R/family.rcim.R

Defines functions qvplot qvar print.summary.qvar summary.qvar Print.qv IndentPrint WorstErrors Qvar plota21 Confint.nb1 Confint.rrnb moffset plotrcim0 Rcim summaryrcim rcim

Documented in Confint.nb1 Confint.rrnb moffset moffset plota21 plotrcim0 plotrcim0 qvar Qvar Qvar qvplot rcim Rcim Rcim summaryrcim

# These functions are
# Copyright (C) 1998-2024 T.W. Yee, University of Auckland.
# All rights reserved.















 rcim <-
  function(y,
           family = poissonff,
           Rank = 0,
           M1 = NULL,
           weights = NULL,
           which.linpred = 1,
   Index.corner = ifelse(is.null(str0), 0, max(str0)) + 1:Rank,
           rprefix = "Row.",
           cprefix = "Col.",
           iprefix = "X2.",
           offset = 0,

           str0 = if (Rank) 1 else NULL,  # Ignored if Rank == 0
           summary.arg = FALSE, h.step = 0.0001,
           rbaseline = 1, cbaseline = 1,

           has.intercept = TRUE,

           M = NULL,

           rindex = 2:nrow(y),  # Row index
           cindex = 2:ncol(y),  # Col index
           iindex = 2:nrow(y),  # Interaction index



           ...) {





  rindex <- unique(sort(rindex))
  cindex <- unique(sort(cindex))
  iindex <- unique(sort(iindex))


  if (Rank == 0 && !has.intercept)
    warning("probably 'has.intercept == TRUE' is better for ",
            "a rank-0 model")



  ncoly <- ncol(y)


  noroweffects <- FALSE
  nocoleffects <- FALSE

  if (!is.Numeric(which.linpred, length.arg = 1,
                  integer.valued = TRUE, positive = TRUE))
    stop("bad input for argument 'which.linpred'")

  if (!is.character(rprefix))
    stop("argument 'rprefix' must be character")
  if (!is.character(cprefix))
    stop("argument 'cprefix' must be character")

  if (is.character(family))
    family <- get(family)
  if (is.function(family))
    family <- ((family)())
  if (!inherits(family, "vglmff")) {
    stop("'family = ", family, "' is not a VGAM family function")
  }
  efamily <- family


  if (!is.Numeric(M1)) {
    iefamily <- efamily@infos

    if (is.function(iefamily))
      M1 <- (iefamily())$M1
      if (is.Numeric(M1))
        M1 <- abs(M1)
  }
  if (!is.Numeric(M1)) {
    if (!is.Numeric(M))
      warning("cannot determine the value of 'M1'.",
              "Assuming the value one.")
    M1 <- 1
  }



  M <- if (is.null(M)) M1 * ncol(y) else M

  special <- (M > 1) && (M1 == 1)



  object.save <- y
  y <- if (is(y, "rrvglm")) {
    depvar(object.save)
  } else {
    as(as.matrix(y), "matrix")
  }
  if (length(dim(y)) != 2 || nrow(y) < 3 || ncol(y) < 3)
    stop("argument 'y' must be a matrix with >= 3 rows & ",
         "columns, or a rrvglm() object")


  .rcim.df <-
    if (!noroweffects)
      data.frame("Row.2" = I.col(2, nrow(y))) else  # See below
    if (!nocoleffects)
      data.frame("Col.2" = I.col(2, nrow(y))) else  # See below
      stop("at least one of 'noroweffects' and 'nocoleffects' ",
           "must be FALSE")


  min.row.val <- rindex[1]  # == min(rindex) since its sorted
  min.col.val <- cindex[1]  # == min(cindex) since its sorted
  if (!noroweffects) {
    colnames( .rcim.df ) <-
      paste(rprefix, as.character(min.row.val),  # "2",
            sep = "")  # Overwrite "Row.2"
  } else if (!nocoleffects) {
    colnames( .rcim.df ) <-
      paste(cprefix, as.character(min.col.val),  # "2",
            sep = "")  # Overwrite "Col.2"
  }



  yn1 <- if (length(dimnames(y)[[1]])) dimnames(y)[[1]] else
             param.names(iprefix, nrow(y))
  warn.save <- options()$warn
  options(warn = -3)  # Suppress warnings (hopefully temporarily)
  if (any(!is.na(as.numeric(substring(yn1, 1, 1)))))
    yn1 <- param.names(iprefix, nrow(y))
  options(warn = warn.save)


  nrprefix <- as.name(rprefix)
  ncprefix <- as.name(cprefix)


  assign(rprefix, factor(1:nrow(y)))
  modmat.row <- substitute(
           model.matrix( ~ .rprefix ), list( .rprefix = nrprefix ))

  LLL <- ifelse(special, M, ncol(y))
  assign(cprefix, factor(1:LLL))


  modmat.col <- substitute(
           model.matrix( ~ .cprefix ), list( .cprefix = ncprefix ))
  modmat.row <- eval( modmat.row )
  modmat.col <- eval( modmat.col )




  Hlist <-
    if (has.intercept) {
      list("(Intercept)" = matrix(1, LLL, 1))
    } else {
      temp <- list("Row.2" = matrix(1, LLL, 1))
      names(temp) <- paste(rprefix,
                           as.character(min.row.val), sep = "")
      temp
    }


  if (!noroweffects)
    for (ii in rindex) {
         Hlist[[paste(rprefix, ii, sep = "")]] <- matrix(1, LLL, 1)
      .rcim.df[[paste(rprefix, ii, sep = "")]] <- modmat.row[, ii]
    }


  if (!nocoleffects)
    for (ii in cindex) {
      temp6.mat <- modmat.col[, ii, drop = FALSE]
         Hlist[[paste(cprefix, ii, sep = "")]] <- temp6.mat
      .rcim.df[[paste(cprefix, ii, sep = "")]] <- rep_len(1, nrow(y))
    }


  if (Rank > 0) {
    for (ii in iindex) {

      Hlist[[yn1[ii]]] <- diag(LLL)

      .rcim.df[[yn1[ii]]] <- I.col(ii, nrow(y))
    }
  }


  dimnames(.rcim.df) <- list(if (length(dimnames(y)[[1]]))
                               dimnames(y)[[1]] else
                               as.character(iindex),
                             dimnames( .rcim.df )[[2]])

    str1 <- paste0(if (has.intercept)
                   "~ 1 + " else "~ -1 + ", rprefix,
                   as.character(min.row.val))  # "2"


  if (nrow(y) > 2)
    str1 <- paste(str1,
                  paste(rprefix, rindex[-1], sep = "",
                        collapse = " + "),
                  sep = " + ")


    str1 <- paste(str1,
                  paste(cprefix, cindex, sep = "",
                        collapse = " + "),
                  sep = " + ")




  str2 <- paste("y", str1)
  if (Rank > 0) {
    str2 <- paste(str2,
                  paste(yn1[iindex], sep = "", collapse = " + "),
                  sep = " + ")
  }




    controlfun <- if (Rank == 0)
                    vglm.control else rrvglm.control  # orig.


  mycontrol <- controlfun(Rank = Rank,
                          Index.corner = Index.corner,
                          str0 = str0, ...)

  if (mycontrol$trace) {
  }



  if ((mindim <- min(nrow(y), ncol(y))) <= Rank) {
    stop("argument 'Rank' is too high. Must be a value from 0 ",
         "to ", mindim - 1, " inclusive")
  }



  if (Rank > 0)
    mycontrol$noRRR <- as.formula(str1)  # Overwrite this

  assign(".rcim.df", .rcim.df, envir = VGAM::VGAMenv)

  warn.save <- options()$warn
  options(warn = -3)  # Suppress warnings (hopefully temporarily)

  if (mycontrol$trace) {
  }


  if (M1 > 1) {
    orig.Hlist <- Hlist

    kmat1 <- matrix(0, nrow = M1, ncol = 1)
    kmat1[which.linpred, 1] <- 1
    kmat0 <- (diag(M1))[, -which.linpred, drop = FALSE]

    for (ii in seq_along(Hlist)) {
      Hlist[[ii]] <- kronecker(Hlist[[ii]], kmat1)
    }
    if (has.intercept)
      Hlist[["(Intercept)"]] <-
         cbind(Hlist[["(Intercept)"]],
               kronecker(matrix(1, ncoly, 1), kmat0))

    if (mycontrol$trace) {
    }
  }



  offset.matrix <-
    matrix(offset, nrow = nrow(y),
                   ncol = M)  # byrow = TRUE



  answer <- if (Rank > 0) {
    if (is(object.save, "rrvglm")) object.save else
      rrvglm(as.formula(str2),
             family = family,
             constraints = Hlist,
             offset = offset.matrix,
             weights = if (length(weights))
                       weights else rep_len(1, nrow(y)),
             ...,
             control = mycontrol, data = .rcim.df )
  } else {
    if (is(object.save, "vglm")) object.save else
        vglm(as.formula(str2),
             family = family,
             constraints = Hlist,
             offset = offset.matrix,
             weights = if (length(weights))
                       weights else rep_len(1, nrow(y)),
             ...,
             control = mycontrol, data = .rcim.df )
  }

  options(warn = warn.save)  # Restore warnings to prior state


  answer <- if (summary.arg) {
    if (Rank > 0) {
      summary.rrvglm(as(answer, "rrvglm"), h.step = h.step)
    } else {
      summary(answer)
    }
  } else {
    as(answer, ifelse(Rank > 0, "rcim",  "rcim0"))
  }


  answer@misc$rbaseline     <- rbaseline
  answer@misc$cbaseline     <- cbaseline
  answer@misc$which.linpred <- which.linpred
  answer@misc$offset        <- offset.matrix

  answer
}








summaryrcim <- function(object, ...) {
  rcim(depvar(object), summary.arg = TRUE, ...)
}









 setClass("rcim0", representation(not.needed = "numeric"),
          contains = "vglm")  # Added 20110506

 setClass("rcim", representation(not.needed = "numeric"),
          contains = "rrvglm")


setMethod("summary", "rcim0",
          function(object, ...)
          summaryrcim(object, ...))


setMethod("summary", "rcim",
          function(object, ...)
          summaryrcim(object, ...))










 Rcim <- function(mat, rbaseline = 1, cbaseline = 1) {

  mat <- as.matrix(mat)
  RRR <- dim(mat)[1]
  CCC <- dim(mat)[2]

  rnames <- if (is.null(rownames(mat))) {
    param.names("X", RRR)
  } else {
    rownames(mat)
  }

  cnames <- if (is.null(colnames(mat))) {
    param.names("Y", CCC)
  } else {
    colnames(mat)
  }

  r.index <-
    if (is.character(rbaseline))
      which(rownames(mat) == rbaseline) else
    if (is.numeric(rbaseline)) rbaseline else
      stop("argement 'rbaseline' must be numeric",
           "or character of the level of row")

  c.index <-
    if (is.character(cbaseline))
       which(colnames(mat) == cbaseline) else
    if (is.numeric(cbaseline)) cbaseline else
       stop("argement 'cbaseline' must be numeric",
            "or character of the level of row")

  if (length(r.index) != 1)
    stop("Could not match with argument 'rbaseline'")

  if (length(c.index) != 1)
    stop("Could not match with argument 'cbaseline'")


  yswap <- rbind(mat[r.index:RRR, ],
                 if (r.index > 1) mat[1:(r.index - 1),] else
                 NULL)
  yswap <- cbind(yswap[, c.index:CCC],
                 if (c.index > 1) yswap[, 1:(c.index - 1)] else
                 NULL)

  new.rnames <- rnames[c(r.index:RRR,
                         if (r.index > 1) 1:(r.index - 1) else
                         NULL)]
  new.cnames <- cnames[c(c.index:CCC,
                         if (c.index > 1) 1:(c.index - 1) else
                         NULL)]
  colnames(yswap) <- new.cnames
  rownames(yswap) <- new.rnames

  yswap
}













 plotrcim0  <- function(object,
     centered = TRUE, which.plots = c(1, 2),
     hline0 = TRUE, hlty = "dashed",
     hcol = par()$col, hlwd = par()$lwd,
     rfirst = 1, cfirst = 1,
     rtype = "h", ctype = "h",
     rcex.lab = 1, rcex.axis = 1,  # rlabels = FALSE,
     rtick = FALSE,
     ccex.lab = 1, ccex.axis = 1,  # clabels = FALSE,
     ctick = FALSE,
     rmain = "Row effects", rsub = "",
     rxlab = "", rylab = "Row effects",
     cmain = "Column effects", csub = "",
     cxlab = "", cylab = "Column effects",
     rcol = par()$col, ccol = par()$col,
     no.warning = FALSE,
     ...) {


  nparff <- if (is.numeric(object@family@infos()$M1)) {
    object@family@infos()$M1
  } else {
    1
  }



  if (!no.warning &&
      is.numeric(object@control$Rank) &&
      object@control$Rank != 0)
    warning("argument 'object' is not Rank-0")


  n.lm  <- nrow(object@y)

  cobj <- coefficients(object)

  upperbound <- if (!is.numeric(object@control$Rank) ||
                   object@control$Rank == 0) length(cobj) else
               length(object@control$colx1.index)

 orig.roweff <- c("Row.1" = 0,
                  cobj[(nparff + 1) : (nparff + n.lm - 1)])
 orig.coleff <- c("Col.1" = 0,
                  cobj[(nparff + n.lm) : upperbound])
  last.r <- length(orig.roweff)
  last.c <- length(orig.coleff)


  orig.raxisl  <- rownames(object@y)
  orig.caxisl  <- colnames(object@y)
  if (is.null(orig.raxisl))
    orig.raxisl <- as.character(1:nrow(object@y))
  if (is.null(orig.caxisl))
    orig.caxisl <- as.character(1:ncol(object@y))

  roweff.orig <-
  roweff <- orig.roweff[c(rfirst:last.r,
                          if (rfirst > 1) 1:(rfirst-1) else NULL)]
  coleff.orig <-
  coleff <- orig.coleff[c(cfirst:last.c,
                          if (cfirst > 1) 1:(cfirst-1) else NULL)]

  if (centered) {
    roweff <- scale(roweff, scale = FALSE)  # Center it only
    coleff <- scale(coleff, scale = FALSE)  # Center it only
  }

  raxisl <- orig.raxisl[c(rfirst:last.r,
                          if (rfirst > 1) 1:(rfirst-1) else NULL)]

  caxisl <- orig.caxisl[c(cfirst:last.c,
                          if (cfirst > 1) 1:(cfirst-1) else NULL)]


  if (any(which.plots == 1, na.rm = TRUE)) {
    plot(roweff, type = rtype,
         axes = FALSE, col = rcol, main = rmain,
         sub  = rsub, xlab = rxlab, ylab = rylab, ...)

    axis(1, at = seq_along(raxisl),
         cex.lab = rcex.lab,
         cex.axis = rcex.axis,
         labels = raxisl)
    axis(2, cex.lab = rcex.lab, ...)  # las = rlas)

    if (hline0)
      abline(h = 0, lty = hlty, col = hcol, lwd = hlwd)
  }


  if (any(which.plots == 2, na.rm = TRUE)) {
    plot(coleff, type = ctype,
         axes = FALSE, col = ccol, main = cmain,
         sub  = csub, xlab = cxlab, ylab = cylab, ...)

    axis(1, at = seq_along(caxisl),
         cex.lab = ccex.lab,
         cex.axis = ccex.axis,
         labels = caxisl)
    axis(2, cex.lab = ccex.lab, ...)  # las = clas)

    if (hline0)
      abline(h = 0, lty = hlty, col = hcol, lwd = hlwd)
  }




  object@post$row.effects = roweff
  object@post$col.effects = coleff
  object@post$raw.row.effects = roweff.orig
  object@post$raw.col.effects = coleff.orig

  invisible(object)
}





setMethod("plot", "rcim0",
          function(x, y, ...)
          plotrcim0(object = x, ...))


setMethod("plot", "rcim",
          function(x, y, ...)
          plotrcim0(object = x, ...))













 moffset <-
  function(mat, roffset = 0, coffset = 0, postfix = "",
           rprefix = "Row.",
           cprefix = "Col."
          ) {





  if ((is.numeric(roffset) && (roffset == 0)) &&
      (is.numeric(coffset) && (coffset == 0)))
    return(mat)


  vecmat <- c(unlist(mat))
  ind1 <-
    if (is.character(roffset))
      which(rownames(mat) == roffset) else
      if (is.numeric(roffset)) roffset + 1 else
      stop("argument 'roffset' not matched (character).",
           " It must be numeric, ",
           "else character and match the ",
           "row names of the response")
  ind2 <- if (is.character(coffset))
             which(colnames(mat) == coffset) else
                   if (is.numeric(coffset)) coffset + 1 else
             stop("argument 'coffset' not matched (character).",
                           " It must be numeric, ",
                           "else character and match the ",
                           "column names of the response")

  if (!is.Numeric(ind1, positive = TRUE,
                  integer.valued = TRUE, length.arg = 1) ||
      !is.Numeric(ind2, positive = TRUE,
                  integer.valued = TRUE, length.arg = 1))
    stop("bad input for arguments 'roffset' and/or 'coffset'")
  if (ind1 > nrow(mat))
    stop("too large a value for argument 'roffset'")
  if (ind2 > ncol(mat))
    stop("too large a value for argument 'coffset'")


  start.ind <- (ind2 - 1)* nrow(mat) + ind1


  svecmat <- vecmat[c(start.ind:(nrow(mat) * ncol(mat)),
                     0:(start.ind - 1))]

  rownames.mat <- rownames(mat)
  if (length(rownames.mat) != nrow(mat))
    rownames.mat <- param.names(rprefix, nrow(mat))

  colnames.mat <- colnames(mat)
  if (length(colnames.mat) != ncol(mat))
    colnames.mat <- param.names(cprefix, ncol(mat))


  newrn <- if (roffset > 0)
            c(rownames.mat[c(ind1:nrow(mat))],
    paste(rownames.mat[0:(ind1-1)], postfix, sep = "")) else
          rownames.mat

  newcn <- c(colnames.mat[c(ind2:ncol(mat), 0:(ind2 - 1))])
  if (roffset > 0)
    newcn <- paste(newcn, postfix, sep = "")

  newmat <- matrix(svecmat, nrow(mat), ncol(mat),
                  dimnames = list(newrn, newcn))
  newmat
}



















Confint.rrnb <- function(rrnb2, level = 0.95) {



  if (!is(rrnb2, "rrvglm"))
      stop("argument 'rrnb2' does not appear to be a ",
           "rrvglm() object")

  if (!any(rrnb2@family@vfamily == "negbinomial"))
      stop("argument 'rrnb2' does not appear to be a ",
           "negbinomial() fit")

  if (rrnb2@control$Rank != 1)
    stop("argument 'rrnb2' is not Rank-1")

  if (rrnb2@misc$M != 2)
    stop("argument 'rrnb2' does not have M = 2")

  if (!all(rrnb2@misc$link == "loglink"))
    stop("argument 'rrnb2' does not have log links for ",
         "both parameters")

  a21.hat <- (Coef(rrnb2)@A)["loglink(size)", 1]
  beta11.hat <- Coef(rrnb2)@B1["(Intercept)", "loglink(mu)"]
  beta21.hat <- Coef(rrnb2)@B1["(Intercept)", "loglink(size)"]
  delta1.hat <- exp(a21.hat * beta11.hat - beta21.hat)
  delta2.hat <- 2 - a21.hat

  SE.a21.hat <-
    sqrt(vcovrrvglm(rrnb2)["I(latvar.mat)", "I(latvar.mat)"])


  ci.a21 <- a21.hat +
            c(-1, 1) * qnorm(1 - (1 - level)/2) * SE.a21.hat
  (ci.delta2 <- 2 - rev(ci.a21))  # e.g., the 95 percent CI

  list(a21.hat    = a21.hat,
       beta11.hat = beta11.hat,
       beta21.hat = beta21.hat,
       CI.a21     = ci.a21,
       CI.delta2  = ci.delta2,
       delta1     = delta1.hat,
       delta2     = delta2.hat,
       SE.a21.hat = SE.a21.hat)
}





Confint.nb1 <- function(nb1, level = 0.95) {




  if (!is(nb1, "vglm"))
    stop("argument 'nb1' does not appear to be a vglm() object")

  if (!any(nb1@family@vfamily == "negbinomial"))
    stop("argument 'nb1' does not appear to be a ",
         "negbinomial() fit")

  if (!all(unlist(constraints(nb1)[-1]) == 1))
    stop("argument 'nb1' does not appear to ",
         "have 'parallel = TRUE'")

  if (!all(unlist(constraints(nb1)[1]) == c(diag(nb1@misc$M))))
    stop("argument 'nb1' does not have 'parallel = FALSE' ",
         "for the intercept")

  if (nb1@misc$M != 2)
    stop("argument 'nb1' does not have M = 2")

  if (!all(nb1@misc$link == "loglink"))
    stop("argument 'nb1' does not have log links ",
         "for both parameters")

  cnb1 <- coefficients(as(nb1, "vglm"), matrix = TRUE)
  mydiff <- (cnb1["(Intercept)", "loglink(size)"] -
             cnb1["(Intercept)", "loglink(mu)"])
  delta0.hat <- exp(mydiff)
  (phi0.hat <- 1 + 1 / delta0.hat)  # MLE of phi0


  myvcov <- vcov(as(nb1, "vglm"))  # Not great; improve this!



  myvec <- cbind(c(-1, 1, rep_len(0, nrow(myvcov) - 2)))
  se.mydiff <- c(sqrt(t(myvec) %*% myvcov %*% myvec))

  ci.mydiff <- mydiff +
    c(-1, 1) * qnorm(1 - (1 - level)/2) * se.mydiff

  ci.delta0 <- ci.exp.mydiff <- exp(ci.mydiff)
  (ci.phi0 <- 1 + 1 / rev(ci.delta0))

  list(CI.phi0    = ci.phi0,
       CI.delta0  = ci.delta0,
       delta0     = delta0.hat,
       phi0       = phi0.hat)
}






plota21 <- function(rrvglm2, show.plot = TRUE, nseq.a21 = 31,
                    se.eachway = c(5, 5),  # == c(LHS, RHS),
                    trace.arg = TRUE,
                    lwd = 2, ...) {





  if (!is(rrvglm2, "rrvglm"))
      stop("argument 'rrvglm2' does not appear to ",
           "be a rrvglm() object")

  if (rrvglm2@control$Rank != 1)
    stop("argument 'rrvglm2' is not Rank-1")

  if (rrvglm2@misc$M != 2)
    stop("argument 'rrvglm2' does not have M = 2")


  loglik.orig <- logLik(rrvglm2)
  temp1 <- Confint.rrnb(rrvglm2)  # zz

  a21.hat <- (Coef(rrvglm2)@A)[2, 1]
  SE.a21.hat <- temp1$SE.a21.hat


    SE.a21.hat <-
        sqrt(vcov(rrvglm2)["I(latvar.mat)", "I(latvar.mat)"])


  big.ci.a21 <- a21.hat +  c(-1, 1) * se.eachway * SE.a21.hat
  seq.a21 <- seq(big.ci.a21[1], big.ci.a21[2], length = nseq.a21)
  Hlist.orig <- constraints.vlm(rrvglm2, type = "term")


  alreadyComputed <- !is.null(rrvglm2@post$a21.matrix)


  a21.matrix <- if (alreadyComputed) rrvglm2@post$a21.matrix else
                cbind(a21 = seq.a21, loglikelihood = 0)
  prev.etastart <- predict(rrvglm2)  # Halves the computing time
  funname <- "vglm"
  listcall <- as.list(rrvglm2@call)


  if (!alreadyComputed)
  for (ii in 1:nseq.a21) {
    if (trace.arg)
      print(ii)
    argslist <- vector("list", length(listcall) - 1)
    for (kay in 2:(length(listcall)))
      argslist[[kay - 1]] <- listcall[[kay]]

    names(argslist) <- c(names(listcall)[-1])

    argslist$trace       <- trace.arg
    argslist$etastart    <- prev.etastart
    argslist$constraints <- Hlist.orig


    for (kay in 2:length(argslist[["constraints"]])) {
      argslist[["constraints"]][[kay]] <-
        rbind(1, a21.matrix[ii, 1])
    }


    fitnew <- do.call(what = funname, args = argslist)

    a21.matrix[ii, 2] <- logLik(fitnew)

    prev.etastart <- predict(fitnew)
  }



  if (show.plot) {
    plot(a21.matrix[ ,1], a21.matrix[ ,2], type = "l",
            col = "blue", cex.lab = 1.1,
            xlab = expression(a[21]), ylab = "Log-likelihood")  # ...

    abline(v = (Hlist.orig[[length(Hlist.orig)]])[2, 1],
           col = "darkorange", lty = "dashed")

    abline(h = loglik.orig,
           col = "darkorange", lty = "dashed")

    abline(h = loglik.orig -
               qchisq(0.95, df = 1) / 2,
           col = "darkorange", lty = "dashed")

    abline(v = a21.hat +  c(-1, 1) * 1.96 * SE.a21.hat,
           col = "gray50", lty = "dashed", lwd = lwd)

  }  # End of (show.plot)

  rrvglm2@post <- list(a21.matrix = a21.matrix)
  invisible(rrvglm2)
}














 Qvar <- function(object,
                  factorname = NULL,
                  which.linpred = 1,
                  coef.indices = NULL,
                  labels = NULL, dispersion = NULL,
                  reference.name = "(reference)",
                  estimates = NULL
                 ) {








  if (!is.Numeric(which.linpred, length.arg = 1,
                  integer.valued = TRUE, positive = TRUE))
    stop("argument 'which.linpred' must be a positive integer")



  coef.indices.saved <- coef.indices

  if (!is.matrix(object)) {
    model <- object
    if (is.null(factorname) && is.null(coef.indices)) {
      stop("arguments 'factorname' and 'coef.indices' are ",
           "both NULL")
    }


    if (is.null(coef.indices)) {

      M <- npred(model)
      if (M < which.linpred)
          stop("argument 'which.linpred' must be a value ",
               "from the set 1:",
             M)


      newfactorname <- if (M > 1) {
        clist <- constraints(model, type = "term")

        Hk <- clist[[factorname]]
        Mdot <- ncol(Hk)
        Hk.row <- Hk[which.linpred, ]
        if (sum(Hk.row != 0) > 1)
          stop("cannot handle rows of constraint matrices ",
               "with more than one nonzero value")

        foo <- function(ii)
          switch(as.character(ii), '1'="1st", '2'="2nd", '3'="3rd",
                 paste(ii, "th", sep = ""))
        if (sum(Hk.row != 0) == 0)
          stop("factor '", factorname, "' is not used the ",
               foo(which.linpred), " eta (linear predictor)")

        row.index <- (1:Mdot)[Hk.row != 0]

        all.labels <- vlabel(factorname, ncolHlist = Mdot, M = M)
        all.labels[row.index]
      } else {
        factorname
      }

      colptr <- attr(model.matrix(object, type = "vlm"),
                     "vassign")
      colptr <- if (M > 1) {
        colptr[newfactorname]
      } else {
        colptr[[newfactorname]]
      }

      coef.indices <- colptr

      contmat <- if (length(model@xlevels[[factorname]]) ==
                     length(coef.indices)) {
        diag(length(coef.indices))
      } else {
        eval(call(model@contrasts[[factorname]],
                  model@xlevels  [[factorname]]))
      }
      rownames(contmat) <- model@xlevels[[factorname]]

      if (is.null(estimates)) {
        if (M > 1) {
          estimates <- matrix(-1, nrow(contmat), 1)
          ii <- 1
          estimates[, ii] <- contmat %*%
                      (coefvlm(model)[(coef.indices[[ii]])])
        } else {
          estimates <- contmat %*% (coefvlm(model)[coef.indices])
        }
      }




      Covmat <- vcov(model, dispersion = dispersion)



      covmat <- Covmat[unlist(coef.indices),
                       unlist(coef.indices), drop = FALSE]
      covmat <- if (M > 1) {
        ii <- 1
        ans <- contmat %*% Covmat[(colptr[[ii]]),
                                  (colptr[[ii]])] %*% t(contmat)
        ans
      } else {
        contmat %*% covmat %*% t(contmat)
      }
    } else { # ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
      kk <- length(coef.indices)
      refPos <- numeric(0)
      if (0 %in% coef.indices) {
        refPos <- which(coef.indices == 0)
        coef.indices <- coef.indices[-refPos]
      }




      covmat <- vcov(model, dispersion = dispersion)




      covmat <- covmat[coef.indices, coef.indices, drop = FALSE]

      if (is.null(estimates))
        estimates <- coefvlm(model)[coef.indices]

      if (length(refPos) == 1) {
        if (length(estimates) != kk)
          estimates <- c(0, estimates)
        covmat <- rbind(0, cbind(0, covmat))
        names(estimates)[1] <-
        rownames(covmat)[1] <-
        colnames(covmat)[1] <- reference.name
        if (refPos != 1) {
          perm <- if (refPos == kk) c(2:kk, 1) else
                  c(2:refPos, 1, (refPos + 1):kk)
          estimates <- estimates[perm]
          covmat <- covmat[perm, perm, drop = FALSE]
        }
      }
    }  # ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,


    return(Recall(covmat,
                  factorname = factorname,
                  which.linpred = which.linpred,
                  coef.indices = coef.indices.saved,
                  labels = labels,
                  dispersion = dispersion,
                  estimates = estimates
                  )
           )
  } else { # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

    covmat <- object
    if (length(labels))
      rownames(covmat) <- colnames(covmat) <- labels
    if ((LLL <- dim(covmat)[1]) <= 2)
      stop("This function works only for factors with 3 ",
           "or more levels")
  }  # ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




  allvcov <- covmat
  for (ilocal in 1:LLL)
    for (jlocal in ilocal:LLL)
      allvcov[ilocal, jlocal] <-
      allvcov[jlocal, ilocal] <- covmat[ilocal, ilocal] +
                                 covmat[jlocal, jlocal] -
                                 covmat[ilocal, jlocal] * 2

  diag(allvcov) <- rep_len(1.0, LLL)  # Any positive value should do


  wmat   <- matrix(1.0, LLL, LLL)
  diag(wmat) <- sqrt( .Machine$double.eps )


  logAllvcov <- log(allvcov)
  attr(logAllvcov, "Prior.Weights") <- wmat
  attr(logAllvcov, "estimates")     <- estimates
  attr(logAllvcov, "coef.indices")  <- coef.indices
  attr(logAllvcov, "factorname")    <- factorname
  attr(logAllvcov, "regularVar")    <- diag(covmat)
  attr(logAllvcov, "which.linpred") <- which.linpred

  logAllvcov
}  # End of Qvar()








WorstErrors <- function(qv.object) {
  stop("20110729; does not work")

  reducedForm <- function(covmat, qvmat) {
    nlevels <- dim(covmat)[1]
    firstRow <- covmat[1, ]
    ones <- rep_len(1, nlevels)
    J <- outer(ones, ones)
    notzero <- 2:nlevels
    r.covmat <- covmat + (firstRow[1]*J) -
                         outer(firstRow, ones) -
                         outer(ones, firstRow)
    r.covmat <- r.covmat[notzero, notzero]
    qv1 <- qvmat[1, 1]
    r.qvmat <- (qvmat + qv1*J)[notzero, notzero]
    list(r.covmat, r.qvmat)
  }
  covmat <- qv.object$covmat
  qvmat <- diag(qv.object$qvframe$quasiVar)
  r.form <- reducedForm(covmat, qvmat)
  r.covmat <- r.form[[1]]
  r.qvmat <- r.form[[2]]
  inverse.sqrt <- solve(chol(r.covmat))
  evalues <- eigen(t(inverse.sqrt) %*% r.qvmat %*% inverse.sqrt,
                   symmetric = TRUE)$values
  sqrt(c(min(evalues), max(evalues))) - 1
}




IndentPrint <- function(object, indent = 4, ...) {
  stop("20110729; does not work")

  zz <- ""
  tc <- textConnection("zz", "w", local = TRUE)
  sink(tc)
  try(print(object, ...))
  sink()
  close(tc)
  indent <- paste(rep_len(" ", indent), sep = "", collapse = "")
  cat(paste(indent, zz, sep = ""), sep = "\n")
}



Print.qv <- function(x, ...) {
  stop("20110729; does not work")

}




summary.qvar <- function(object, ...) {


  relerrs <- 1 - sqrt(exp(residuals(object, type = "response")))
  diag(relerrs) <- NA

  minErrSimple <- round(100 * min(relerrs, na.rm = TRUE), 1)
  maxErrSimple <- round(100 * max(relerrs, na.rm = TRUE), 1)



  estimates <- c(object@extra$attributes.y$estimates)
  if (!length(names(estimates)) &&
      is.matrix(object@extra$attributes.y$estimates))
    names( estimates) <-
      rownames(object@extra$attributes.y$estimates)
  if (!length(names(estimates)))
    names( estimates) <- param.names("Level", length(estimates))


  regularVar <- c(object@extra$attributes.y$regularVar)
  QuasiVar <- exp(diag(fitted(object))) / 2
  QuasiSE  <- sqrt(QuasiVar)


  structure(list(estimate = estimates,
                 SE            = sqrt(regularVar),
                 minErrSimple  = minErrSimple,
                 maxErrSimple  = maxErrSimple,
                 quasiSE  = QuasiSE,
                 object   = object,
                 quasiVar = QuasiVar),
            class = "summary.qvar")
}




print.summary.qvar <- function(x, ...) {

  object <- x$object
  minErrSimple  <- x$minErrSimple
  maxErrSimple  <- x$maxErrSimple

  x$minErrSimple <- NULL
  x$maxErrSimple <- NULL
  x$object <- NULL


  if (length(cl <- object@call)) {
      cat("Call:\n")
      dput(cl)
  }


  facname <- c(object@extra$attributes.y$factorname)
  if (length(facname))
    cat("Factor name: ", facname, "\n")


  if (length(object@dispersion))
    cat("\nDispersion: ", object@dispersion, "\n\n")

  x <- as.data.frame(c(x))
  print.data.frame(x)


    cat("\nWorst relative errors in SEs of simple contrasts (%): ",
        minErrSimple, ", ", maxErrSimple, "\n")

  invisible(x)
}




qvar <- function(object, se = FALSE, ...) {



  if (!inherits(object, "rcim") && !inherits(object, "rcim0"))
      warning("argument 'object' should be an 'rcim' or ",
              "'rcim0' object. ",
            "This call may fail.")

  if (!(object@family@vfamily %in% c("uninormal", "normal1")))
    warning("argument 'object' does not seem to have used ",
            "a 'uninormal' family.")

  if (!any(object@misc$link == "explink"))
    warning("argument 'object' does not seem to have used ",
            "a 'explink' link function.")

  quasiVar <- diag(predict(object)[, c(TRUE, FALSE)]) / 2
  if (se) sqrt(quasiVar) else quasiVar
}








plotqvar <-
qvplot   <-
  function(object,
           interval.width = 2,
           ylab = "Estimate",
           xlab = NULL,  # x$factorname,
           ylim = NULL,
           main = "",
           level.names = NULL,
           conf.level = 0.95,
           warn.ratio = 10,
           border = "transparent",  # None
           points.arg = TRUE,
           length.arrows = 0.25, angle = 30,
           lwd = par()$lwd,
           scol = par()$col,
           slwd = par()$lwd,
           slty = par()$lty,
           ...) {




  if (!is.numeric(interval.width) &&
      !is.numeric(conf.level))
    stop("at least one of arguments 'interval.width' and ",
         "'conf.level' ",
         "should be numeric")





  if (!any("uninormal" %in% object@family@vfamily))
    stop("argument 'object' dos not appear to be a ",
         "rcim(, uninormal) object")

  estimates <- c(object@extra$attributes.y$estimates)
  if (!length(names(estimates)) &&
      is.matrix(object@extra$attributes.y$estimates))
    names(estimates) <-
      rownames(object@extra$attributes.y$estimates)


  if (length(level.names) == length(estimates)) {
    names(estimates) <- level.names
  } else if (!length(names(estimates)))
    names(estimates) <- param.names("Level", length(estimates))




  QuasiVar <- exp(diag(fitted(object))) / 2
  QuasiSE  <- sqrt(QuasiVar)

  if (!is.numeric(estimates))
    stop("Cannot plot, because there are no 'proper' ",
          "parameter estimates")
  if (!is.numeric(QuasiSE))
    stop("Cannot plot, because there are no ",
         "quasi standard errors")



  faclevels <- factor(names(estimates), levels = names(estimates))


  xvalues <- seq(along = faclevels)
  tops  <- estimates + interval.width * QuasiSE
  tails <- estimates - interval.width * QuasiSE




  if (is.numeric(conf.level)) {
    zedd <- abs(qnorm((1 - conf.level) / 2))
    lsd.tops  <- estimates + zedd * QuasiSE / sqrt(2)
    lsd.tails <- estimates - zedd * QuasiSE / sqrt(2)
    if (max(QuasiSE) / min(QuasiSE) > warn.ratio)
      warning("Quasi SEs appear to be quite different... the ",
              "LSD intervals may not be very accurate")
  } else {
    lsd.tops  <- NULL
    lsd.tails <- NULL
  }




  if (is.null(ylim))
    ylim <- range(c(tails, tops, lsd.tails, lsd.tops),
                  na.rm = TRUE)

  if (is.null(xlab))
    xlab <- "Factor level"

  plot(faclevels, estimates,
       border = border,
       ylim = ylim, xlab = xlab, ylab = ylab,
       lwd = lwd,
       main = main, ...)


  if (points.arg)
    points(estimates, ...)


  if (is.numeric(interval.width)) {
    segments(xvalues, tails, xvalues, tops,
             col = scol, lty = slty, lwd = slwd)
  }


  if (is.numeric(conf.level)) {
    arrows(xvalues, lsd.tails, xvalues, lsd.tops,
           col = scol, lty = slty, lwd = slwd, code = 3,
           length = length.arrows, angle = angle)

  }




  if (any(slotNames(object) == "post")) {
    object@post$estimates  <- estimates
    object@post$xvalues    <- xvalues
    if (is.numeric(interval.width)) {
      object@post$tails <- tails
      object@post$tops  <- tops
    }
    if (is.numeric(conf.level)) {
      object@post$lsd.tails <- lsd.tails
      object@post$lsd.tops  <- lsd.tops
    }
  }


  invisible(object)
}

Try the VGAM package in your browser

Any scripts or data that you put into this service are public.

VGAM documentation built on Sept. 18, 2024, 9:09 a.m.