Nothing
###############################################################################
# ______ __
# / ____/_ __/ /_ ___
# / / / / / / __ \/ _ \
# / /___/ /_/ / /_/ / __/
# \____/\__,_/_.___/\___/
#
# MGDrivE: Mosquito Gene Drive Explorer
# CRISPR 2 Resistance Alleles Inheritance Cube - Sex-Specific homing
# Héctor Sanchez, Jared Bennett, Sean Wu, John Marshall
# July 2017
# jared_bennett@berkeley.edu
# December 2018
# Modified to reflect new cutting, homing, resistance generation rates
#
###############################################################################
#' Inheritance Cube: CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) X-linked with 2 Resistance Allele and Maternal Deposition
#'
#' This is an X-linked version of the 2 allele cube. It assumes that the construct
#' is on the X chromosome and there is no male homing. It also has maternal deposition,
#' i.e., when the male provides a W allele to a female with an H allele, some portion
#' are cut during oogenesis.
#' If the deposition parameters are zero (*D parameters), this is just
#' an X-linked drive.
#'
#' @param cF Female cutting rate
#' @param chF Female proper homing rate
#' @param crF Female no-cost resistance generation rate
#' @param dF Female deposition cutting rate
#' @param dhF Female deposition proper homing rate
#' @param drF Female deposition no-cost resistance generation rate
#' @param eta Genotype-specific mating fitness
#' @param phi Genotype-specific sex ratio at emergence
#' @param omega Genotype-specific multiplicative modifier of adult mortality
#' @param xiF Genotype-specific female pupatory success
#' @param xiM Genotype-specific male pupatory success
#' @param s Genotype-specific fractional reduction(increase) in fertility
#'
#' @return Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele,
#' and all genotype-specific parameters.
#' @export
cubeXHomingDeposition <- function(cF=1.0, chF=0, crF=0, dF=0, dhF=0, drF=0,
eta = NULL, phi = NULL, omega = NULL, xiF = NULL,
xiM = NULL, s = NULL){
## safety checks
if(any(c(cF,chF,crF,dF,dhF,drF)>1) || any(c(cF,chF,crF,dF,dhF,drF)<0)){
stop("Parameters are rates, they must be between 0 and 1.")
}
## define matrices
## Matrix Dimensions Key: [femaleGenotype,maleGenotype,offspringGenotype]
gtype <- c('WW', 'WH', 'WR', 'WB', 'WY',
'HH', 'HR', 'HB', 'HY',
'RR', 'RB', 'RY', 'BB', 'BY')
size <- length(gtype) #because I use it several times
tMatrix <- array(data=0, dim=c(size, size, size), dimnames=list(gtype, gtype, gtype)) #transition matrix
## fill tMatrix with probabilities
tMatrix['WW','WY',c('WW','WY')] <- c(1,1)/2
tMatrix['WW','HY',c('WH','WY')] <- c(1,1)/2
tMatrix['WW','RY',c('WR','WY')] <- c(1,1)/2
tMatrix['WW','BY',c('WB','WY')] <- c(1,1)/2
tMatrix['WH','WY', ] <- c((1-cF)*(1-dF), (1+cF*chF)*(1-dF), (1-cF)*dF*drF+cF*(1-chF)*crF*(1-dF), (1-cF)*dF*(1-drF) + cF*(1-chF)*(1-crF)*(1-dF), 1-cF,
(1+cF*chF)*(dF*dhF), (1+cF*chF)*dF*(1-dhF)*drF, (1+cF*chF)*dF*(1-dhF)*(1-drF), (1+cF*chF),
cF*(1-chF)*crF*dF*drF, cF*(1-chF)*crF*dF*(1-drF) + cF*(1-chF)*(1-crF)*dF*drF, cF*(1-chF)*crF,
cF*(1-chF)*(1-crF)*dF*(1-drF), cF*(1-chF)*(1-crF))/4
tMatrix['WH','HY',c('WH','HH','HR','HB',
'WY','HY','RY','BY')] <- c(1-cF, 1+cF*chF, cF*(1-chF)*crF, cF*(1-chF)*(1-crF),
1-cF, 1+cF*chF, cF*(1-chF)*crF, cF*(1-chF)*(1-crF))/4
tMatrix['WH','RY',c('WR','HR','RR','RB',
'WY','HY','RY','BY')] <- c(1-cF, 1+cF*chF, cF*(1-chF)*crF, cF*(1-chF)*(1-crF),
1-cF, 1+cF*chF, cF*(1-chF)*crF, cF*(1-chF)*(1-crF))/4
tMatrix['WH','BY',c('WB','HB','RB','BB',
'WY','HY','RY','BY')] <- c(1-cF, 1+cF*chF, cF*(1-chF)*crF, cF*(1-chF)*(1-crF),
1-cF, 1+cF*chF, cF*(1-chF)*crF, cF*(1-chF)*(1-crF))/4
tMatrix['WR','WY',c('WW','WR','WY','RY')] <- c(1,1,1,1)/4
tMatrix['WR','HY',c('WH','HR','WY','RY')] <- c(1,1,1,1)/4
tMatrix['WR','RY',c('WR','RR','WY','RY')] <- c(1,1,1,1)/4
tMatrix['WR','BY',c('WB','RB','WY','RY')] <- c(1,1,1,1)/4
tMatrix['WB','WY',c('WW','WB','WY','BY')] <- c(1,1,1,1)/4
tMatrix['WB','HY',c('WH','HB','WY','BY')] <- c(1,1,1,1)/4
tMatrix['WB','RY',c('WR','RB','WY','BY')] <- c(1,1,1,1)/4
tMatrix['WB','BY',c('WB','BB','WY','BY')] <- c(1,1,1,1)/4
tMatrix['HH','WY',c('WH','HH','HR','HB','HY')] <- c(1-dF, dF*dhF, dF*(1-dhF)*drF, dF*(1-dhF)*(1-drF),1)/2
tMatrix['HH','HY',c('HH','HY')] <- c(1,1)/2
tMatrix['HH','RY',c('HR','HY')] <- c(1,1)/2
tMatrix['HH','BY',c('HB','HY')] <- c(1,1)/2
tMatrix['HR','WY',c('WH','WR','HH','HR',
'HB','RR','RB','HY','RY')] <- c(1-dF, 1-dF, dF*dhF, dF*(1-dhF)*drF,
dF*(1-dhF)*(1-drF), dF*drF, dF*(1-drF),1,1)/4
tMatrix['HR','HY',c('HH','HR','HY','RY')] <- c(1,1,1,1)/4
tMatrix['HR','RY',c('HR','RR','HY','RY')] <- c(1,1,1,1)/4
tMatrix['HR','BY',c('HB','RB','HY','RY')] <- c(1,1,1,1)/4
tMatrix['HB','WY',c('WH','WB','HH','HR',
'HB','RB','BB','HY','BY')] <- c(1-dF, 1-dF, dF*dhF, dF*(1-dhF)*drF,
dF*(1-dhF)*(1-drF), dF*drF, dF*(1-drF),1,1)/4
tMatrix['HB','HY',c('HH','HB','HY','BY')] <- c(1,1,1,1)/4
tMatrix['HB','RY',c('HR','RB','HY','BY')] <- c(1,1,1,1)/4
tMatrix['HB','BY',c('HB','BB','HY','BY')] <- c(1,1,1,1)/4
tMatrix['RR','WY',c('WR','RY')] <- c(1,1)/2
tMatrix['RR','HY',c('HR','RY')] <- c(1,1)/2
tMatrix['RR','RY',c('RR','RY')] <- c(1,1)/2
tMatrix['RR','BY',c('RB','RY')] <- c(1,1)/2
tMatrix['RB','WY',c('WR','WB','RY','BY')] <- c(1,1,1,1)/4
tMatrix['RB','HY',c('HR','HB','RY','BY')] <- c(1,1,1,1)/4
tMatrix['RB','RY',c('RR','RB','RY','BY')] <- c(1,1,1,1)/4
tMatrix['RB','BY',c('RB','BB','RY','BY')] <- c(1,1,1,1)/4
tMatrix['BB','WY',c('WB','BY')] <- c(1,1)/2
tMatrix['BB','HY',c('HB','BY')] <- c(1,1)/2
tMatrix['BB','RY',c('RB','BY')] <- c(1,1)/2
tMatrix['BB','BY',c('BB','BY')] <- c(1,1)/2
#protection from underflow errors
tMatrix[tMatrix < .Machine$double.eps] <- 0
## initialize viability mask. No mother/father-specific death, so use basic mask
viabilityMask <- array(data = 1, dim = c(size,size,size), dimnames = list(gtype, gtype, gtype))
## genotype-specific modifiers
if(!is.null(phi)){
stop("This cube has a special phi, due to being male/female specific.
Please edit it after the cube is built, if you are absolutely sure it needs to change.")
}
phi = setNames(object = c(1,1,1,1,0,1,1,1,0,1,1,0,1,0), nm = gtype)
modifiers = cubeModifiers(gtype, eta = eta, phi = phi, omega = omega, xiF = xiF, xiM = xiM, s = s)
## put everything into a labeled list to return
return(list(
ih = tMatrix,
tau = viabilityMask,
genotypesID = gtype,
genotypesN = size,
wildType = c("WW","WY"),
eta = modifiers$eta,
phi = modifiers$phi,
omega = modifiers$omega,
xiF = modifiers$xiF,
xiM = modifiers$xiM,
s = modifiers$s,
releaseType = "HY"
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.