.jay))  # More general
    dxi0.dtheta <- forG.calib.rrvglm(bnu0, numerator = "xi")  # R x dim11
    deta0.dtheta <- forG.calib.rrvglm(bnu0, numerator = "eta")  # Rxdim11
    Index.All <- cbind(index.A.spp., index.D.spp.,
                       rep_len(index.B1.spp., Rank))  # Just to make sure

    if (!is.null(index.A.spp.))
    for (rlocal in seq(Rank)) {
      Gmat[Index.All[rlocal, ], rlocal] <-
      Gmat[Index.All[rlocal, ], rlocal] +
      (y0[1, spp.] - fv0.jay) * dxi0.dtheta[rlocal, ] -
      xi0.jay[rlocal] * dTheta.deta0j * deta0.dtheta[rlocal, ]
    }  # rlocal

  }  #  for spp.




  DDinv <- solve(DD)
  muxf <- diag(Rank) + t(Gmat) %*% Omegamat %*% Gmat %*% DDinv
  Vmat <- DDinv %*% muxf
  Vmat
}  # dzwald.rrvglm









calibrate.rrvglm <-
  function(object,
           newdata = NULL,
           type = c("latvar", "predictors", "response", "vcov",
                    "everything"),
           lr.confint = FALSE,  # 20180427
           cf.confint = FALSE,  # 20180604
           level = 0.95,        # 20180428
           initial.vals = NULL,  # For one observation only
           ...) {
  se.type <- c("dzwald", "asbefore")  # Effectively only the 1st one used


  Quadratic <- FALSE  # Because this function was adapted from CQO code.
  newdata.orig <- newdata
  if (!length(newdata)) {
    newdata <- data.frame(depvar(object))
  }

  if (mode(type) != "character" && mode(type) != "name")
    type <- as.character(substitute(type))
  type <- match.arg(type, c("latvar", "predictors",
                            "response", "vcov", "everything"))[1]
  get.SEs <- type %in% c("vcov", "everything")
  if (mode(se.type) != "character" && mode(se.type) != "name")
    se.type <- as.character(substitute(se.type))
  se.type <- match.arg(se.type, c("dzwald", "asbefore"))[1]

  if (!all(weights(object, type = "prior") == 1))
    warning("not all the prior weights of 'object' are 1; assuming ",
            "they all are here")


 

  if (!is.data.frame(newdata))
    newdata <- data.frame(newdata)
  if (!all(object@misc$ynames %in% colnames(newdata)))
    stop("need the following colnames in 'newdata': ",
         paste(object@misc$ynames, collapse = ", "))
  newdata <- newdata[, object@misc$ynames, drop = FALSE]


  if (!is.matrix(newdata))
    newdata <- as.matrix(newdata)


  nn <- nrow(newdata)  # Number of sites to calibrate
      

  obfunct <- slot(object@family, object@misc$criterion)
  minimize.obfunct <- object@control$min.criterion  # deviance
  if (!is.logical(minimize.obfunct))
    stop("object@control$min.criterion is not a logical")
  minimize.obfunct <- as.vector(minimize.obfunct)
  optim.control <- calibrate.rrvglm.control(object = object, ...)

  use.optim.control <- optim.control
  use.optim.control$method.optim <-
  use.optim.control$gridSize     <-
  use.optim.control$varI.latvar  <- NULL


  if ((Rank <- object@control$Rank) > 3)
    stop("currently can only handle Rank = 1, 2 and 3")
  Coefobject <- if (Quadratic) {
    Coef(object, varI.latvar = optim.control$varI.latvar)
  } else {
    Coef(object)
  }



      
 
  if (!length(initial.vals)) {
    Lvec <- apply(latvar(object), 2, min)
    Uvec <- apply(latvar(object), 2, max)
    initial.vals <- if (Rank == 1)
      cbind(seq(Lvec, Uvec, length = optim.control$gridSize)) else
      if (Rank == 2)
  expand.grid(seq(Lvec[1], Uvec[1], length = optim.control$gridSize),
              seq(Lvec[2], Uvec[2], length = optim.control$gridSize)) else
  expand.grid(seq(Lvec[1], Uvec[1], length = optim.control$gridSize),
              seq(Lvec[2], Uvec[2], length = optim.control$gridSize),
              seq(Lvec[3], Uvec[3], length = optim.control$gridSize))
  }  # !length(initial.vals)




  M <- npred(object)
  v.simple <- length(object@control$colx1.index) == 1 &&
               names(object@control$colx1.index) == "(Intercept)" &&
              (if (any(names(constraints(object)) == "(Intercept)"))
      trivial.constraints(constraints(object))["(Intercept)"] == 1 else
      TRUE)
  B1bix <- if (v.simple) {
    matrix(Coefobject@B1, nn, M, byrow = TRUE)
  } else {
    Xlm <- predict.vlm(as(object, "vglm"),  # object,
                       newdata = newdata.orig,
                       type = "Xlm")
    if (NROW(Xlm) != nn)
      warning("NROW(Xlm) and ", nn, " are unequal")

    if (se.type == "dzwald" && (type == "everything" || type == "vcov"))
      stop("only noRRR = ~ 1 models are handled for ",
           "type = 'everything' or type = 'vcov'")

    Xlm[, names(object@control$colx1.index), drop = FALSE] %*%
    Coefobject@B1
  }  # !v.simple





  objfun1 <- function(lv1val,
                      x = NULL, y, w = 1, extraargs) {
      ans <- sum(c(w) * extraargs$Obfunction(
              bnu = c(lv1val),
              y0 = y,
              extra = extraargs$object.extra,
              objfun = extraargs$obfunct,
              Object = extraargs$Object,
              Coefs = extraargs$Coefobject,
              B1bix = extraargs$B1bix,
              misc.list = extraargs$object.misc,
              Everything = FALSE,
              mu.function = extraargs$mu.function))
    ans
  }

  objfun2 <- function(lv1val, lv2val,
                      x = NULL, y, w = 1, extraargs) {
      ans <- sum(c(w) * extraargs$Obfunction(
              bnu = c(lv1val, lv2val),
              y0 = y,
              extra = extraargs$object.extra,
              objfun = extraargs$obfunct,
              Object = extraargs$Object,
              Coefs = extraargs$Coefobject,
              B1bix = extraargs$B1bix,
              misc.list = extraargs$object.misc,
              Everything = FALSE,
              mu.function = extraargs$mu.function))
    ans
  }

  objfun3 <- function(lv1val, lv2val, lv3val,
                      x = NULL, y, w = 1, extraargs) {
      ans <- sum(c(w) * extraargs$Obfunction(
              bnu = c(lv1val, lv2val, lv3val),
              y0 = y,
              extra = extraargs$object.extra,
              objfun = extraargs$obfunct,
              Object = extraargs$Object,
              Coefs = extraargs$Coefobject,
              B1bix = extraargs$B1bix,
              misc.list = extraargs$object.misc,
              Everything = FALSE,
              mu.function = extraargs$mu.function))
    ans
  }


  mu.function <- slot(object@family, "linkinv")
  wvec <- 1  # zz; Assumed here
  mylist <-
    list(object.extra = object@extra,
         Obfunction  = .my.calib.objfunction.rrvglm,
         Coefobject   = Coefobject,
         B1bix        = NA,  # Will be replaced below
         obfunct      = obfunct,
         object.misc  = object@misc,
         Object       = 777,  # object,
         mu.function  = mu.function)


  init.vals <- matrix(NA_real_, nn, Rank)
  for (i1 in 1:nn) {
    if (optim.control$trace)
      cat("Grid searching initial values for observation",
          i1, "-----------------\n")


    y0 <- newdata[i1, , drop = FALSE]  # drop added 20150624
    mylist$B1bix <- B1bix[i1, ]
    try.this <- if (Rank == 1)
      grid.search(initial.vals[, 1],
                  objfun = objfun1, y = y0 , w = wvec,
                  ret.objfun = TRUE,
                  maximize = !minimize.obfunct,  # Most general.
                  extraargs = mylist) else if (Rank == 2)
      grid.search2(initial.vals[, 1], initial.vals[, 2],
                   objfun = objfun2, y = y0, w = wvec,
                   ret.objfun = TRUE,
                   maximize = !minimize.obfunct,  # Most general.
                   extraargs = mylist) else
      grid.search3(initial.vals[, 1], initial.vals[, 2],
                   initial.vals[, 3], 
                   objfun = objfun3, y = y0, w = wvec,
                   ret.objfun = TRUE,
                   maximize = !minimize.obfunct,  # Most general.
                   extraargs = mylist)
    lv1.init <- try.this[if (Rank == 1) "Value" else "Value1"]
    lv2.init <- if (Rank >= 2) try.this["Value2"] else NULL
    lv3.init <- if (Rank >= 3) try.this["Value3"] else NULL

    init.vals[i1, ] <- c(lv1.init, lv2.init, lv3.init)
  }  # for i1






  BestOFpar <- matrix(NA_real_, nn, Rank)
  BestOFvalues <- rep(NA_real_, nn)  # Best OF objective function values

  for (i1 in 1:nn) {
    if (optim.control$trace) {
      cat("\nOptimizing for observation", i1, "-----------------\n")
      flush.console()
    }

    ans <-
      optim(par = init.vals[i1, ],
            fn  = .my.calib.objfunction.rrvglm,
            method = optim.control$method.optim,  # "BFGS" or "CG" or...
            control = c(fnscale = ifelse(minimize.obfunct, 1, -1),
                        use.optim.control),  # as.vector() needed
              y0 = newdata[i1, , drop = FALSE],  # drop added 20150624
              extra = object@extra,
              objfun = obfunct,
              Object = 777,  # object,
              Coefs = Coefobject,
              B1bix = B1bix[i1, , drop = FALSE],
              misc.list = object@misc,
              Everything = FALSE,  # Differs from Step 5 below
              mu.function = mu.function)

        if (optim.control$trace) {
          if (ans$convergence == 0)
            cat("Successful convergence\n") else
            cat("Unsuccessful convergence\n")
          flush.console()
        }
        if (ans$convergence == 0) {
          BestOFpar[i1, ] <- ans$par
          BestOFvalues[i1] <- ans$value
        }  # else do nothing since NA_real_ signifies convergence failure
  }  # for i1







  prettyCLO <- function(BestOFpar, newdata, Rank) {
    if (Rank == 1) {
      BestOFpar <- c(BestOFpar)  # Drop the dimension
      if (!is.null(dimnames(newdata)[[1]])) {
        names(BestOFpar) <- dimnames(newdata)[[1]]
      }
    } else
      dimnames(BestOFpar) <- list(dimnames(newdata)[[1]],
                             param.names("latvar", Rank, skip1 = TRUE))
    BestOFpar
  }  # prettyCLO

  BestOFpar <- prettyCLO(BestOFpar, newdata, Rank)  # Dimension may drop.
  attr(BestOFpar,"objectiveFunction") <-
    prettyCLO(BestOFvalues, newdata, Rank = 1)
  if (type == "latvar" && (!cf.confint && !lr.confint)) {
    return(BestOFpar)
  }






  if (lr.confint && Rank > 1) {
    warning("argument 'lr.confint' should only be TRUE if Rank == 1. ",
            "Setting 'lr.confint = FALSE'.")
    lr.confint <- FALSE
  }


  if (lr.confint && !(type %in% c("latvar", "everything"))) {
    warning("argument 'lr.confint' should only be TRUE if ",
            "'type = \"latvar\"' or 'type = \"everything\"'. ",
            "Setting 'lr.confint = FALSE'.")
    lr.confint <- FALSE
  }
  if (lr.confint && Rank == 1) {

    format.perc <- function(probs, digits)
      paste(format(100 * probs, trim = TRUE, scientific = FALSE,
            digits = digits), "%")
    aa <- (1 - level) / 2
    aa <- c(aa, 1 - aa)

    pct <- format.perc(aa, 3)
    cimat <- array(NA, dim = c(nn, 2L),
                   dimnames = list(dimnames(newdata)[[1]], pct))

    for (i1 in 1:nn) {
      if (optim.control$trace) {
        cat("Solving for the roots for obsn", i1, "---------------\n")
        flush.console()
      }


      foo3.lhs.rhs <-
      function(bnu,
               y0, extra = NULL,
               objfun, Coefs,
               Object,  # Not needed
               B1bix,
               misc.list,
               Everything = FALSE,
               mu.function,
               BestOFvalues = NA,
               level = 0.95,
               criterion.arg = "loglikelihood") {
        if (!(criterion.arg %in% c("deviance", "loglikelihood")))
          stop("'criterion.arg' must be 'deviance' or 'loglikelihood'")
        ifelse(criterion.arg == "deviance", 1, -2) *
        (-BestOFvalues +
             .my.calib.objfunction.rrvglm(bnu = bnu,
                y0 = y0,
                extra = extra,
                objfun = objfun,
                Object = Object,
                Coefs = Coefs,
                B1bix = B1bix,
                misc.list = misc.list,
                Everything = Everything,
                mu.function = mu.function)) -
        qchisq(level, df = 1)
      }


      for (Side in 1:2) {
        ans.lhs.rhs <-
        uniroot(f = foo3.lhs.rhs,
                interval = if (Side == 1) c(Lvec, BestOFpar[i1]) else
                                          c(BestOFpar[i1], Uvec),
                extendInt = ifelse(Side == 1, "downX", "upX"),
                y0 = newdata[i1, , drop = FALSE],  # drop added 20150624
                extra = object@extra,
                objfun = obfunct,
                Object = 777,  # object,
                Coefs = Coefobject,
                B1bix = B1bix[i1, , drop = FALSE],
                misc.list = object@misc,
                Everything = FALSE,
                mu.function = mu.function,
                BestOFvalues = BestOFvalues[i1], level = level,
                criterion.arg = object@misc$criterion)
        cimat[i1, Side] <- ans.lhs.rhs$root
      }  # Side
    }  # for i1

    if (type == "latvar")
      return(cbind(estimate = BestOFpar,
                   objfun   = BestOFvalues,
                   cimat))
  }  # if (lr.confint && Rank == 1)


  
   



  if (cf.confint && Rank > 1) {
    warning("argument 'cf.confint' should only be TRUE if Rank == 1. ",
            "Setting 'cf.confint = FALSE'.")
    cf.confint <- FALSE
  }


  if (cf.confint && !(type %in% c("latvar", "everything"))) {
    warning("argument 'cf.confint' should only be TRUE if ",
            "'type = \"latvar\"' or 'type = \"everything\"'. ",
            "Setting 'cf.confint = FALSE'.")
    cf.confint <- FALSE
  }
  if (cf.confint && Rank == 1) {

    format.perc <- function(probs, digits)
      paste(format(100 * probs, trim = TRUE, scientific = FALSE,
            digits = digits), "%")
    aa <- (1 - level) / 2
    aa <- c(aa, 1 - aa)
    pct <- format.perc(aa, 3)
    cimat2 <- array(NA, dim = c(nn, 2L),
                    dimnames = list(dimnames(newdata)[[1]], pct))



    for (i1 in 1:nn) {
      if (optim.control$trace) {
        cat("\nSolving for the roots for obsn", i1, "---------------\n")
        flush.console()
      }


      foo4.lhs.rhs <-
      function(bnu,
               y0, extra = NULL,
               objfun, Coefs,
               Object,  # Not needed
               B1bix,
               misc.list,
               Everything = FALSE,
               mu.function,
               BestOFvalues = NA,
               pr.level = c(0.05, 0.95)[1]
               ) {
    charfun.clo.cdf(bnu = bnu,
                y0 = y0,
                extra = extra,
                objfun = objfun,
                Object = Object,
                Coefs = Coefs,
                B1bix = B1bix,
                misc.list = misc.list,
                Everything = Everything,
                mu.function = mu.function
                ) -
        pr.level
      }





      

      for (Side in 1:2) {
        ans.lhs.rhs <-
        uniroot(f = foo4.lhs.rhs,
                interval = if (Side == 1) c(Lvec, BestOFpar[i1]) else
                                          c(BestOFpar[i1], Uvec),
                extendInt = "yes",  # Might be worse than above.
                y0 = newdata[i1, , drop = FALSE],  # drop added 20150624
                extra = object@extra,
                objfun = obfunct,
                Object = object,
                Coefs = Coefobject,
                B1bix = B1bix[i1, , drop = FALSE],
                misc.list = object@misc,
                Everything = FALSE,
                mu.function = mu.function,
                BestOFvalues = BestOFvalues[i1],
                pr.level = ifelse(Side == 1, aa[1], aa[2])
               )
        cimat2[i1, Side] <- ans.lhs.rhs$root
      }  # Side
    }  # for i1

    vecTF <- cimat2[, 2] < cimat2[, 1]
    if (any(vecTF)) {
      temp <- cimat2[vecTF, 1]
      cimat2[vecTF, 1] <- cimat2[vecTF, 2]
      cimat2[vecTF, 2] <- temp
    }
    if (type == "latvar")
      return(cbind(estimate = BestOFpar,
                   objfun   = BestOFvalues,
                   cimat2))

  }  # if (cf.confint && Rank == 1)








  etaValues <- matrix(NA_real_, nn, M)
  muValues  <- matrix(NA_real_, nn, ncol(fitted(object)))
  vcValues <- if (get.SEs) array(0, c(Rank, Rank, nn)) else NULL


  if (optim.control$trace)
    cat("\n")

  for (i1 in 1:nn) {
    if (optim.control$trace) {
      cat("Evaluating quantities for observation", i1,
          "-----------------\n")
      flush.console()
    }
    ans5 <- .my.calib.objfunction.rrvglm(
              bnu = if (Rank == 1) BestOFpar[i1] else BestOFpar[i1, ],
              y0 = newdata[i1, , drop = FALSE],  # drop added 20150624
              extra = object@extra,
              objfun = obfunct,  # deviance
              Object = 777,  # object,
              Coefs = Coefobject,
              B1bix = B1bix[i1, , drop = FALSE],
              misc.list = object@misc,
              Everything = TRUE,  # Differs from Step 3.
              mu.function = mu.function)


    muValues[i1, ] <- ans5$mu
    etaValues[i1, ] <- ans5$eta


    if (get.SEs)
      vcValues[, , i1] <- if (se.type == "dzwald")
        dzwald.rrvglm(
              bnu0 = if (Rank == 1) BestOFpar[i1] else BestOFpar[i1, ],
              y0 = newdata[i1, , drop = FALSE],  # drop added 20150624
              Object = object,
              CoefsObject = Coefobject,
              B1bix = B1bix[i1, , drop = FALSE],
              mu.function = mu.function
            ) else
        ans5$vcmat



  }  # for i1







  dimnames(muValues) <- dimnames(newdata)
  dimnames(etaValues) <- list(dimnames(newdata)[[1]],
                              dimnames(object@predictors)[[2]])
  if (get.SEs)
    dimnames(vcValues) <- list(as.character(1:Rank),
                               as.character(1:Rank),
                               dimnames(newdata)[[1]])

  switch(type,
         latvar     = BestOFpar,  # Done already, so not really needed
         predictors = etaValues,
         response   = muValues,
         vcov       = vcValues,
         everything = list(
             latvar     = BestOFpar,
             predictors = etaValues,
             response   = muValues,
             vcov       = vcValues,
             lr.confint = if (lr.confint)
                            cbind(estimate = BestOFpar,
                                  objfun   = BestOFvalues,
                                  cimat) else NULL,
             cf.confint = if (cf.confint)
                            cbind(estimate = BestOFpar,
                                  objfun   = BestOFvalues,
                                  cimat2) else NULL)
        )
}  # calibrate.rrvglm






.my.calib.objfunction.rrvglm <-
  function(bnu,
           y0, extra = NULL,
           objfun, Coefs,
           Object,  # Not needed
           B1bix,
           misc.list,
           Everything = TRUE,
           mu.function) {



  bnumat <- cbind(bnu)
  Rank <- length(bnu)
  eta <- cbind(c(B1bix)) + Coefs@A %*% bnumat
  M <- misc.list$M
  eta <- matrix(eta, 1, M, byrow = TRUE)

  mu <- matrix(mu.function(eta, extra = extra), nrow = 1)
  obvalue <- objfun(mu = mu, y = y0,
                    w = 1,  # ignore prior.weights on the object zz
                    residuals = FALSE, eta = eta, extra = extra)
  if (Everything) {
    vcmat <- diag(Rank)
    vcmat <- solve(vcmat)
  } else {
    vcmat <- NULL
  }
  if (Everything)
    list(eta     = eta,
         mu      = mu,
         obvalue = obvalue,
         vcmat   = vcmat) else
    obvalue
}  # .my.calib.objfunction.rrvglm






calibrate.rrvglm.control <-
  function(object,
           trace = FALSE,  # passed into optim()
           method.optim = "BFGS",  # passed into optim(method = Method)
           gridSize = ifelse(Rank == 1, 17, 9),
           ...) {


  Rank <- object@control$Rank
  if (!is.Numeric(gridSize, positive = TRUE,
                  integer.valued = TRUE, length.arg = 1))
    stop("bad input for argument 'gridSize'")
  if (gridSize < 2)
    stop("argument 'gridSize' must be >= 2")

  list(
       trace = as.numeric(trace)[1],
       method.optim = method.optim,
       gridSize = gridSize
      )
}  # calibrate.rrvglm.control





setMethod("calibrate", "rrvglm", function(object, ...)
          calibrate.rrvglm(object, ...))



  setMethod("calibrate", "qrrvglm", function(object, ...)
           calibrate.qrrvglm(object, ...))

Try the VGAM package in your browser

Any scripts or data that you put into this service are public.

VGAM documentation built on Sept. 18, 2024, 9:09 a.m.