.suppressAll<-function (expr = NULL)
{
suppressPackageStartupMessages(suppressMessages(suppressWarnings(expr)))
}
.checkPath<-function (u = NULL, path = NULL, throwError = TRUE)
{
require(dplyr)
if (is.null(u)) {
out <- TRUE
}
out <- lapply(u, function(x, error = TRUE) {
if (Sys.which(x) == "") {
if (!is.null(path) && file.exists(file.path(path,
x))) {
o <- TRUE
}
else {
if (throwError) {
stop(x, " not found in path, please add ",
x, " to path!")
}
else {
o <- FALSE
}
}
}
else {
o <- TRUE
}
return(o)
}) %>% unlist %>% all
return(out)
}
#' function to find cellphonedb
#'
#' @export
findCellPhoneDB<-function ()
{
message("Searching For cellphonedb..")
if (.suppressAll(.checkPath("cellphonedb", throwError = FALSE))) {
message("Found with $path!")
return("cellphonedb")
}
message("Not Found in $PATH")
search2 <- suppressWarnings(tryCatch({
system2("pip", "show cellphonedb", stdout = TRUE, stderr = NULL)
}, error = function(x) {
"ERROR"
}))
search3 <- suppressWarnings(tryCatch({
system2("pip3", "show cellphonedb", stdout = TRUE, stderr = NULL)
}, error = function(x) {
"ERROR"
}))
if (length(search2) > 0) {
if (search2[1] != "ERROR") {
path2Install <- gsub("Location: ", "", search2[grep("Location",
search2, ignore.case = TRUE)])
path2Bin <- gsub("lib/python/site-packages", "bin/cellphonedb",
path2Install)
if (.suppressAll(.checkPath(path2Bin, throwError = error))) {
message("Found with pip!")
return(path2Bin)
}
}
}
message("Not Found with pip")
if (length(search3) > 0) {
if (search3[1] != "ERROR") {
path2Install <- gsub("Location: ", "", search3[grep("Location",
search3, ignore.case = TRUE)])
path2Bin <- gsub("lib/python/site-packages", "bin/cellphonedb",
path2Install)
if (.suppressAll(.checkPath(path2Bin, throwError = error))) {
message("Found with pip3!")
return(path2Bin)
}
}
}
message("Not Found with pip3")
stop("Could Not Find Macs2! Please install w/ pip, add to your $PATH, or just supply the macs2 path directly and avoid this function!")
}
#' function to install cellphonedb
#'
#' @export
installCellphonedb<-function(){
message("Install cellphonedb")
search2 <- suppressWarnings(tryCatch({
system2("pip", "install cellphonedb", stdout = TRUE, stderr = NULL)
}, error = function(x) {
"Install ERROR"
}))
}
#' a function to export count and metadata for cellphonedb
#'
#' @param seurat a seurat object
#' @param cells cell barcode vector.
#' @param cells feature names vector.
#' @param slot which slot to use.
#' @param selectCol which column to export as cell_type.
#' @param outdir path to save tables
#' @param cellphonedbPath cellphonedb path
#' @param runCPDB whether to run cellphonedb
#' @export
exportCellPhoneDB<-function(seurat=NULL,
cells=NULL,
features=NULL,
slot="data",
selectCol="seurat_clusters",
species="human",
outdir="cellphoneDB",
path2CPDB=findCellPhoneDB(),
runCPDB=FALSE){
require(Seurat)
stopifnot(class(seurat)=="Seurat")
stopifnot(slot%in%c("counts","data","scale.data"))
if(species=="human"){
require(org.Hs.eg.db)
orgDB <- org.Hs.eg.db
}else{
require(org.Mm.eg.db)
orgDB <- org.Mm.eg.db
}
if(!is.null(cells)){
seurat <- subset(seurat,cells=cells)
}
if(!is.null(features)){
seurat <- subset(seurat,features=features)
}
message("get counts..")
counts <- GetAssayData(seurat,slot = slot)
counts <- as.data.frame(as.matrix(counts))
symbols <- mapIds(x=orgDB,keys=rownames(counts),keytype="SYMBOL",column="ENSEMBL")
Genes <- data.frame(Gene=as.character(symbols))
counts <- cbind(Genes,counts)
counts <- na.omit(counts)
message("get metadata..")
metaData <- seurat@meta.data
stopifnot(selectCol%in%colnames(metaData))
celltypes <- metaData[[selectCol]]
cells <- colnames(seurat)
meta.data<-data.frame(Cell=cells,cell_type=celltypes,stringsAsFactors=FALSE)
message("export..")
if(!dir.exists(outdir)){
dir.create(outdir,recursive = TRUE,showWarnings = TRUE)
}
write.table(counts,file.path(outdir,"cell_counts.txt"),sep="\t",row.names = FALSE,quote=F)
write.table(meta.data,file.path(outdir,"cell_meta.txt"),sep="\t",row.names = FALSE,quote=F)
if(runCPDB){
if(is.null(path2CPDB)){
installCellphonedb()
}
message("Run cellphonedb..")
countFile <- file.path(outdir,"cell_counts.txt")
metaFile <- file.path(outdir,"cell_meta.txt")
cmd <- sprintf("method statistical_analysis %s %s --project-name out --output-path %s --threads 8 --pvalue 0.05",
metaFile,countFile,outdir)
system2(path2CPDB,cmd, stdout = TRUE, stderr = NULL)
}
}
##########################
#' function to prepare data from cellphone output for dot_plot
#'
#' @param selected_rows vector of row names in pvalue.txt' interacting_pair
#' @param selected_columns vector of col names in pvalue.txt
#' @param means_path the cellphone method analysis out's means.txt file
#' @param pvalues_path the cellphone method analysis out's pvalues.txt file
#' @export
CPDBDotData<-function(selected_rows = NULL,
selected_columns = NULL,
means_path = './means.txt',
pvalues_path = './pvalues.txt',
means_separator = '\t',
pvalues_separator = '\t'
){
all_pval = read.table(pvalues_path, header=T, stringsAsFactors = F, sep=means_separator, comment.char = '', check.names=F)
all_means = read.table(means_path, header=T, stringsAsFactors = F, sep=pvalues_separator, comment.char = '', check.names=F)
intr_pairs = all_pval$interacting_pair
all_pval = all_pval[,-c(1:11)]
all_means = all_means[,-c(1:11)]
if(is.null(selected_rows)){
selected_rows = intr_pairs
}
if(is.null(selected_columns)){
selected_columns = colnames(all_pval)
}
sel_pval = all_pval[match(selected_rows, intr_pairs), selected_columns]
sel_means = all_means[match(selected_rows, intr_pairs), selected_columns]
df_names = expand.grid(selected_rows, selected_columns)
pval = unlist(sel_pval)
pval[pval==0] = 0.0009
plot.data = cbind(df_names,pval)
pr = unlist(as.data.frame(sel_means))
pr[pr==0] = 1
plot.data = cbind(plot.data,log2(pr))
colnames(plot.data) = c('pair', 'clusters', 'pvalue', 'mean')
return(plot.data)
}
#' function to prepare data from cellphone output for heatmap_plot
#'
#' @param meta_file meta data file,cell_meta.txt
#' @param pvalues_file the cellphone method analysis out's pvalues.txt file
#' @param pvaue pvalue Threshold.
#' @export
CPDBHeatmapData<-function(meta_file=NULL,
pvalues_file=NULL,
meta_sep='\t',
pvalues_sep='\t',
pvalue=0.05){
####### Network
meta = read.csv(meta_file, comment.char = '', sep=meta_sep)
all_intr = read.table(pvalues_file, header=T, stringsAsFactors = F, sep=pvalues_sep, comment.char = '', check.names = F)
intr_pairs = all_intr$interacting_pair
all_intr = all_intr[,-c(1:11)]
split_sep = '\\|'
join_sep = '|'
pairs1_all = unique(meta[,2])
pairs1 = c()
for (i in 1:length(pairs1_all))
for (j in 1:length(pairs1_all))
pairs1 = c(pairs1,paste(pairs1_all[i],pairs1_all[j],sep=join_sep))
all_count = matrix(ncol=3)
colnames(all_count) = c('SOURCE','TARGET','count')
count1 = c()
for(i in 1:length(pairs1))
{
p1 = strsplit(pairs1[i], split_sep)[[1]][1]
p2 = strsplit(pairs1[i], split_sep)[[1]][2]
n1 = intr_pairs[which(all_intr[,pairs1[i]]<=pvalue)]
pairs_rev = paste(p2, p1, sep=join_sep)
n2 = intr_pairs[which(all_intr[,pairs_rev]<=pvalue)]
if(p1!=p2)
count1 = length(unique(n1))+length(unique(n2))
else
count1 = length(unique(n1))
new_count = c(p1,p2,count1)
names(new_count) = c('SOURCE','TARGET','count')
all_count = rbind(all_count, new_count)
}
all_count = all_count[-1,]
####### count interactions
count1 = c()
for(i in 1:length(pairs1))
{
p1 = strsplit(pairs1[i], split_sep)[[1]][1]
p2 = strsplit(pairs1[i], split_sep)[[1]][2]
n1 = intr_pairs[which(all_intr[,pairs1[i]]<=pvalue)]
pairs_rev = paste(p2, p1, sep=join_sep)
n2 = intr_pairs[which(all_intr[,pairs_rev]<=pvalue)]
if(p1!=p2)
count1 = c(count1,length(unique(n1))+length(unique(n2)))
else
count1 = c(count1,length(unique(n1)))
}
if (any(count1)>0)
{
count_matrix = matrix(count1, nrow=length(unique(meta[,2])), ncol=length(unique(meta[,2])))
rownames(count_matrix)= unique(meta[,2])
colnames(count_matrix)= unique(meta[,2])
return(count_matrix)
}
else {
stop("There are no significant results using p-value of: ", pvalue, call.=FALSE)
}
}
#' dot plot for cellphone output
#'
#' @param selected_rows vector of row names in pvalue.txt' interacting_pair
#' @param selected_columns vector of col names in pvalue.txt
#' @param means_path the cellphone method analysis out's means.txt file
#' @param pvalues_path the cellphone method analysis out's pvalues.txt file
#' @param filename plot filename
#' @export
#'
CPDBDotplot <- function(selected_rows = NULL,
selected_columns = NULL,
filename = 'plot.pdf',
width = 8,
height = 10,
means_path = './means.txt',
pvalues_path = './pvalues.txt',
means_separator = '\t',
pvalues_separator = '\t',
output_extension = '.pdf'
){
require(ggplot2)
all_pval = read.table(pvalues_path, header=T, stringsAsFactors = F, sep=means_separator, comment.char = '', check.names=F)
all_means = read.table(means_path, header=T, stringsAsFactors = F, sep=pvalues_separator, comment.char = '', check.names=F)
intr_pairs = all_pval$interacting_pair
all_pval = all_pval[,-c(1:11)]
all_means = all_means[,-c(1:11)]
if(is.null(selected_rows)){
selected_rows = intr_pairs
}
if(is.null(selected_columns)){
selected_columns = colnames(all_pval)
}
sel_pval = all_pval[match(selected_rows, intr_pairs), selected_columns]
sel_means = all_means[match(selected_rows, intr_pairs), selected_columns]
df_names = expand.grid(selected_rows, selected_columns)
pval = unlist(sel_pval)
pval[pval==0] = 0.0009
plot.data = cbind(df_names,pval)
pr = unlist(as.data.frame(sel_means))
pr[pr==0] = 1
plot.data = cbind(plot.data,log2(pr))
colnames(plot.data) = c('pair', 'clusters', 'pvalue', 'mean')
my_palette <- colorRampPalette(c("black", "blue", "yellow", "red"), alpha=TRUE)(n=399)
p<-ggplot(plot.data,aes(x=clusters,y=pair)) +
geom_point(aes(size=-log10(pvalue),color=mean)) +
scale_color_gradientn('Log2 mean (Molecule 1, Molecule 2)', colors=my_palette) +
theme_bw() +
theme(panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
axis.text=element_text(size=14, colour = "black"),
axis.text.x = element_text(angle = 90, hjust = 1),
axis.text.y = element_text(size=12, colour = "black"),
axis.title=element_blank(),
panel.border = element_rect(size = 0.7, linetype = "solid", colour = "black"))
if (output_extension == '.pdf') {
ggsave(filename, plot=p,width = width, height = height, device = cairo_pdf, limitsize=F)
}
else {
ggsave(filename, plot=p,width = width, height = height, limitsize=F)
}
}
#' heatmap plot for cellphone output
#'
#' @param meta_file meta data file,cell_meta.txt
#' @param pvalues_file the cellphone method analysis out's pvalues.txt file
#' @param pvaue pvalue Threshold.
#' @export
#'
CPDBHeatmaps <- function(meta_file=NULL,
pvalues_file=NULL,
count_filename="count_heatmap.pdf",
log_filename="logcount_heatmap.pdf",
count_network_filename="count_network.txt",
interaction_count_filename="interaction_count.txt",
count_network_separator="\t",
interaction_count_separator="\t",
show_rownames = T,
show_colnames = T,
scale="none",
cluster_cols = T,
border_color='white',
cluster_rows = T,
fontsize_row=11,
fontsize_col = 11,
main = '',
treeheight_row=0,
family='Arial',
treeheight_col = 0,
col1 = "dodgerblue4",
col2 = 'peachpuff',
col3 = 'deeppink4',
meta_sep='\t',
pvalues_sep='\t',
pvalue=0.05){
####### Network
require(heatmap)
meta = read.csv(meta_file, comment.char = '', sep=meta_sep)
all_intr = read.table(pvalues_file, header=T, stringsAsFactors = F, sep=pvalues_sep, comment.char = '', check.names = F)
intr_pairs = all_intr$interacting_pair
all_intr = all_intr[,-c(1:11)]
split_sep = '\\|'
join_sep = '|'
pairs1_all = unique(meta[,2])
pairs1 = c()
for (i in 1:length(pairs1_all))
for (j in 1:length(pairs1_all))
pairs1 = c(pairs1,paste(pairs1_all[i],pairs1_all[j],sep=join_sep))
all_count = matrix(ncol=3)
colnames(all_count) = c('SOURCE','TARGET','count')
count1 = c()
for(i in 1:length(pairs1))
{
p1 = strsplit(pairs1[i], split_sep)[[1]][1]
p2 = strsplit(pairs1[i], split_sep)[[1]][2]
n1 = intr_pairs[which(all_intr[,pairs1[i]]<=pvalue)]
pairs_rev = paste(p2, p1, sep=join_sep)
n2 = intr_pairs[which(all_intr[,pairs_rev]<=pvalue)]
if(p1!=p2)
count1 = length(unique(n1))+length(unique(n2))
else
count1 = length(unique(n1))
new_count = c(p1,p2,count1)
names(new_count) = c('SOURCE','TARGET','count')
all_count = rbind(all_count, new_count)
}
all_count = all_count[-1,]
write.table(all_count, count_network_filename, sep=count_network_separator, quote=F, row.names = F)
####### count interactions
count1 = c()
for(i in 1:length(pairs1))
{
p1 = strsplit(pairs1[i], split_sep)[[1]][1]
p2 = strsplit(pairs1[i], split_sep)[[1]][2]
n1 = intr_pairs[which(all_intr[,pairs1[i]]<=pvalue)]
pairs_rev = paste(p2, p1, sep=join_sep)
n2 = intr_pairs[which(all_intr[,pairs_rev]<=pvalue)]
if(p1!=p2)
count1 = c(count1,length(unique(n1))+length(unique(n2)))
else
count1 = c(count1,length(unique(n1)))
}
if (any(count1)>0)
{
count_matrix = matrix(count1, nrow=length(unique(meta[,2])), ncol=length(unique(meta[,2])))
rownames(count_matrix)= unique(meta[,2])
colnames(count_matrix)= unique(meta[,2])
all_sum = rowSums(count_matrix)
all_sum = cbind(names(all_sum), all_sum)
write.table(all_sum, file=interaction_count_filename, quote=F, sep=count_network_separator, row.names=F)
col.heatmap <- colorRampPalette(c(col1,col2,col3 ))( 1000 )
pheatmap(count_matrix, show_rownames = show_rownames, show_colnames = show_colnames, scale=scale, cluster_cols = cluster_cols,
border_color=border_color, cluster_rows = cluster_rows, fontsize_row = fontsize_row, fontsize_col = fontsize_col,
main = main, treeheight_row = treeheight_row, family = family,color = col.heatmap, treeheight_col = treeheight_col, filename = count_filename)
pheatmap(log(count_matrix+1), show_rownames = show_rownames, show_colnames = show_colnames, scale=scale, cluster_cols = cluster_cols,
border_color=border_color, cluster_rows = cluster_rows, fontsize_row = fontsize_row, fontsize_col = fontsize_col,
main = main, treeheight_row = treeheight_row, family = family,color = col.heatmap, treeheight_col = treeheight_col, filename = log_filename)
} else {
stop("There are no significant results using p-value of: ", pvalue, call.=FALSE)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.