Nothing
# These functions are
# Copyright (C) 1998-2024 T.W. Yee, University of Auckland.
# All rights reserved.
gaitdpoisson.control <-
gaitdlog.control <-
gaitdzeta.control <-
gaitdnbinomial.control <- # Overwrites the summary() default.
function(summary.HDEtest = FALSE,
...) {
list(summary.HDEtest = summary.HDEtest)
}
goffset <-
function(mux, n,
a.mix = NULL, i.mix = NULL, d.mix = NULL,
a.mlm = NULL, i.mlm = NULL, d.mlm = NULL,
par1or2 = 1
) {
if (!is.Numeric(mux, integer.valued = TRUE, positive = TRUE,
length.arg = 1))
stop("bad input for argument 'mux'")
if (!is.Numeric(n, integer.valued = TRUE, positive = TRUE,
length.arg = 1))
stop("bad input for argument 'n'")
if (!is.Numeric(par1or2, integer.valued = TRUE, positive = TRUE,
length.arg = 1) || par1or2 > 2)
stop("bad input for argument 'par1or2'")
gaitd.errorcheck(a.mix, a.mlm, i.mix, i.mlm,
d.mix, d.mlm) # , truncate
la.mix <- length(a.mix <- sort(a.mix))
li.mix <- length(i.mix <- sort(i.mix))
ld.mix <- length(d.mix <- sort(d.mix))
la.mlm <- length(a.mlm)
li.mlm <- length(i.mlm)
ld.mlm <- length(d.mlm)
tmp3.TF <- c(rep(TRUE, par1or2),
la.mix > 0, rep(la.mix > 1, par1or2),
li.mix > 0, rep(li.mix > 1, par1or2),
ld.mix > 0, rep(ld.mix > 1, par1or2),
la.mlm > 0, li.mlm > 0, ld.mlm > 0)
indeta.finish <- cumsum(c(rep(1, par1or2),
1, rep(1, par1or2),
1, rep(1, par1or2),
1, rep(1, par1or2),
la.mlm, li.mlm, ld.mlm,
ld.mlm + 1) * c(tmp3.TF, 1))
indeta.launch <- c(1, 1 + head(indeta.finish, -1))
indeta.launch <- head(indeta.launch, -1)
indeta.finish <- head(indeta.finish, -1)
indeta.launch[!tmp3.TF] <- NA # Not to be accessed
indeta.finish[!tmp3.TF] <- NA # Not to be accessed
indeta <- cbind(launch = indeta.launch,
finish = indeta.finish)
if (FALSE && par1or2 == 1)
rownames(indeta) <- c("lambda.p",
"pobs.mix", "lambda.a",
"pstr.mix", "lambda.i",
"pdip.mix", "lambda.d",
"pobs.mlm", "pstr.mlm", "pdip.mlm")
if (FALSE && par1or2 == 2)
rownames(indeta) <- c("munb.p", "size.p",
"pobs.mix", "munb.a", "size.a",
"pstr.mix", "munb.i", "size.i",
"pdip.mix", "munb.d", "size.d",
"pobs.mlm", "pstr.mlm", "pdip.mlm")
M1 <- max(indeta, na.rm = TRUE)
Mat <- matrix(0, n, M1)
colptr <- indeta[if (par1or2 == 1) c(1, 3, 5, 7) else
c(1, 4, 7, 10), 'launch']
colptr <- na.omit(colptr)
Mat[, colptr] <- log(mux)
Mat
} # goffset
cm3gaitd <-
function(eq.ap = FALSE, eq.ip = FALSE, eq.dp = FALSE, npar = 1) {
M <- 4 * npar + 3
use.mat.mix <- diag(M) # Full model constraint matrices
if ( (eq.ap) && (eq.ip) && (eq.dp))
use.mat.mix <- matrix(c(1, 0, 0, 0,
0, 1, 0, 0,
1, 0, 0, 0,
0, 0, 1, 0,
1, 0, 0, 0,
0, 0, 0, 1,
1, 0, 0, 0), 7, 4, byrow = TRUE)
if ( (eq.ap) && (eq.ip) && !(eq.dp))
use.mat.mix <- matrix(c(1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
1, 0, 0, 0, 0,
0, 0, 1, 0, 0,
1, 0, 0, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 1), 7, 5, byrow = TRUE)
if ( (eq.ap) && !(eq.ip) && (eq.dp))
use.mat.mix <- matrix(c(1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
1, 0, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 0, 1,
0, 0, 0, 1, 0,
1, 0, 0, 0, 0), 7, 5, byrow = TRUE)
if ( (eq.ap) && !(eq.ip) && !(eq.dp))
use.mat.mix <- matrix(c(1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 1, 0,
0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 1), 7, 6, byrow = TRUE)
if (!(eq.ap) && (eq.ip) && (eq.dp))
use.mat.mix <- matrix(c(1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 0, 0, 1,
0, 0, 1, 0, 0,
1, 0, 0, 0, 0,
0, 0, 0, 1, 0,
1, 0, 0, 0, 0), 7, 5, byrow = TRUE)
if (!(eq.ap) && (eq.ip) && !(eq.dp))
use.mat.mix <- matrix(c(1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 1), 7, 6, byrow = TRUE)
if (!(eq.ap) && !(eq.ip) && (eq.dp))
use.mat.mix <- matrix(c(1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 0, 0,
1, 0, 0, 0, 0, 0), 7, 6, byrow = TRUE)
if (eq.ap + eq.ip + eq.dp && npar > 1) {
use.mat.mix <- kronecker(use.mat.mix, diag(npar))
ind.keep <- seq(npar + 1)
ind.keep <- c(ind.keep, 2*npar + seq(npar + 1))
ind.keep <- c(ind.keep, 4*npar + seq(npar + 1))
ind.keep <- c(ind.keep, 6*npar + seq(npar))
use.mat.mix <- use.mat.mix[ind.keep, ]
}
use.mat.mix
} # cm3gaitd
gaitdpoisson <-
function(a.mix = NULL, i.mix = NULL,
d.mix = NULL,
a.mlm = NULL, i.mlm = NULL, # Unstructured probs are
d.mlm = NULL, # contiguous
truncate = NULL, max.support = Inf,
zero = c("pobs", "pstr", "pdip"), # Pruned, handles all 6
eq.ap = TRUE, eq.ip = TRUE, eq.dp = TRUE,
parallel.a = FALSE, parallel.i = FALSE,
parallel.d = FALSE,
llambda.p = "loglink",
llambda.a = llambda.p, # "loglink", 20201117
llambda.i = llambda.p, # "loglink", 20201117
llambda.d = llambda.p, # "loglink", 20211011
type.fitted = c("mean", "lambdas",
"pobs.mlm", "pstr.mlm", "pdip.mlm",
"pobs.mix", "pstr.mix", "pdip.mix",
"Pobs.mix", "Pstr.mix", "Pdip.mix",
"nonspecial", "Numer", "Denom.p",
"sum.mlm.i", "sum.mix.i",
"sum.mlm.d", "sum.mix.d",
"ptrunc.p", "cdf.max.s"),
gpstr.mix = ppoints(7) / 3, # ppoints(9) / 2,
gpstr.mlm = ppoints(7) / (3 + length(i.mlm)),
imethod = 1,
mux.init = c(0.75, 0.5, 0.75), # Order is A, I, D.
ilambda.p = NULL, ilambda.a = ilambda.p,
ilambda.i = ilambda.p, ilambda.d = ilambda.p,
ipobs.mix = NULL, ipstr.mix = NULL, # 0.25,
ipdip.mix = NULL, # 0.01, # Easy but inflexible 0.01
ipobs.mlm = NULL, ipstr.mlm = NULL, # 0.25,
ipdip.mlm = NULL, # 0.01, # NULL, Easy but inflexible
byrow.aid = FALSE,
ishrinkage = 0.95,
probs.y = 0.35) {
mux.init <- rep_len(mux.init, 3)
if (length(a.mix) == 0) a.mix <- NULL
if (length(i.mix) == 0) i.mix <- NULL
if (length(d.mix) == 0) d.mix <- NULL
if (length(a.mlm) == 0) a.mlm <- NULL
if (length(i.mlm) == 0) i.mlm <- NULL
if (length(d.mlm) == 0) d.mlm <- NULL
if (length(truncate) == 0) truncate <- NULL
lowsup <- 0
gaitd.errorcheck(a.mix, a.mlm, i.mix, i.mlm,
d.mix, d.mlm, truncate, max.support,
min.support = lowsup)
la.mix <- length(a.mix <- sort(a.mix))
li.mix <- length(i.mix <- sort(i.mix))
ld.mix <- length(d.mix <- sort(d.mix))
la.mlm <- length(a.mlm)
li.mlm <- length(i.mlm)
ld.mlm <- length(d.mlm)
ltruncat <- length(truncate <- sort(truncate))
ltrunc.use <- ltruncat > 0 || !is.infinite(max.support)
llambda.p <- as.list(substitute(llambda.p))
elambda.p <- link2list(llambda.p)
llambda.p <- attr(elambda.p, "function.name")
llambda.p.save <- llambda.p
lpobs.mix <- "multilogitlink" # \omega_p
epobs.mix <- list() # zz NULL for now 20200907 coz 'multilogitlink'
elambda.a <- link2list(llambda.a)
llambda.a <- attr(elambda.a, "function.name")
lpstr.mix <- "multilogitlink" # \phi_p
epstr.mix <- list() # zz NULL for now 20200907 coz 'multilogitlink'
lpdip.mix <- "multilogitlink" # zz unsure 20211002
epdip.mix <- list() # zz unsure 20211002
elambda.i <- link2list(llambda.i)
llambda.i <- attr(elambda.i, "function.name")
elambda.d <- link2list(llambda.d)
llambda.d <- attr(elambda.d, "function.name")
if (is.vector(zero) && is.character(zero) && length(zero) == 3) {
if (li.mix + li.mlm == 0)
zero <- setdiff(zero, "pstr")
if (la.mix + la.mlm == 0)
zero <- setdiff(zero, "pobs")
if (ld.mix + ld.mlm == 0)
zero <- setdiff(zero, "pdip")
if (length(zero) == 0)
zero <- NULL # Better than character(0)
}
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
if (lall.len + ltruncat == 0 && is.infinite(max.support))
return(eval(substitute(
poissonff(link = .llambda.p.save , zero = NULL),
list( .llambda.p.save = llambda.p.save))))
if (!is.logical(eq.ap) || length(eq.ap) != 1)
stop("argument 'eq.ap' must be a single logical")
if (!is.logical(eq.ip) || length(eq.ip) != 1)
stop("argument 'eq.ip' must be a single logical")
if (!is.logical(parallel.a) || length(parallel.a) != 1)
stop("argument 'parallel.a' must be a single logical")
if (!is.logical(parallel.i) || length(parallel.i) != 1)
stop("argument 'parallel.i' must be a single logical")
if (!is.logical(parallel.d) || length(parallel.d) != 1)
stop("argument 'parallel.d' must be a single logical")
if (FALSE) { # Comment this out to allow default eq.ap=TRUE, etc.
if (la.mix <= 1 && eq.ap)
stop("<= one unstructured altered value (no 'lambda.a')",
", so setting 'eq.ap = TRUE' is meaningless")
if (li.mix <= 1 && eq.ip)
stop("<= one unstructured inflated value (no 'lambda.i')",
", so setting 'eq.ip = TRUE' is meaningless")
if (ld.mix <= 1 && eq.dp)
stop("<= one unstructured deflated value (no 'lambda.d')",
", so setting 'eq.dp = TRUE' is meaningless")
if (la.mlm <= 1 && parallel.a) # Only \omega_1
stop("<= one altered mixture probability, 'pobs", a.mlm,
"', so setting 'parallel.a = TRUE' is meaningless")
if (li.mlm <= 1 && parallel.i) # Only \phi_1
stop("<= one inflated mixture probability, 'pstr", i.mlm,
"', so setting 'parallel.i = TRUE' is meaningless")
if (ld.mlm <= 1 && parallel.d) # Only \psi_1
stop("<= one deflated mixture probability, 'pdip", d.mlm,
"', so setting 'parallel.d = TRUE' is meaningless")
} # FALSE
type.fitted.choices <-
c("mean", "lambdas",
"pobs.mlm", "pstr.mlm", "pdip.mlm",
"pobs.mix", "pstr.mix", "pdip.mix",
"Pobs.mix", "Pstr.mix", "Pdip.mix",
"nonspecial", "Numer", "Denom.p",
"sum.mlm.i", "sum.mix.i",
"sum.mlm.d", "sum.mix.d",
"ptrunc.p", "cdf.max.s")
type.fitted <- match.arg(type.fitted[1], type.fitted.choices)[1]
tmp7a <- if (la.mlm) paste0("pobs.mlm", a.mlm) else NULL
tmp7b <- if (li.mlm) paste0("pstr.mlm", i.mlm) else NULL
tmp7c <- if (ld.mlm) paste0("pdip.mlm", d.mlm) else NULL
tmp3 <- c(lambda.p = llambda.p,
pobs.mix = if (la.mix) "multilogitlink" else NULL,
lambda.a = if (la.mix > 1) llambda.a else NULL,
pstr.mix = if (li.mix) "multilogitlink" else NULL,
lambda.i = if (li.mix > 1) llambda.i else NULL,
pdip.mix = if (ld.mix) "multilogitlink" else NULL,
lambda.d = if (ld.mix > 1) llambda.d else NULL,
if (la.mlm) rep("multilogitlink", la.mlm) else NULL,
if (li.mlm) rep("multilogitlink", li.mlm) else NULL,
if (ld.mlm) rep("multilogitlink", ld.mlm) else NULL)
Ltmp3 <- length(tmp3)
if (la.mlm + li.mlm + ld.mlm)
names(tmp3)[(Ltmp3 - la.mlm - li.mlm - ld.mlm + 1):Ltmp3] <-
c(tmp7a, tmp7b, tmp7c)
par1or2 <- 1 # 2
tmp3.TF <- c(TRUE, la.mix > 0, la.mix > 1,
li.mix > 0, li.mix > 1,
ld.mix > 0, ld.mix > 1,
la.mlm > 0, li.mlm > 0, ld.mlm > 0)
indeta.finish <- cumsum(c(par1or2, 1, par1or2,
1, par1or2,
1, par1or2,
la.mlm, li.mlm, ld.mlm,
ld.mlm + 1) * c(tmp3.TF, 1))
indeta.launch <- c(1, 1 + head(indeta.finish, -1))
indeta.launch <- head(indeta.launch, -1)
indeta.finish <- head(indeta.finish, -1)
indeta.launch[!tmp3.TF] <- NA # Not to be accessed
indeta.finish[!tmp3.TF] <- NA # Not to be accessed
indeta <- cbind(launch = indeta.launch,
finish = indeta.finish)
rownames(indeta) <- c("lambda.p",
"pobs.mix", "lambda.a",
"pstr.mix", "lambda.i",
"pdip.mix", "lambda.d",
"pobs.mlm", "pstr.mlm", "pdip.mlm")
M1 <- max(indeta, na.rm = TRUE)
predictors.names <- tmp3 # Passed into @infos and @initialize.
blurb1 <- "" # zz1
if (la.mlm + la.mix) blurb1 <- "Generally-altered "
if (li.mlm + li.mix) blurb1 <- "Generally-inflated "
if (ltrunc.use) blurb1 <- "Generally-truncated "
if ( (la.mlm + la.mix) && (li.mlm + li.mix) && !ltrunc.use)
blurb1 <- "Generally-altered and -inflated "
if ( (la.mlm + la.mix) && !(li.mlm + li.mix) && ltrunc.use)
blurb1 <- "Generally-altered and -truncated "
if (!(la.mlm + la.mix) && (li.mlm + li.mix) && ltrunc.use)
blurb1 <- "Generally-inflated and -truncated "
if ( (la.mlm + la.mix) && (li.mlm + li.mix) && ltrunc.use)
blurb1 <- "Generally-altered, -inflated and -truncated "
if (ld.mlm + ld.mix) blurb1 <-
c(blurb1,
if (la.mlm + la.mix + li.mlm + li.mix) "and " else "Generally",
"-deflated ")
new("vglmff",
blurb = c(blurb1, "Poisson regression\n",
"(GAITD-Pois(lambda.p)-",
"Pois(lambda.a)-MLM-",
"Pois(lambda.i)-MLM-\n",
"Pois(lambda.d)-MLM generally)\n\n",
"Links: ",
namesof("lambda.p", llambda.p, earg = elambda.p,
tag = FALSE),
if (la.mix > 0) c(", ", "multilogit(pobs.mix)"),
if (la.mix > 1) c(", ",
namesof("lambda.a", llambda.a, elambda.a, tag = FALSE)),
if (la.mix && li.mix) ", \n ",
if (li.mix > 0) c( if (la.mix) "" else ", ",
"multilogit(pstr.mix)"),
if (li.mix > 1) c(", ",
namesof("lambda.i", llambda.i, elambda.i, tag = FALSE)),
if (li.mix && ld.mix) ", \n ",
if (ld.mix > 0) c( if (li.mix) "" else ", ",
"multilogit(pdip.mix)"),
if (ld.mix > 1) c(", ",
namesof("lambda.d", llambda.d, elambda.d, tag = FALSE)),
if (la.mlm) paste0(",\n",
paste0(" multilogit(", tmp7a, collapse = "),\n"),
")") else NULL,
if (li.mlm) paste0(",\n",
paste0(" multilogit(", tmp7b, collapse = "),\n"),
")") else NULL,
if (ld.mlm) paste0(",\n",
paste0(" multilogit(", tmp7c, collapse = "),\n"),
")") else NULL),
constraints = eval(substitute(expression({
M1 <- max(extra$indeta, na.rm = TRUE)
la.mix <- ( .la.mix )
li.mix <- ( .li.mix )
ld.mix <- ( .ld.mix )
la.mlm <- ( .la.mlm )
li.mlm <- ( .li.mlm )
ld.mlm <- ( .ld.mlm )
use.mat.mlm.a <- if (la.mlm) {
if ( .parallel.a ) matrix(1, la.mlm, 1) else diag(la.mlm)
} else {
NULL
}
use.mat.mlm.i <- if (li.mlm) {
if ( .parallel.i ) matrix(1, li.mlm, 1) else diag(li.mlm)
} else {
NULL
}
use.mat.mlm.d <- if (ld.mlm) {
if ( .parallel.d ) matrix(1, ld.mlm, 1) else diag(ld.mlm)
} else {
NULL
}
if (la.mlm + li.mlm + ld.mlm == 0) {
Use.mat <- use.mat.mlm <- cbind(M) # lambda.p only
}
if (la.mlm + li.mlm + ld.mlm) {
nc1 <- if (length(use.mat.mlm.a)) ncol(use.mat.mlm.a) else 0
nc2 <- if (length(use.mat.mlm.i)) ncol(use.mat.mlm.i) else 0
nc3 <- if (length(use.mat.mlm.d)) ncol(use.mat.mlm.d) else 0
use.mat.mlm <- cbind(1, matrix(0, 1, nc1 + nc2 + nc3))
if (la.mlm)
use.mat.mlm <- rbind(use.mat.mlm,
cbind(matrix(0, la.mlm, 1),
use.mat.mlm.a,
if (length(use.mat.mlm.i) == 0)
NULL else matrix(0, la.mlm, nc2),
if (length(use.mat.mlm.d) == 0)
NULL else matrix(0, la.mlm, nc3)))
if (li.mlm )
use.mat.mlm <-
rbind(use.mat.mlm,
cbind(matrix(0, li.mlm, 1 + nc1),
use.mat.mlm.i,
matrix(0, li.mlm, nc3)))
if (ld.mlm)
use.mat.mlm <-
rbind(use.mat.mlm, # zz1 next line:
cbind(matrix(0, ld.mlm, 1 + nc1 + nc2),
use.mat.mlm.d))
} # la.mlm + li.mlm
tmp3.TF <- ( .tmp3.TF ) # Logical of length 10.
use.mat.mix <- cm3gaitd( .eq.ap , .eq.ip , .eq.dp , npar = 1)
tmp3.subset <- tmp3.TF[-(8:10)]
use.mat.mix <- use.mat.mix[tmp3.subset, , drop = FALSE]
notall0 <- function(x) !all(x == 0)
use.mat.mix <- use.mat.mix[, apply(use.mat.mix, 2, notall0),
drop = FALSE]
if (la.mix + li.mix + ld.mix > 0)
Use.mat <- use.mat.mix
if (la.mlm + li.mlm + ld.mlm > 0) {
Use.mat <- rbind(use.mat.mix,
matrix(0, nrow(use.mat.mlm) - 1, # bottom
ncol(use.mat.mix)))
Use.mat <- cbind(Use.mat,
matrix(0, nrow(Use.mat), # RHS
ncol(use.mat.mlm) - 1))
Use.mat[row(Use.mat) > nrow(use.mat.mix) &
col(Use.mat) > ncol(use.mat.mix)] <-
use.mat.mlm[-1, -1]
} # la.mlm + li.mlm + ld.mlm > 0
if (is.null(constraints)) {
constraints <-
cm.VGAM(Use.mat, x = x, apply.int = TRUE, # FALSE
bool = .eq.ap || .eq.ip || .eq.dp ||
.parallel.a || .parallel.i || .parallel.d ,
constraints = constraints) # FALSE
} # is.null(constraints)
if (la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm)
constraints <-
cm.zero.VGAM(constraints, x = x, .zero , M = M, M1 = M1,
predictors.names = paste0(predictors.names,
names(predictors.names)))
}),
list( .zero = zero, .tmp3.TF = tmp3.TF, # .tmp3 = tmp3,
.eq.ap = eq.ap, .eq.ip = eq.ip, .eq.dp = eq.dp,
.parallel.a = parallel.a, .parallel.i = parallel.i,
.parallel.d = parallel.d,
.la.mlm = la.mlm, .li.mlm = li.mlm, .ld.mlm = ld.mlm,
.la.mix = la.mix, .li.mix = li.mix, .ld.mix = ld.mix ))),
infos = eval(substitute(function(...) {
list(M1 = .M1 ,
Q1 = 1,
dpqrfun = "gaitdpois",
link = .predictors.names , # ...strips... from above
link1parameter = as.logical( .lall.len <= 2), # <= 1 safer
mixture.links = any(c( .la.mlm , .li.mlm , .ld.mlm ,
.la.mix , .li.mix ,
.ld.mix ) > 1), # FALSE if NULL
a.mix = as.vector( .a.mix ), # Handles NULL
a.mlm = as.vector( .a.mlm ),
i.mix = as.vector( .i.mix ),
i.mlm = as.vector( .i.mlm ),
d.mix = as.vector( .d.mix ),
d.mlm = as.vector( .d.mlm ),
truncate = as.vector( .truncate ),
max.support = as.vector( .max.support ),
Support = c( .lowsup , Inf, 1), # a(b)c format as a,c,b.
expected = TRUE,
multipleResponses = FALSE, # poissonff can be called if TRUE
parameters.names = names( .predictors.names ),
parent.name = c("poissonff", "pois"),
type.fitted = as.vector( .type.fitted ),
type.fitted.choices = ( .type.fitted.choices ),
baseparams.argnames = "lambda",
MM1 = 1, # One parameter for 1 response (lambda). Needed.
zero = .zero )
}, list( .zero = zero, .lowsup = lowsup,
.type.fitted = type.fitted,
.type.fitted.choices = type.fitted.choices,
.llambda.p = llambda.p, .elambda.p = elambda.p,
.llambda.a = llambda.a, .elambda.a = elambda.a,
.llambda.i = llambda.i, .elambda.i = elambda.i,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.la.mlm = la.mlm, .li.mlm = li.mlm, .ld.mlm = ld.mlm,
.la.mix = la.mix, .li.mix = li.mix, .ld.mix = ld.mix,
.truncate = truncate, .max.support = max.support,
.predictors.names = predictors.names,
.M1 = M1, .lall.len = lall.len
))),
rqresslot = eval(substitute(
function(mu, y, w, eta, extra = NULL) {
if (!is.matrix(eta)) eta <- as.matrix(eta)
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
truncate <- as.vector( .truncate )
tmp3.TF <- ( .tmp3.TF ) # Logical of length 10.
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
pobs.mix <- pstr.mix <- pdip.mix <- 0 # 4 rowSums()
pobs.mlm <- pstr.mlm <- pdip.mlm <- 0 # matrix(0, NROW(eta), 1)
lambda.p <- cbind(eta2theta(eta[, 1], .llambda.p , .elambda.p ))
ind.lambda.z <- 1 # Points to lambda.p only.
lambda.a <- lambda.i <-
lambda.d <- lambda.p # Needed and doesnt corrupt the answer
if (any(tmp3.TF[c(3, 5, 7)])) { # At least 1 lambda.[aid]
ind.lambda.z <- extra$indeta[c(1, 3, 5, 7), 'launch'] # Vecs
ind.lambda.z <- c(na.omit(ind.lambda.z)) # At least 1 value
lambda.a <- if (!tmp3.TF[ 3]) lambda.p else
eta2theta(eta[, extra$indeta[3, 1]], .llambda.a , .elambda.a )
lambda.i <- if (!tmp3.TF[ 5]) lambda.p else
eta2theta(eta[, extra$indeta[5, 1]], .llambda.i , .elambda.i )
lambda.d <- if (!tmp3.TF[ 7]) lambda.p else
eta2theta(eta[, extra$indeta[7, 1]], .llambda.d , .elambda.d )
} # la.mix + li.mix + ld.mix > 0
if (lall.len) { # An MLM was fitted
allprobs <-
multilogitlink(eta[, -ind.lambda.z, drop = FALSE],
refLevel = "(Last)", # Make sure
inverse = TRUE) # rowSums == 1
if (anyNA(allprobs))
warning("there are NAs here in slot linkinv")
if (min(allprobs) == 0 || max(allprobs) == 1)
warning("fitted probabilities numerically 0 or 1 occurred")
Nextone <- 0 # Might not be used actually; 0, not 1
if (tmp3.TF[ 2])
pobs.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 4])
pstr.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 6])
pdip.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 8]) {
ind8 <- (Nextone + 1):(Nextone + la.mlm)
pobs.mlm <- allprobs[, ind8, drop = FALSE]
dimnames(pobs.mlm) <- list(rownames(eta),
as.character(a.mlm))
Nextone <- Nextone + la.mlm
}
if (tmp3.TF[ 9]) {
ind9 <- (Nextone + 1):(Nextone + li.mlm)
pstr.mlm <- allprobs[, ind9, drop = FALSE]
dimnames(pstr.mlm) <- list(rownames(eta),
as.character(i.mlm))
Nextone <- Nextone + li.mlm
}
if (tmp3.TF[10]) {
ind10 <- (Nextone + 1):(Nextone + ld.mlm)
pdip.mlm <- allprobs[, ind10, drop = FALSE]
dimnames(pdip.mlm) <- list(rownames(eta),
as.character(d.mlm))
Nextone <- Nextone + ld.mlm # Not needed
}
} # lall.len
scrambleseed <- runif(1) # To scramble the seed
qnorm(runif(length(y),
pgaitdpois(y - 1, lambda.p = lambda.p,
a.mix = a.mix, i.mix = i.mix, d.mix = d.mix,
a.mlm = a.mlm, i.mlm = i.mlm, d.mlm = d.mlm,
truncate = truncate,
max.support = as.vector( .max.support ),
lambda.a = lambda.a, lambda.i = lambda.i,
lambda.d = lambda.d,
pobs.mix = pobs.mix, pstr.mix = pstr.mix,
pdip.mix = pdip.mix,
pobs.mlm = pobs.mlm, pstr.mlm = pstr.mlm,
pdip.mlm = pdip.mlm),
pgaitdpois(y , lambda.p = lambda.p,
a.mix = a.mix, i.mix = i.mix, d.mix = d.mix,
a.mlm = a.mlm, i.mlm = i.mlm, d.mlm = d.mlm,
truncate = truncate,
max.support = as.vector( .max.support ),
lambda.a = lambda.a, lambda.i = lambda.i,
lambda.d = lambda.d,
pobs.mix = pobs.mix, pstr.mix = pstr.mix,
pdip.mix = pdip.mix,
pobs.mlm = pobs.mlm, pstr.mlm = pstr.mlm,
pdip.mlm = pdip.mlm)))
}, list(
.llambda.p = llambda.p, .elambda.p = elambda.p,
.llambda.a = llambda.a, .elambda.a = elambda.a,
.llambda.i = llambda.i, .elambda.i = elambda.i,
.llambda.d = llambda.d, .elambda.d = elambda.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.tmp3.TF = tmp3.TF,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support ))),
initialize = eval(substitute(expression({
extra$indeta <- ( .indeta ) # Avoids recomputing it several times
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
lall.len <- la.mix + li.mix + ld.mix +
la.mlm + li.mlm + ld.mlm
truncate <- as.vector( .truncate )
ltruncat <- length(truncate)
M1 <- max(extra$indeta, na.rm = TRUE)
NOS <- NCOL(y)
M <- NOS * M1
tmp3.TF <- ( .tmp3.TF )
temp5 <-
w.y.check(w = w, y = y,
Is.nonnegative.y = TRUE,
Is.integer.y = TRUE,
ncol.w.max = 1, # Since max.support = 9 is possible
ncol.y.max = 1,
out.wy = TRUE, colsyperw = 1, maximize = TRUE)
w <- temp5$w
y <- temp5$y
glist <- y.gaitcombo.check(y, truncate = truncate,
a.mlm = a.mlm, a.mix = a.mix,
i.mlm = i.mlm, i.mix = i.mix,
d.mlm = d.mlm, d.mix = d.mix,
max.support = .max.support )
extra$skip.mix.a <- glist$skip.mix.a
extra$skip.mix.i <- glist$skip.mix.i
extra$skip.mix.d <- glist$skip.mix.d
extra$skip.mlm.a <- glist$skip.mlm.a
extra$skip.mlm.i <- glist$skip.mlm.i
extra$skip.mlm.d <- glist$skip.mlm.d
extra$NOS <- NOS <- ncoly <- ncol(y) # Number of species
extra$type.fitted <- as.vector( .type.fitted )
extra$mux.init <- as.vector( .mux.init )
extra$colnames.y <- colnames(y)
extra$M1 <- M1
extra$index.M <- iam(NA, NA, M, both = TRUE) # Used in @weight
predictors.names <- ( .predictors.names ) # Got it, named
if (!length(etastart)) {
lambda.a.init <- lambda.i.init <- # Needed
lambda.d.init <-
lambda.p.init <- Init.mu(y = y, w = w, imethod = .imethod ,
imu = .ilambda.p , # x = x,
ishrinkage = .ishrinkage ,
probs.y = .probs.y )
etastart <- matrix(nrow = n, ncol = M,
theta2eta(lambda.p.init, .llambda.p , earg = .elambda.p ))
mux.more.a <- extra$mux.init[1] # 0.75 Err to slightly smaller
init.pobs.mix <- numeric(n)
if (tmp3.TF[ 2]) { # la.mix > 0
init.pobs.mix <- if (length( .ipobs.mix )) {
rep_len( .ipobs.mix , n)
} else {
is.a.mix1 <- rowSums(extra$skip.mix.a) > 0
rep(mux.more.a * sum(w[is.a.mix1]) / sum(w), n)
}
} # la.mix > 0
if (tmp3.TF[ 3]) { # Assign coln 3; la.mix > 1
lambda.a.init <- if (length( .ilambda.a ))
rep_len( .ilambda.a , n) else lambda.p.init # A vector
etastart[, 3] <-
theta2eta(lambda.a.init, .llambda.a , earg = .elambda.a )
}
init.pstr.mix <- init.pdip.mix <- numeric(n)
try.gridsearch.pstr.mix <- FALSE
if (tmp3.TF[ 4]) { # li.mix > 0
init.pstr.mix <- if (length( .ipstr.mix )) {
rep_len( .ipstr.mix , n)
} else {
try.gridsearch.pstr.mix <- TRUE
numeric(n) # Overwritten by gridsearch
}
} # li.mix > 0
if (tmp3.TF[ 5]) { # li.mix > 1
lambda.i.init <- if (length( .ilambda.i ))
rep_len( .ilambda.i , n) else lambda.p.init # A vector
etastart[, (extra$indeta[5, 'launch'])] <-
theta2eta(lambda.i.init, .llambda.i , earg = .elambda.i )
} # li.mix > 1
if (tmp3.TF[ 8]) { # la.mlm
init.pobs.mlm <- if (length( .ipobs.mlm )) {
matrix( .ipobs.mlm , n, la.mlm, byrow = .byrow.aid )
} else {
mux.more.a <- extra$mux.init[1]
init.pobs.mlm <- colSums(c(w) *
extra$skip.mlm.a) / colSums(w)
init.pobs.mlm <- init.pobs.mlm * as.vector( mux.more.a )
matrix(init.pobs.mlm, n, la.mlm, byrow = TRUE)
}
} else {
init.pobs.mlm <- matrix(0, n, 1)
}
try.gridsearch.pstr.mlm <- FALSE
if (tmp3.TF[ 9]) { # li.mlm
try.gridsearch.pstr.mlm <- !(length( .ipstr.mlm ))
init.pstr.mlm <- 0 # Might be overwritten by gridsearch
if (length( .ipstr.mlm ))
init.pstr.mlm <- as.vector( .ipstr.mlm )
init.pstr.mlm <- matrix(init.pstr.mlm, n, li.mlm,
byrow = .byrow.aid )
} else {
init.pstr.mlm <- matrix(0, n, 1)
}
init.pdip.mlm <- matrix(0, n, 2) # rowSums() needs > 1 colns.
gaitdpois.Loglikfun1.mix <-
function(pstr.mix.val, y, x, w, extraargs) {
sum(c(w) *
dgaitdpois(y, pstr.mix = pstr.mix.val,
pstr.mlm = extraargs$pstr.mlm, # Differs here
lambda.p = extraargs$lambda.p,
lambda.a = extraargs$lambda.a,
lambda.i = extraargs$lambda.i,
lambda.d = extraargs$lambda.d,
a.mix = extraargs$a.mix,
a.mlm = extraargs$a.mlm,
i.mix = extraargs$i.mix,
i.mlm = extraargs$i.mlm,
d.mix = extraargs$d.mix,
d.mlm = extraargs$d.mlm,
max.support = extraargs$max.support,
truncate = extraargs$truncate,
pobs.mix = extraargs$pobs.mix,
pobs.mlm = extraargs$pobs.mlm,
pdip.mix = extraargs$pdip.mix,
pdip.mlm = extraargs$pdip.mlm, log = TRUE))
}
gaitdpois.Loglikfun1.mlm <-
function(pstr.mlm.val, y, x, w, extraargs) {
sum(c(w) *
dgaitdpois(y, pstr.mlm = pstr.mlm.val,
pstr.mix = extraargs$pstr.mix, # Differs here
lambda.p = extraargs$lambda.p,
lambda.a = extraargs$lambda.a,
lambda.i = extraargs$lambda.i,
lambda.d = extraargs$lambda.d,
a.mix = extraargs$a.mix,
a.mlm = extraargs$a.mlm,
i.mix = extraargs$i.mix,
i.mlm = extraargs$i.mlm,
d.mix = extraargs$d.mix,
d.mlm = extraargs$d.mlm,
max.support = extraargs$max.support,
truncate = extraargs$truncate,
pobs.mix = extraargs$pobs.mix,
pobs.mlm = extraargs$pobs.mlm,
pdip.mix = extraargs$pdip.mix,
pdip.mlm = extraargs$pdip.mlm, log = TRUE))
}
gaitdpois.Loglikfun2 <-
function(pstr.mix.val, pstr.mlm.val, y, x, w, extraargs) {
sum(c(w) *
dgaitdpois(y, pstr.mix = pstr.mix.val,
pstr.mlm = pstr.mlm.val,
lambda.p = extraargs$lambda.p,
lambda.a = extraargs$lambda.a,
lambda.i = extraargs$lambda.i,
lambda.d = extraargs$lambda.d,
a.mix = extraargs$a.mix,
a.mlm = extraargs$a.mlm,
i.mix = extraargs$i.mix,
i.mlm = extraargs$i.mlm,
d.mix = extraargs$d.mix,
d.mlm = extraargs$d.mlm,
max.support = extraargs$max.support,
truncate = extraargs$truncate,
pobs.mix = extraargs$pobs.mix,
pobs.mlm = extraargs$pobs.mlm,
pdip.mix = extraargs$pdip.mix,
pdip.mlm = extraargs$pdip.mlm, log = TRUE))
}
if (li.mix + li.mlm) {
extraargs <- list(
lambda.p = lambda.p.init,
lambda.a = lambda.a.init,
lambda.i = lambda.i.init,
lambda.d = lambda.d.init,
a.mix = a.mix,
a.mlm = a.mlm,
i.mix = i.mix,
i.mlm = i.mlm,
d.mix = d.mix,
d.mlm = d.mlm,
truncate = truncate,
max.support = as.vector( .max.support ),
pobs.mix = init.pobs.mix ,
pobs.mlm = init.pobs.mlm ,
pdip.mix = init.pdip.mix ,
pdip.mlm = init.pdip.mlm )
pre.warn <- options()$warn
options(warn = -1) # Ignore warnings during gridsearch
try.this <-
if (try.gridsearch.pstr.mix && try.gridsearch.pstr.mlm) {
grid.search2( .gpstr.mix , .gpstr.mlm ,
objfun = gaitdpois.Loglikfun2,
y = y, w = w, extraargs = extraargs,
ret.objfun = TRUE)
} else if (try.gridsearch.pstr.mix) {
extraargs$pstr.mlm <- init.pstr.mlm
grid.search ( .gpstr.mix ,
objfun = gaitdpois.Loglikfun1.mix,
y = y, w = w, extraargs = extraargs,
ret.objfun = TRUE)
} else if (try.gridsearch.pstr.mlm) {
extraargs$pstr.mix <- init.pstr.mix
grid.search ( .gpstr.mlm ,
objfun = gaitdpois.Loglikfun1.mlm,
y = y, w = w, extraargs = extraargs,
ret.objfun = TRUE)
}
options(warn = pre.warn) # Restore warnings
if (any(is.na(try.this)))
warning("gridsearch returned NAs. It's going to crash.",
immediate. = TRUE)
if (try.gridsearch.pstr.mix && try.gridsearch.pstr.mlm) {
init.pstr.mix <- rep_len(try.this["Value1"], n)
init.pstr.mlm <- matrix(try.this["Value2"], n, li.mlm)
if (any(is.na(try.this)))
stop("Crashing. ",
"Try something like 'gpstr.mix = seq(5) / 100'",
" and/or 'gpstr.mlm = seq(5) / 100'.")
} else if (try.gridsearch.pstr.mix) {
init.pstr.mix <- rep_len(try.this["Value"], n)
if (any(is.na(try.this)))
stop("Crashing. ",
"Try something like 'gpstr.mix = seq(5) / 100'.")
} else if (try.gridsearch.pstr.mlm) {
init.pstr.mlm <- matrix(try.this["Value"], n, li.mlm)
if (any(is.na(try.this)))
stop("Crashing. ",
"Try something like 'gpstr.mlm = seq(5) / 100'.")
}
} # la.mix + lnf.mix
mux.more.d <- extra$mux.init[3]
if (ld.mix) {
init.pdip.mix <- if (length( .ipdip.mix ))
rep_len( .ipdip.mix, n) else {
is.d.mix1 <- rowSums(extra$skip.mix.d) > 0
rep(mux.more.d * sum(w[is.d.mix1]) / sum(w), n)
}
} # ld.mix
if (ld.mlm) {
init.pdip.mlm <- if (length( .ipdip.mlm ))
matrix( .ipdip.mlm, n, ld.mlm, byrow = TRUE) else {
is.d.mlm1 <- rowSums(extra$skip.mlm.d) > 0
matrix(mux.more.d * (sum(w[is.d.mlm1]) / sum(w)) / ld.mlm,
n, ld.mlm)
}
} # ld.mlm
while (any((vecTF <- init.pobs.mix + init.pstr.mix + # -
init.pdip.mix +
rowSums(init.pobs.mlm) +
rowSums(init.pstr.mlm) + # -
rowSums(init.pdip.mlm) > 0.96875))) {
init.pobs.mix[vecTF] <- 0.875 * init.pobs.mix[vecTF]
init.pstr.mix[vecTF] <- 0.875 * init.pstr.mix[vecTF]
init.pdip.mix[vecTF] <- 0.875 * init.pdip.mix[vecTF]
init.pobs.mlm[vecTF, ] <- 0.875 * init.pobs.mlm[vecTF, ]
init.pstr.mlm[vecTF, ] <- 0.875 * init.pstr.mlm[vecTF, ]
init.pdip.mlm[vecTF, ] <- 0.875 * init.pdip.mlm[vecTF, ]
} # while
Numer.init1 <- 1 - rowSums(init.pobs.mlm) -
rowSums(init.pstr.mlm) - # +
rowSums(init.pdip.mlm) -
init.pobs.mix - init.pstr.mix - # +
init.pdip.mix # Differs from 'Numer'.
etastart.z <- if (lall.len == 0) NULL else {
tmp.mat <- cbind(if (tmp3.TF[ 2]) init.pobs.mix else NULL,
if (tmp3.TF[ 4]) init.pstr.mix else NULL,
if (tmp3.TF[ 6]) init.pdip.mix else NULL,
if (tmp3.TF[ 8]) init.pobs.mlm else NULL,
if (tmp3.TF[ 9]) init.pstr.mlm else NULL,
if (tmp3.TF[10]) init.pdip.mlm else NULL,
Numer.init1)
multilogitlink(tmp.mat)
} # etastart.z
if (!is.matrix(etastart.z)) etastart.z <- cbind(etastart.z)
nextone <- 1 # Might not be used actually
if (tmp3.TF[ 2]) {
etastart[, 2] <- etastart.z[, nextone]
nextone <- nextone + 1
}
if (tmp3.TF[ 4]) { # Coln 2 or 4
etastart[, (extra$indeta[4, 'launch'])] <-
etastart.z[, nextone]
nextone <- nextone + 1
}
if (tmp3.TF[ 6]) { # Coln 2 or 4 or 6
etastart[, (extra$indeta[6, 'launch'])] <-
etastart.z[, nextone]
nextone <- nextone + 1
}
if (tmp3.TF[ 8]) {
ind8 <- (extra$indeta[8, 'launch']):(extra$indeta[8,
'finish'])
etastart[, ind8] <- etastart.z[, nextone:(nextone+la.mlm - 1)]
nextone <- nextone + la.mlm
}
if (tmp3.TF[ 9]) {
ind9 <- (extra$indeta[9, 'launch']):(extra$indeta[9,
'finish'])
etastart[, ind9] <- etastart.z[, nextone:(nextone+li.mlm - 1)]
nextone <- nextone + li.mlm
}
if (tmp3.TF[10]) {
ind0 <- (extra$indeta[10, 'launch']):(extra$indeta[10,
'finish'])
etastart[, ind0] <- etastart.z[, nextone:(nextone +
ld.mlm - 1)]
if (ncol(etastart.z) != nextone + ld.mlm - 1)
stop("miscalculation")
}
}
}), list(
.llambda.p = llambda.p, .elambda.p = elambda.p,
.llambda.a = llambda.a, .elambda.a = elambda.a,
.llambda.i = llambda.i, .elambda.i = elambda.i,
.llambda.d = llambda.d, .elambda.d = elambda.d,
.ilambda.p = ilambda.p,
.ilambda.a = ilambda.a,
.ilambda.i = ilambda.i,
.ilambda.d = ilambda.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.lpdip.mix = lpdip.mix,
.epdip.mix = epdip.mix,
.ipstr.mix = ipstr.mix, .ipobs.mix = ipobs.mix,
.ipstr.mlm = ipstr.mlm, .ipobs.mlm = ipobs.mlm,
.ipdip.mix = ipdip.mix,
.ipdip.mlm = ipdip.mlm,
.byrow.aid = byrow.aid,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support,
.tmp3.TF = tmp3.TF, # .tmp3 = tmp3,
.predictors.names = predictors.names,
.mux.init = mux.init,
.gpstr.mix = gpstr.mix, # .gpdip.mix = gpdip.mix,
.gpstr.mlm = gpstr.mlm, # .gpdip.mlm = gpdip.mlm,
.ishrinkage = ishrinkage, .probs.y = probs.y,
.indeta = indeta,
.imethod = imethod, .type.fitted = type.fitted ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
n.obs <- NROW(eta)
type.fitted <-
if (length(extra$type.fitted)) extra$type.fitted else {
warning("cannot find 'type.fitted'. Returning the 'mean'.")
"mean"
}
type.fitted <-
match.arg(type.fitted[1],
c("mean", "lambdas",
"pobs.mlm", "pstr.mlm", "pdip.mlm",
"pobs.mix", "pstr.mix", "pdip.mix",
"Pobs.mix", "Pstr.mix", "Pdip.mix",
"nonspecial", "Numer", "Denom.p",
"sum.mlm.i", "sum.mix.i",
"sum.mlm.d", "sum.mix.d",
"ptrunc.p", "cdf.max.s"))[1]
if (!is.matrix(eta)) eta <- as.matrix(eta)
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
truncate <- as.vector( .truncate )
max.support <- as.vector( .max.support )
morework <- type.fitted != "mean" # For efficiency
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
pobs.mix <- pstr.mix <- pdip.mix <- 0 # 4 rowSums()
pobs.mlm <- pstr.mlm <- pdip.mlm <- 0 # matrix(0, NROW(eta), 1)
lambda.p <- cbind(eta2theta(eta[, 1], .llambda.p , .elambda.p ))
ind.lambda.z <- 1 # Points to lambda.p only.
lambda.a <- lambda.i <-
lambda.d <- lambda.p # Needed; and answer not corrupted
tmp3.TF <- ( .tmp3.TF ) # Logical of length 10.
if (any(tmp3.TF[c(3, 5, 7)])) { # At least one lambda.[aid]
ind.lambda.z <- extra$indeta[c(1, 3, 5, 7), 'launch'] # Vectors
ind.lambda.z <- c(na.omit(ind.lambda.z)) # At least one value
lambda.a <- if (!tmp3.TF[ 3]) lambda.p else
eta2theta(eta[, extra$indeta[3, 1]], .llambda.a , .elambda.a )
lambda.i <- if (!tmp3.TF[ 5]) lambda.p else
eta2theta(eta[, extra$indeta[5, 1]], .llambda.i , .elambda.i )
lambda.d <- if (!tmp3.TF[ 7]) lambda.p else
eta2theta(eta[, extra$indeta[7, 1]], .llambda.d , .elambda.d )
} # la.mix + li.mix + ld.mix > 0
if (lall.len) { # An MLM was fitted
allprobs <-
multilogitlink(eta[, -ind.lambda.z, drop = FALSE],
inverse = TRUE) # rowSums == 1
if (anyNA(allprobs))
warning("there are NAs here in slot linkinv")
if (min(allprobs) == 0 || max(allprobs) == 1)
warning("fitted probabilities numerically 0 or 1 occurred")
Nextone <- 0 # Might not be used actually
if (tmp3.TF[ 2])
pobs.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 4])
pstr.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 6])
pdip.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 8]) {
ind8 <- (Nextone + 1):(Nextone + la.mlm)
pobs.mlm <- allprobs[, ind8, drop = FALSE]
dimnames(pobs.mlm) <- list(rownames(eta),
as.character(a.mlm))
Nextone <- Nextone + la.mlm
}
if (tmp3.TF[ 9]) {
ind9 <- (Nextone + 1):(Nextone + li.mlm)
pstr.mlm <- allprobs[, ind9, drop = FALSE]
dimnames(pstr.mlm) <- list(rownames(eta),
as.character(i.mlm))
Nextone <- Nextone + li.mlm
}
if (tmp3.TF[10]) {
ind10 <- (Nextone + 1):(Nextone + ld.mlm)
pdip.mlm <- allprobs[, ind10, drop = FALSE]
dimnames(pdip.mlm) <- list(rownames(eta),
as.character(d.mlm))
Nextone <- Nextone + ld.mlm # Not needed
}
} # lall.len
M1 <- max(extra$indeta, na.rm = TRUE)
NOS <- NCOL(eta) / M1
Bits <- moments.gaitdcombo.pois(lambda.p,
pobs.mix = pobs.mix, pobs.mlm = pobs.mlm,
pstr.mix = pstr.mix, pstr.mlm = pstr.mlm,
pdip.mix = pdip.mix, pdip.mlm = pdip.mlm,
a.mix = a.mix, i.mix = i.mix, d.mix = d.mix,
a.mlm = a.mlm, i.mlm = i.mlm, d.mlm = d.mlm,
lambda.a = lambda.a, lambda.i = lambda.i,
lambda.d = lambda.d,
truncate = truncate, max.support = max.support)
if (morework) {
Denom.p <- c(Bits[["cdf.max.s"]] - Bits[["SumT0.p"]] -
Bits[["SumA0.mix.p"]] - Bits[["SumA0.mlm.p"]])
if (any(Denom.p == 0)) {
smallval <- min(Denom.p[Denom.p > 0])
Denom.p[Denom.p == 0] <- 1e-09 # smallval
warning("0s found in variable 'Denom.p'. Trying to fix it.")
}
Numer <- c(1 - pobs.mix - pstr.mix + pdip.mix -
(if (la.mlm) rowSums(pobs.mlm) else 0) -
(if (li.mlm) rowSums(pstr.mlm) else 0) +
(if (ld.mlm) rowSums(pdip.mlm) else 0))
probns <- Numer * (1 -
(c(Bits[["SumI0.mix.p"]] + Bits[["SumI0.mlm.p"]]) +
c(Bits[["SumD0.mix.p"]] + Bits[["SumD0.mlm.p"]])) / Denom.p)
} # morework
if (!la.mlm && type.fitted %in% c("pobs.mlm")) {
warning("No altered MLM values; returning an NA")
return(NA)
}
if (!li.mlm && type.fitted %in% c("sum.mlm.i", "pstr.mlm")) {
warning("No inflated MLM values; returning an NA")
return(NA)
}
if (!ld.mlm && type.fitted %in% c("sum.mlm.d", "pdip.mlm")) {
warning("No deflated MLM values; returning an NA")
return(NA)
}
if (!la.mix && type.fitted %in% c("Pobs.mix")) {
warning("No altered mixture values; returning an NA")
return(NA)
}
if (!li.mix && type.fitted %in% c("sum.mix.i", "Pstr.mix")) {
warning("No inflated mixture values; returning an NA")
return(NA)
}
if (!ld.mix && type.fitted %in% c("sum.mix.d", "Pdip.mix")) {
warning("No deflated mixture values; returning an NA")
return(NA)
}
if (la.mix && morework) {
tmp13 <- # dpois() does not retain the matrix format
dpois(matrix(a.mix, n.obs, la.mix, byrow = TRUE),
matrix(lambda.a, n.obs, la.mix)) / (
c(Bits[["SumA0.mix.a"]]))
dim(tmp13) <- c(n.obs, la.mix)
dimnames(tmp13) <- list(rownames(eta),
as.character(a.mix))
propn.mat.a <- tmp13
} # la.mix
if (li.mix && morework) {
tmp55 <- # dpois() does not retain the matrix format
dpois(matrix(i.mix, n.obs, li.mix, byrow = TRUE),
matrix(lambda.i, n.obs, li.mix)) / (
c(Bits[["SumI0.mix.i"]]))
dim(tmp55) <- c(n.obs, li.mix)
dimnames(tmp55) <- list(rownames(eta),
as.character(i.mix))
propn.mat.i <- tmp55 # Correct dimension
} # li.mix
if (ld.mix && morework) {
tmp55 <- # dpois() does not retain the matrix format
dpois(matrix(d.mix, n.obs, ld.mix, byrow = TRUE),
matrix(lambda.d, n.obs, ld.mix)) / (
c(Bits[["SumD0.mix.d"]]))
dim(tmp55) <- c(n.obs, ld.mix)
dimnames(tmp55) <- list(rownames(eta),
as.character(d.mix))
propn.mat.d <- tmp55 # Correct dimension
} # ld.mix
ans <- switch(type.fitted,
"mean" = Bits[["mean"]], # Unconditional mean
"lambdas" = cbind(lambda.p,
if (tmp3.TF[ 3]) lambda.a else NULL,
if (tmp3.TF[ 5]) lambda.i else NULL,
if (tmp3.TF[ 7]) lambda.d else NULL),
"pobs.mlm" = pobs.mlm, # aka omegamat, n x la.mlm
"pstr.mlm" = pstr.mlm, # aka phimat, n x li.mlm
"pdip.mlm" = pdip.mlm, # aka psimat, n x ld.mlm
"pobs.mix" = pobs.mix, # n-vector
"pstr.mix" = pstr.mix, # n-vector
"pdip.mix" = pdip.mix, # n-vector
"Pobs.mix" = c(pobs.mix) * propn.mat.a, # matrix
"Pstr.mix" = c(pstr.mix) * propn.mat.i,
"Pdip.mix" = c(pdip.mix) * propn.mat.d,
"nonspecial" = probns,
"Numer" = Numer,
"Denom.p" = Denom.p,
"sum.mlm.i" = pstr.mlm + Numer *
dpois(matrix(i.mlm, n.obs, li.mlm, byrow = TRUE),
matrix(lambda.p, n.obs, li.mlm)) / Denom.p,
"sum.mlm.d" = -pdip.mlm + Numer *
dpois(matrix(d.mlm, n.obs, ld.mlm, byrow = TRUE),
matrix(lambda.p, n.obs, ld.mlm)) / Denom.p,
"sum.mix.i" = c(pstr.mix) * propn.mat.i + Numer *
dpois(matrix(i.mix, n.obs, li.mix, byrow = TRUE),
matrix(lambda.p, n.obs, li.mix)) / Denom.p,
"sum.mix.d" = -c(pdip.mix) * propn.mat.d + Numer *
dpois(matrix(d.mix, n.obs, ld.mix, byrow = TRUE),
matrix(lambda.p, n.obs, ld.mix)) / Denom.p,
"ptrunc.p" = Bits[["SumT0.p"]] + 1 - Bits[["cdf.max.s"]],
"cdf.max.s" = Bits[["cdf.max.s"]]) # Pr(y <= max.support)
ynames.pobs.mlm <- as.character(a.mlm) # Works with NULLs
ynames.pstr.mlm <- as.character(i.mlm) # Works with NULLs
ynames.pdip.mlm <- as.character(d.mlm) # Works with NULLs
if (length(ans))
label.cols.y(ans, NOS = NOS, colnames.y =
switch(type.fitted,
"lambdas" = c("lambda.p", "lambda.a", # Some colns NA
"lambda.i", "lambda.d")[(tmp3.TF[c(1, 3, 5, 7)])],
"Pobs.mix" = as.character(a.mix),
"sum.mix.i" = , #
"Pstr.mix" = as.character(i.mix),
"sum.mix.d" = , #
"Pdip.mix" = as.character(d.mix),
"pobs.mlm" = ynames.pobs.mlm,
"sum.mlm.i" = , #
"pstr.mlm" = ynames.pstr.mlm,
"sum.mlm.d" = , #
"pdip.mlm" = ynames.pdip.mlm,
extra$colnames.y)) else ans
}, list(
.llambda.p = llambda.p, .elambda.p = elambda.p,
.llambda.a = llambda.a, .elambda.a = elambda.a,
.llambda.i = llambda.i, .elambda.i = elambda.i,
.llambda.d = llambda.d, .elambda.d = elambda.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.tmp3.TF = tmp3.TF,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support ))),
last = eval(substitute(expression({
pred.names <- c( .predictors.names ) # Save it
link.names <- as.vector( .predictors.names )
parameter.names <- names(pred.names)
predictors.names <- NULL
for (jay in seq(M))
predictors.names <- c(predictors.names,
namesof(parameter.names[jay], link.names[jay], tag = FALSE,
earg = list())) # This isnt perfect; info is lost
misc$predictors.names <- predictors.names # Useful for coef()
misc$link <- link.names #
names(misc$link) <- parameter.names #
misc$earg <- vector("list", M1)
names(misc$earg) <- names(misc$link)
misc$earg[[1]] <- ( .elambda.p ) # First one always there
iptr <- 1
if (tmp3.TF[ 2])
misc$earg[[(iptr <- iptr + 1)]] <- list() # multilogitlink
if (tmp3.TF[ 3])
misc$earg[[(iptr <- iptr + 1)]] <- ( .elambda.a )
if (tmp3.TF[ 4])
misc$earg[[(iptr <- iptr + 1)]] <- list() # See below
if (tmp3.TF[ 5])
misc$earg[[(iptr <- iptr + 1)]] <- ( .elambda.i )
if (tmp3.TF[ 6])
misc$earg[[(iptr <- iptr + 1)]] <- list() # See below
if (tmp3.TF[ 7])
misc$earg[[(iptr <- iptr + 1)]] <- ( .elambda.d )
if (tmp3.TF[ 8]) { # la.mlm
for (ii in seq(la.mlm)) {
misc$earg[[(iptr <- iptr + 1)]] <- list()
} # ii
} # la.mlm
if (tmp3.TF[ 9]) { # li.mlm
for (ii in seq(li.mlm)) {
misc$earg[[(iptr <- iptr + 1)]] <- list()
} # ii
} # li.mlm
if (tmp3.TF[10]) { # ld.mlm
for (ii in seq(ld.mlm)) {
misc$earg[[(iptr <- iptr + 1)]] <- list()
} # ii
} # ld.mlm
}), list(
.llambda.p = llambda.p, .elambda.p = elambda.p,
.llambda.a = llambda.a, .elambda.a = elambda.a,
.llambda.i = llambda.i, .elambda.i = elambda.i,
.llambda.d = llambda.d, .elambda.d = elambda.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.predictors.names = predictors.names,
.tmp3.TF = tmp3.TF, # .tmp3 = tmp3,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL, summation = TRUE) {
if (!is.matrix(eta)) eta <- as.matrix(eta)
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
truncate <- as.vector( .truncate )
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
pobs.mix <- pstr.mix <- pdip.mix <- 0 # 4 rowSums()
pobs.mlm <- pstr.mlm <- pdip.mlm <- 0 # matrix(0, NROW(eta), 1)
lambda.p <- cbind(eta2theta(eta[, 1], .llambda.p , .elambda.p ))
ind.lambda.z <- 1 # Points to lambda.p only.
lambda.a <- lambda.i <-
lambda.d <- lambda.p # Needed and doesnt corrupt the answer
if (any(tmp3.TF[c(3, 5, 7)])) { # At least one lambda.[aid]
ind.lambda.z <- extra$indeta[c(1, 3, 5, 7), 'launch'] # Vectors
ind.lambda.z <- c(na.omit(ind.lambda.z)) # At least one value
lambda.a <- if (!tmp3.TF[ 3]) lambda.p else
eta2theta(eta[, extra$indeta[3, 1]], .llambda.a , .elambda.a )
lambda.i <- if (!tmp3.TF[ 5]) lambda.p else
eta2theta(eta[, extra$indeta[5, 1]], .llambda.i , .elambda.i )
lambda.d <- if (!tmp3.TF[ 7]) lambda.p else
eta2theta(eta[, extra$indeta[7, 1]], .llambda.d , .elambda.d )
} # la.mix + li.mix + ld.mix > 0
if (lall.len) { # An MLM was fitted
allprobs <-
multilogitlink(eta[, -ind.lambda.z, drop = FALSE],
refLevel = "(Last)", # Make sure
inverse = TRUE) # rowSums == 1
if (anyNA(allprobs))
warning("there are NAs here in slot linkinv")
if (min(allprobs) == 0 || max(allprobs) == 1)
warning("fitted probabilities numerically 0 or 1 occurred")
Nextone <- 0 # Might not be used actually; 0, not 1
if (tmp3.TF[ 2])
pobs.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 4])
pstr.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 6])
pdip.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 8]) {
ind8 <- (Nextone + 1):(Nextone + la.mlm)
pobs.mlm <- allprobs[, ind8, drop = FALSE]
dimnames(pobs.mlm) <- list(rownames(eta),
as.character(a.mlm))
Nextone <- Nextone + la.mlm
}
if (tmp3.TF[ 9]) {
ind9 <- (Nextone + 1):(Nextone + li.mlm)
pstr.mlm <- allprobs[, ind9, drop = FALSE]
dimnames(pstr.mlm) <- list(rownames(eta),
as.character(i.mlm))
Nextone <- Nextone + li.mlm
}
if (tmp3.TF[10]) {
ind10 <- (Nextone + 1):(Nextone + ld.mlm)
pdip.mlm <- allprobs[, ind10, drop = FALSE]
dimnames(pdip.mlm) <- list(rownames(eta),
as.character(d.mlm))
Nextone <- Nextone + ld.mlm # Not needed
}
} # lall.len
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) *
dgaitdpois(y, lambda.p, log = TRUE, # byrow.aid = F,
a.mix = a.mix, i.mix = i.mix, d.mix = d.mix,
a.mlm = a.mlm, i.mlm = i.mlm, d.mlm = d.mlm,
truncate = truncate,
max.support = as.vector( .max.support ),
lambda.a = lambda.a, lambda.i = lambda.i,
lambda.d = lambda.d,
pobs.mix = pobs.mix, pstr.mix = pstr.mix,
pdip.mix = pdip.mix,
pobs.mlm = pobs.mlm, pstr.mlm = pstr.mlm,
pdip.mlm = pdip.mlm)
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list(
.llambda.p = llambda.p, .elambda.p = elambda.p,
.llambda.a = llambda.a, .elambda.a = elambda.a,
.llambda.i = llambda.i, .elambda.i = elambda.i,
.llambda.d = llambda.d, .elambda.d = elambda.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support ))),
vfamily = c("gaitdpoisson"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
small. <- 1e-14
pobs.mix <- pstr.mix <- pdip.mix <- small. # 4 rowSums():
pobs.mlm <- pstr.mlm <- pdip.mlm <- matrix(small., NROW(eta), 1)
lambda.a <- lambda.i <- lambda.d <- 1 # Needed
if (!is.matrix(eta)) eta <- as.matrix(eta)
lambda.p <-
cbind(eta2theta(eta[, 1], .llambda.p , earg = .elambda.p ))
ind.lambda.z <- 1 # Points to lambda.p only.
if (any(tmp3.TF[c(3, 5, 7)])) { # At least one lambda.[aid]
ind.lambda.z <- extra$indeta[c(1, 3, 5, 7), 1] # Vectors
ind.lambda.z <- c(na.omit(ind.lambda.z)) # At least one value
lambda.a <- if (!tmp3.TF[ 3]) lambda.p else
eta2theta(eta[, extra$indeta[3, 1]], .llambda.a , .elambda.a )
lambda.i <- if (!tmp3.TF[ 5]) lambda.p else
eta2theta(eta[, extra$indeta[5, 1]], .llambda.i , .elambda.i )
lambda.d <- if (!tmp3.TF[ 7]) lambda.p else
eta2theta(eta[, extra$indeta[7, 1]], .llambda.d , .elambda.d )
} # la.mix + li.mix + ld.mix > 0
if (lall.len) { # A MLM was fitted
allprobs <-
multilogitlink(eta[, -ind.lambda.z, drop = FALSE],
inverse = TRUE) # rowSums == 1
Nextone <- 0 # Might not be used actually; 0, not 1
if (tmp3.TF[ 2])
pobs.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 4])
pstr.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 6])
pdip.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 8]) {
ind8 <- (Nextone + 1):(Nextone + la.mlm)
pobs.mlm <- allprobs[, ind8, drop = FALSE]
dimnames(pobs.mlm) <- list(rownames(eta),
as.character(a.mlm))
Nextone <- Nextone + la.mlm
}
if (tmp3.TF[ 9]) {
ind9 <- (Nextone + 1):(Nextone + li.mlm)
pstr.mlm <- allprobs[, ind9, drop = FALSE]
dimnames(pstr.mlm) <- list(rownames(eta),
as.character(i.mlm))
Nextone <- Nextone + li.mlm
}
if (tmp3.TF[10]) {
ind10 <- (Nextone + 1):(Nextone + ld.mlm)
pdip.mlm <- allprobs[, ind10, drop = FALSE]
dimnames(pdip.mlm) <- list(rownames(eta),
as.character(d.mlm))
Nextone <- Nextone + ld.mlm # Not needed
}
} # lall.len
okay.mlm <-
all(is.finite(pobs.mlm)) && all(0 < pobs.mlm) &&
all(is.finite(pstr.mlm)) && all(0 < pstr.mlm) &&
all(is.finite(pdip.mlm)) && all(0 < pdip.mlm)
okay.mix <-
all(is.finite(lambda.p)) && all(0 < lambda.p) &&
all(lambda.p < .max.support ) &&
all(is.finite(lambda.a)) && all(0 < lambda.a) &&
all(is.finite(lambda.i)) && all(0 < lambda.i) &&
all(is.finite(lambda.d)) && all(0 < lambda.d) &&
all(is.finite(pobs.mix)) && all(0 < pobs.mix) &&
all(is.finite(pstr.mix)) && all(0 < pstr.mix) &&
all(is.finite(pdip.mix)) && all(0 < pdip.mix) &&
all(pobs.mix + pstr.mix + pdip.mix +
rowSums(pobs.mlm) + rowSums(pstr.mlm) +
rowSums(pdip.mlm) < 1) # Combined
okay.mlm && okay.mix
}, list(
.llambda.p = llambda.p, .elambda.p = elambda.p,
.llambda.a = llambda.a, .elambda.a = elambda.a,
.llambda.i = llambda.i, .elambda.i = elambda.i,
.llambda.d = llambda.d, .elambda.d = elambda.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support ))),
simslot = eval(substitute(
function(object, nsim) {
pwts <- if (length(pwts <- object@prior.weights) > 0)
pwts else weights(object, type = "prior")
if (any(pwts != 1))
warning("ignoring prior weights")
eta <- predict(object)
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
truncate <- as.vector( .truncate )
extra <- object@extra
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
pobs.mix <- pstr.mix <- pdip.mix <- 0 # 4 rowSums()
pobs.mlm <- pstr.mlm <- pdip.mlm <- 0 # matrix(0, NROW(eta), 1)
lambda.p <- cbind(eta2theta(eta[, 1], .llambda.p , .elambda.p ))
ind.lambda.z <- 1 # Points to lambda.p only.
lambda.a <- lambda.i <-
lambda.d <- lambda.p # Needed; and answer not corrupted
tmp3.TF <- ( .tmp3.TF )
if (any(tmp3.TF[c(3, 5, 7)])) { # At least one lambda.[aid]
ind.lambda.z <- extra$indeta[c(1, 3, 5, 7), 'launch'] # Vectors
ind.lambda.z <- c(na.omit(ind.lambda.z)) # At least one value
lambda.a <- if (!tmp3.TF[ 3]) lambda.p else
eta2theta(eta[, extra$indeta[3, 1]], .llambda.a , .elambda.a )
lambda.i <- if (!tmp3.TF[ 5]) lambda.p else
eta2theta(eta[, extra$indeta[5, 1]], .llambda.i , .elambda.i )
lambda.d <- if (!tmp3.TF[ 7]) lambda.p else
eta2theta(eta[, extra$indeta[7, 1]], .llambda.d , .elambda.d )
} # la.mix + li.mix + ld.mix > 0
if (lall.len) { # A AMLM was fitted
allprobs <-
multilogitlink(eta[, -ind.lambda.z, drop = FALSE],
inverse = TRUE) # rowSums == 1
Nextone <- 0 # Might not be used actually; 0, not 1
if (tmp3.TF[ 2])
pobs.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 4])
pstr.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 6])
pdip.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 8]) {
ind8 <- (Nextone + 1):(Nextone + la.mlm)
pobs.mlm <- allprobs[, ind8, drop = FALSE]
dimnames(pobs.mlm) <- list(rownames(eta),
as.character(a.mlm))
Nextone <- Nextone + la.mlm
}
if (tmp3.TF[ 9]) {
ind9 <- (Nextone + 1):(Nextone + li.mlm)
pstr.mlm <- allprobs[, ind9, drop = FALSE]
dimnames(pstr.mlm) <- list(rownames(eta),
as.character(i.mlm))
Nextone <- Nextone + li.mlm
}
if (tmp3.TF[10]) {
ind10 <- (Nextone + 1):(Nextone + ld.mlm)
pdip.mlm <- allprobs[, ind10, drop = FALSE]
dimnames(pdip.mlm) <- list(rownames(eta),
as.character(d.mlm))
Nextone <- Nextone + ld.mlm # Not needed
}
} # lall.len
rgaitdpois(nsim * length(lambda.p), lambda.p,
pobs.mlm = pobs.mlm, pstr.mlm = pstr.mlm,
pobs.mix = pobs.mix, pstr.mix = pstr.mix,
pdip.mix = pdip.mix, pdip.mlm = pdip.mlm,
lambda.a = lambda.a, lambda.i = lambda.i,
lambda.d = lambda.d,
a.mix = a.mix, i.mix = i.mix, d.mix = d.mix,
a.mlm = a.mlm, i.mlm = i.mlm, d.mlm = d.mlm,
truncate = .truncate , max.support = .max.support )
}, list(
.llambda.p = llambda.p, .elambda.p = elambda.p,
.llambda.a = llambda.a, .elambda.a = elambda.a,
.llambda.i = llambda.i, .elambda.i = elambda.i,
.llambda.d = llambda.d, .elambda.d = elambda.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.tmp3.TF = tmp3.TF,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support ))),
deriv = eval(substitute(expression({
tmp3.TF <- ( .tmp3.TF )
calA.p <- tmp3.TF[ 2]
calI.p <- tmp3.TF[ 4]
calD.p <- tmp3.TF[ 6]
calA.np <- tmp3.TF[ 8]
calI.np <- tmp3.TF[ 9]
calD.np <- tmp3.TF[10]
Denom1.a <- Denom1.i <- Denom1.d <-
Denom2.i <- Denom2.d <- 0 # Denom2.a is unneeded
if (!is.matrix(eta)) eta <- as.matrix(eta)
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
truncate <- as.vector( .truncate )
max.support <- as.vector( .max.support )
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
pobs.mix <- pstr.mix <- pdip.mix <- 0 # 4 rowSums()
pobs.mlm <- pstr.mlm <- pdip.mlm <- 0 # matrix(0, NROW(eta), 1)
lambda.p <- cbind(eta2theta(eta[, 1], .llambda.p , .elambda.p ))
ind.lambda.z <- 1 # Points to lambda.p only.
lambda.a <- lambda.i <-
lambda.d <- lambda.p # Needed; and answer not corrupted
if (any(tmp3.TF[c(3, 5, 7)])) { # At least one lambda.[aid]
ind.lambda.z <- extra$indeta[c(1, 3, 5, 7), 'launch'] # Vectors
ind.lambda.z <- c(na.omit(ind.lambda.z)) # At least one value
lambda.a <- if (!tmp3.TF[ 3]) lambda.p else
eta2theta(eta[, extra$indeta[3, 1]], .llambda.a , .elambda.a )
lambda.i <- if (!tmp3.TF[ 5]) lambda.p else
eta2theta(eta[, extra$indeta[5, 1]], .llambda.i , .elambda.i )
lambda.d <- if (!tmp3.TF[ 7]) lambda.p else
eta2theta(eta[, extra$indeta[7, 1]], .llambda.d , .elambda.d )
} # la.mix + li.mix + ld.mix > 0
if (lall.len) { # A MLM was fitted.
allprobs <-
multilogitlink(eta[, -ind.lambda.z, drop = FALSE],
refLevel = "(Last)", # Make sure
inverse = TRUE) # rowSums == 1
minprob.baseline <- min(allprobs[, ncol(allprobs)], na.rm = TRUE)
if (anyNA(allprobs))
warning("there are NAs here in slot linkinv")
if (min(allprobs) == 0 || max(allprobs) == 1) {
warning("fitted probabilities numerically 0 or 1 occurred")
} else
if (minprob.baseline < 0.10)
warning("Minimum baseline (reserve) probability close to 0")
if (control$trace)
cat("Minimum baseline (reserve) probability = ",
format(minprob.baseline, digits = 3), "\n")
Nextone <- 0 # Might not be used actually; 0, not 1
if (tmp3.TF[ 2])
pobs.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 4])
pstr.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 6])
pdip.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 8]) {
ind8 <- (Nextone + 1):(Nextone + la.mlm)
pobs.mlm <- allprobs[, ind8, drop = FALSE]
dimnames(pobs.mlm) <- list(rownames(eta),
as.character(a.mlm))
Nextone <- Nextone + la.mlm
}
if (tmp3.TF[ 9]) {
ind9 <- (Nextone + 1):(Nextone + li.mlm)
pstr.mlm <- allprobs[, ind9, drop = FALSE]
dimnames(pstr.mlm) <- list(rownames(eta),
as.character(i.mlm))
Nextone <- Nextone + li.mlm
}
if (tmp3.TF[10]) {
ind10 <- (Nextone + 1):(Nextone + ld.mlm)
pdip.mlm <- allprobs[, ind10, drop = FALSE]
dimnames(pdip.mlm) <- list(rownames(eta),
as.character(d.mlm))
Nextone <- Nextone + ld.mlm # Not needed
}
} # lall.len
ltruncat <- length(truncate)
M1 <- max(extra$indeta, na.rm = TRUE)
NOS <- ncol(eta) / M1 # extra$NOS
if (NOS != 1) stop("can only handle 1 response")
is.a.mixed <- if (tmp3.TF[ 2])
rowSums(extra$skip.mix.a) > 0 else rep(FALSE, n)
is.i.mixed <- if (tmp3.TF[ 4])
rowSums(extra$skip.mix.i) > 0 else rep(FALSE, n)
is.d.mixed <- if (tmp3.TF[ 6])
rowSums(extra$skip.mix.d) > 0 else rep(FALSE, n)
is.a.mlmed <- if (tmp3.TF[ 8])
rowSums(extra$skip.mlm.a) > 0 else rep(FALSE, n)
is.i.mlmed <- if (tmp3.TF[ 9])
rowSums(extra$skip.mlm.i) > 0 else rep(FALSE, n)
is.d.mlmed <- if (tmp3.TF[10])
rowSums(extra$skip.mlm.d) > 0 else rep(FALSE, n)
is.ns <- !is.a.mlmed & !is.i.mlmed & !is.d.mlmed &
!is.a.mixed & !is.i.mixed & !is.d.mixed # & !is.truncd
dl.dlambda.p <- y / lambda.p - 1 # == dl.dlambda.p.usual
dl.dlambda.p[!is.ns] <- 0 # For is.a.mixed & is.a.mlmed
prob.mlm.a <- if (la.mlm) rowSums(pobs.mlm) else 0 # scalar okay
prob.mlm.i <- if (li.mlm) rowSums(pstr.mlm) else 0 # scalar okay
prob.mlm.d <- if (ld.mlm) rowSums(pdip.mlm) else 0 # scalar okay
pmf.deriv1 <- function(y, lambda)
dpois(y-1, lambda) - dpois(y, lambda)
pmf.deriv2 <- function(y, lambda)
dpois(y-2, lambda) - 2 * dpois(y-1, lambda) + dpois(y, lambda)
sumD.mix.1a.p <- sumD.mix.2a.p <- matrix(0, n, NOS)
if (la.mix > 0) { # \calA_p
DA.mix.0mat.a <- # Matches naming convention further below
DA.mix.1mat.a <- matrix(0, n, la.mix)
for (jay in seq(la.mix)) {
aval <- a.mix[jay]
sumD.mix.1a.p <- sumD.mix.1a.p + pmf.deriv1(aval, lambda.p)
sumD.mix.2a.p <- sumD.mix.2a.p + pmf.deriv2(aval, lambda.p)
pmf.a <- dpois(aval, lambda.a)
DA.mix.0mat.a[, jay] <- pmf.a
DA.mix.1mat.a[, jay] <- pmf.deriv1(aval, lambda.a)
}
Denom1.a <- rowSums(DA.mix.1mat.a) # aka sumD.mix.1a.a
} # la.mix > 0
if (li.mix) {
DI.mix.0mat.i <- # wrt inflated distribution
DI.mix.1mat.i <- DI.mix.2mat.i <- matrix(0, n, li.mix)
DP.mix.0mat.i <- # wrt parent distribution
DP.mix.1mat.i <- DP.mix.2mat.i <- matrix(0, n, li.mix)
for (jay in seq(li.mix)) {
ival <- i.mix[jay]
pmf.i <- dpois(ival, lambda.i)
DI.mix.0mat.i[, jay] <- pmf.i
DI.mix.1mat.i[, jay] <- pmf.deriv1(ival, lambda.i)
DI.mix.2mat.i[, jay] <- pmf.deriv2(ival, lambda.i)
pmf.p <- dpois(ival, lambda.p)
DP.mix.0mat.i[, jay] <- pmf.p
DP.mix.1mat.i[, jay] <- pmf.deriv1(ival, lambda.p)
DP.mix.2mat.i[, jay] <- pmf.deriv2(ival, lambda.p)
} # jay
Denom1.i <- rowSums(DI.mix.1mat.i)
Denom2.i <- rowSums(DI.mix.2mat.i)
} # li.mix
if (ld.mix) {
DD.mix.0mat.d <- # wrt deflated distribution
DD.mix.1mat.d <- DD.mix.2mat.d <- matrix(0, n, ld.mix)
DP.mix.0mat.d <- # wrt parent distribution
DP.mix.1mat.d <- DP.mix.2mat.d <- matrix(0, n, ld.mix)
for (jay in seq(ld.mix)) {
dval <- d.mix[jay]
pmf.d <- dpois(dval, lambda.d)
DD.mix.0mat.d[, jay] <- pmf.d
DD.mix.1mat.d[, jay] <- pmf.deriv1(dval, lambda.d)
DD.mix.2mat.d[, jay] <- pmf.deriv2(dval, lambda.d)
pmf.p <- dpois(dval, lambda.p)
DP.mix.0mat.d[, jay] <- pmf.p
DP.mix.1mat.d[, jay] <- pmf.deriv1(dval, lambda.p)
DP.mix.2mat.d[, jay] <- pmf.deriv2(dval, lambda.p)
} # jay
Denom1.d <- rowSums(DD.mix.1mat.d)
Denom2.d <- rowSums(DD.mix.2mat.d)
} # ld.mix
Bits <- moments.gaitdcombo.pois(lambda.p,
pobs.mix = pobs.mix, pobs.mlm = pobs.mlm,
pstr.mix = pstr.mix, pstr.mlm = pstr.mlm,
pdip.mix = pdip.mix, pdip.mlm = pdip.mlm,
a.mix = a.mix, i.mix = i.mix, d.mix = d.mix,
a.mlm = a.mlm, i.mlm = i.mlm, d.mlm = d.mlm,
lambda.a = lambda.a, lambda.i = lambda.i,
lambda.d = lambda.d,
truncate = truncate, max.support = max.support)
sumD.mlm.1a.p <- sumD.mlm.2a.p <- matrix(0, n, NOS)
if (la.mlm)
for (aval in a.mlm) {
sumD.mlm.1a.p <- sumD.mlm.1a.p + pmf.deriv1(aval, lambda.p)
sumD.mlm.2a.p <- sumD.mlm.2a.p + pmf.deriv2(aval, lambda.p)
}
Denom0.p <- c(Bits[["cdf.max.s"]] - Bits[["SumT0.p"]] -
Bits[["SumA0.mix.p"]] - Bits[["SumA0.mlm.p"]])
Numer <- 1 - pobs.mix - pstr.mix - prob.mlm.a - prob.mlm.i +
pdip.mix + prob.mlm.d
Denom0.a <- c(Bits[["SumA0.mix.a"]]) # Not .p
Denom0.i <- c(Bits[["SumI0.mix.i"]])
Denom0.d <- c(Bits[["SumD0.mix.d"]])
Dp.mlm.0Mat.i <- # wrt parent distribution
Dp.mlm.1Mat.i <- Dp.mlm.2Mat.i <- matrix(0, n, NOS)
if (li.mlm > 0) {
Dp.mlm.0Mat.i <- # wrt parent distribution
Dp.mlm.1Mat.i <- Dp.mlm.2Mat.i <- matrix(0, n, li.mlm)
for (jay in seq(li.mlm)) {
ival <- i.mlm[jay]
pmf.p <- dpois(ival, lambda.p)
Dp.mlm.0Mat.i[, jay] <- pmf.p
Dp.mlm.1Mat.i[, jay] <- pmf.deriv1(ival, lambda.p)
Dp.mlm.2Mat.i[, jay] <- pmf.deriv2(ival, lambda.p)
} # jay
} # li.mlm
Dp.mlm.0Mat.d <- # wrt parent distribution
Dp.mlm.1Mat.d <- Dp.mlm.2Mat.d <- matrix(0, n, NOS)
if (ld.mlm > 0) {
Dp.mlm.0Mat.d <- # wrt parent distribution
Dp.mlm.1Mat.d <- Dp.mlm.2Mat.d <- matrix(0, n, ld.mlm)
for (jay in seq(ld.mlm)) {
dval <- d.mlm[jay]
pmf.p <- dpois(dval, lambda.p)
Dp.mlm.0Mat.d[, jay] <- pmf.p
Dp.mlm.1Mat.d[, jay] <- pmf.deriv1(dval, lambda.p)
Dp.mlm.2Mat.d[, jay] <- pmf.deriv2(dval, lambda.p)
} # jay
} # ld.mlm
sumD.1t.p <- sumD.2t.p <-
sumD.1t.a <- sumD.2t.a <-
sumD.1t.i <- sumD.2t.i <-
sumD.1t.d <- sumD.2t.d <- matrix(0, n, NOS)
if (ltruncat)
for (tval in truncate) {
sumD.1t.p <- sumD.1t.p + pmf.deriv1(tval, lambda.p)
sumD.2t.p <- sumD.2t.p + pmf.deriv2(tval, lambda.p)
sumD.1t.a <- sumD.1t.a + pmf.deriv1(tval, lambda.a)
sumD.2t.a <- sumD.2t.a + pmf.deriv2(tval, lambda.a)
sumD.1t.i <- sumD.1t.i + pmf.deriv1(tval, lambda.i)
sumD.2t.i <- sumD.2t.i + pmf.deriv2(tval, lambda.i)
sumD.1t.d <- sumD.1t.d + pmf.deriv1(tval, lambda.d)
sumD.2t.d <- sumD.2t.d + pmf.deriv2(tval, lambda.d)
}
sumD.1t.p <- sumD.1t.p + dpois(max.support , lambda.p)
sumD.2t.p <- sumD.2t.p + dpois(max.support-1, lambda.p) -
dpois(max.support , lambda.p)
sumD.1t.a <- sumD.1t.a + dpois(max.support , lambda.a)
sumD.2t.a <- sumD.2t.a + dpois(max.support-1, lambda.a) -
dpois(max.support , lambda.a)
sumD.1t.i <- sumD.1t.i + dpois(max.support , lambda.i)
sumD.2t.i <- sumD.2t.i + dpois(max.support-1, lambda.i) -
dpois(max.support , lambda.i)
sumD.1t.d <- sumD.1t.d + dpois(max.support , lambda.d)
sumD.2t.d <- sumD.2t.d + dpois(max.support-1, lambda.d) -
dpois(max.support , lambda.d)
Denom1.p <- c(-sumD.1t.p - sumD.mlm.1a.p - sumD.mix.1a.p)
Denom2.p <- c(-sumD.2t.p - sumD.mlm.2a.p - sumD.mix.2a.p)
d0B.PI.mlm <- Dp.mlm.0Mat.i / Denom0.p
d1B.PI.mlm <- Dp.mlm.1Mat.i / Denom0.p - # This is most general
Dp.mlm.0Mat.i * Denom1.p / Denom0.p^2
d2B.PI.mlm <- Dp.mlm.2Mat.i / Denom0.p -
2 * Dp.mlm.1Mat.i * Denom1.p / Denom0.p^2 -
Dp.mlm.0Mat.i * Denom2.p / Denom0.p^2 +
2 * Dp.mlm.0Mat.i * (Denom1.p^2) / Denom0.p^3
d0B.PD.mlm <- Dp.mlm.0Mat.d / Denom0.p
d1B.PD.mlm <- Dp.mlm.1Mat.d / Denom0.p - # This is most general
Dp.mlm.0Mat.d * Denom1.p / Denom0.p^2
d2B.PD.mlm <- Dp.mlm.2Mat.d / Denom0.p -
2 * Dp.mlm.1Mat.d * Denom1.p / Denom0.p^2 -
Dp.mlm.0Mat.d * Denom2.p / Denom0.p^2 +
2 * Dp.mlm.0Mat.d * (Denom1.p^2) / Denom0.p^3
DELTA.i.mlm <- if (li.mlm > 0) {
Numer * d0B.PI.mlm + pstr.mlm # n x li.mlm.
} else {
matrix(0, n, 1) # If li.mlm == 0, for rowSums().
}
DELTA.d.mlm <- if (ld.mlm > 0) {
Numer * d0B.PD.mlm - pdip.mlm # n x ld.mlm.
} else {
matrix(0, n, 1) # If ld.mlm == 0, for rowSums().
}
if (li.mix > 0) {
d0A.i <- DI.mix.0mat.i / Denom0.i
d0B.PI.mix <- DP.mix.0mat.i / Denom0.p
DELTA.i.mix <- Numer * d0B.PI.mix + pstr.mix * d0A.i
d1A.i <- (DI.mix.1mat.i - DI.mix.0mat.i *
Denom1.i / Denom0.i) / Denom0.i
d2A.i <- (DI.mix.2mat.i - (2 * DI.mix.1mat.i * Denom1.i +
DI.mix.0mat.i * Denom2.i) / Denom0.i +
2 * DI.mix.0mat.i * (Denom1.i / Denom0.i)^2) / Denom0.i
d1B.PI.mix <- DP.mix.1mat.i / Denom0.p -
DP.mix.0mat.i * Denom1.p / Denom0.p^2
d2B.PI.mix <- DP.mix.2mat.i / Denom0.p -
2 * DP.mix.1mat.i * Denom1.p / Denom0.p^2 -
DP.mix.0mat.i * Denom2.p / Denom0.p^2 +
2 * DP.mix.0mat.i * (Denom1.p^2) / Denom0.p^3
} # li.mix > 0
if (ld.mix > 0) {
d0A.d <- DD.mix.0mat.d / Denom0.d
d0B.PD.mix <- DP.mix.0mat.d / Denom0.p
DELTA.d.mix <- Numer * d0B.PD.mix - pdip.mix * d0A.d
d1A.d <- (DD.mix.1mat.d - DD.mix.0mat.d *
Denom1.d / Denom0.d) / Denom0.d
d2A.d <- (DD.mix.2mat.d - (2 * DD.mix.1mat.d * Denom1.d +
DD.mix.0mat.d * Denom2.d) / Denom0.d +
2 * DD.mix.0mat.d * (Denom1.d / Denom0.d)^2) / Denom0.d
d1B.PD.mix <- DP.mix.1mat.d / Denom0.p -
DP.mix.0mat.d * Denom1.p / Denom0.p^2
d2B.PD.mix <- DP.mix.2mat.d / Denom0.p -
2 * DP.mix.1mat.d * Denom1.p / Denom0.p^2 -
DP.mix.0mat.d * Denom2.p / Denom0.p^2 +
2 * DP.mix.0mat.d * (Denom1.p^2) / Denom0.p^3
} # ld.mix > 0
if (la.mix) {
d0A.a <- DA.mix.0mat.a / Denom0.a
d1A.a <- DA.mix.1mat.a / Denom0.a -
DA.mix.0mat.a * Denom1.a / Denom0.a^2
} # la.mix
dl.dlambda.a <- dl.dlambda.i <- dl.dlambda.d <- numeric(n)
dl.dpstr.mix <- (-1) / Numer # \notin A, I, T, D
dl.dpstr.mix[is.a.mixed] <- 0
dl.dpstr.mix[is.a.mlmed] <- 0
dl.dpdip.mix <- (+1) / Numer # \notin A, I, T, D
dl.dpdip.mix[is.a.mixed] <- 0
dl.dpdip.mix[is.a.mlmed] <- 0
dl.dpobs.mix <- numeric(n) # 0 for \calA_{np}
dl.dpobs.mix[is.ns] <- (-1) / Numer[is.ns]
dl.dpobs.mlm <-
dl.dpstr.mlm <- matrix(0, n, 1) # May be unneeded
dl.dpdip.mlm <- matrix(0, n, max(1, ld.mlm)) # Initzed if used.
dl.dpdip.mlm[is.ns, ] <- 1 / Numer[is.ns]
if (tmp3.TF[ 8] && la.mlm) { # aka \calA_{np}
dl.dpobs.mlm <- matrix(-1 / Numer, n, la.mlm) # \notin calS
dl.dpobs.mlm[!is.ns, ] <- 0 # For a.mix only really
for (jay in seq(la.mlm)) {
aval <- a.mlm[jay]
is.alt.j.mlm <- extra$skip.mlm.a[, jay] # Logical vector
tmp7a <- 1 / pobs.mlm[is.alt.j.mlm, jay]
dl.dpobs.mlm[is.alt.j.mlm, jay] <- tmp7a
} # jay
} # la.mlm
dl.dlambda.p[is.ns] <- dl.dlambda.p[is.ns] -
(Denom1.p / Denom0.p)[is.ns]
if (tmp3.TF[ 9] && li.mlm > 0) { # aka \calI_{np}
dl.dpstr.mlm <- matrix(-1 / Numer, n, li.mlm)
dl.dpstr.mlm[!is.ns, ] <- 0 # For a.mlm and a.mix
for (jay in seq(li.mlm)) {
is.inf.j.mlm <- extra$skip.mlm.i[, jay] # Logical vector
tmp7i <- Numer * d1B.PI.mlm[, jay] / DELTA.i.mlm[, jay]
dl.dlambda.p[is.inf.j.mlm] <- tmp7i[is.inf.j.mlm]
tmp9i <- d0B.PI.mlm[, jay] / DELTA.i.mlm[, jay]
n.tmp <- -tmp9i[is.inf.j.mlm]
p.tmp <- +tmp9i[is.inf.j.mlm]
if (tmp3.TF[ 8] && la.mlm) dl.dpobs.mlm[is.inf.j.mlm, ] <- n.tmp
if (tmp3.TF[ 2] && la.mix) dl.dpobs.mix[is.inf.j.mlm ] <- n.tmp
if (tmp3.TF[ 4] && li.mix) dl.dpstr.mix[is.inf.j.mlm ] <- n.tmp
if (tmp3.TF[10] && ld.mlm) dl.dpdip.mlm[is.inf.j.mlm, ] <- p.tmp
if (tmp3.TF[ 6] && ld.mix) dl.dpdip.mix[is.inf.j.mlm ] <- p.tmp
tmp8 <- (1 - d0B.PI.mlm[, jay]) / DELTA.i.mlm[, jay]
dl.dpstr.mlm[is.inf.j.mlm, ] <- n.tmp # tmp9[is.inf.j.mlm]
dl.dpstr.mlm[is.inf.j.mlm, jay] <- tmp8[is.inf.j.mlm]
} # jay
} # li.mlm > 0
if (tmp3.TF[10] && ld.mlm > 0) { # aka \calD_{np}
for (jay in seq(ld.mlm)) {
is.def.j.mlm <- extra$skip.mlm.d[, jay] # Logical vector
tmp7d <- Numer * d1B.PD.mlm[, jay] / DELTA.d.mlm[, jay]
dl.dlambda.p[is.def.j.mlm] <- tmp7d[is.def.j.mlm] # 20211020
tmp9d <- d0B.PD.mlm[, jay] / DELTA.d.mlm[, jay]
p.tmp <- +tmp9d[is.def.j.mlm]
n.tmp <- -tmp9d[is.def.j.mlm]
if (tmp3.TF[ 9] && li.mlm) dl.dpstr.mlm[is.def.j.mlm, ] <- n.tmp
if (tmp3.TF[ 4] && li.mix) dl.dpstr.mix[is.def.j.mlm ] <- n.tmp
if (tmp3.TF[ 8] && la.mlm) dl.dpobs.mlm[is.def.j.mlm, ] <- n.tmp
if (tmp3.TF[ 2] && la.mix) dl.dpobs.mix[is.def.j.mlm ] <- n.tmp
if (tmp3.TF[ 6] && ld.mix) dl.dpdip.mix[is.def.j.mlm ] <- p.tmp
dl.dpdip.mlm[is.def.j.mlm, ] <- p.tmp
dl.dpdip.mlm[is.def.j.mlm, jay] <-
dl.dpdip.mlm[is.def.j.mlm, jay] -
1 / DELTA.d.mlm[is.def.j.mlm, jay]
} # jay
} # ld.mlm > 0
if (tmp3.TF[ 2] && la.mix) { # aka \calA_{p}
dl.dpobs.mix[is.a.mixed] <- 1 / pobs.mix[is.a.mixed]
if (tmp3.TF[ 3] && la.mix > 1)
for (jay in seq(la.mix)) {
is.alt.j.mix <- extra$skip.mix.a[, jay] # Logical vector
tmp2 <- d1A.a[, jay] / d0A.a[, jay]
dl.dlambda.a[is.alt.j.mix] <- tmp2[is.alt.j.mix] # ccc.
} # jay
} # la.mix
if (tmp3.TF[ 4] && li.mix > 0) { # aka \calI_{p}
for (jay in seq(li.mix)) {
ival <- i.mix[jay]
is.inf.j.mix <- extra$skip.mix.i[, jay] # Logical vector
tmp7b <- Numer * d1B.PI.mix[, jay] / DELTA.i.mix[, jay]
dl.dlambda.p[is.inf.j.mix] <- tmp7b[is.inf.j.mix]
tmp8 <- (d0A.i[, jay] - d0B.PI.mix[, jay]) / DELTA.i.mix[, jay]
dl.dpstr.mix[is.inf.j.mix] <- tmp8[is.inf.j.mix]
if (li.mix > 1) {
tmp2 <- pstr.mix * d1A.i[, jay] / DELTA.i.mix[, jay]
dl.dlambda.i[is.inf.j.mix] <- tmp2[is.inf.j.mix]
}
tmp9i <- d0B.PI.mix[, jay] / DELTA.i.mix[, jay]
n.tmp <- -tmp9i[is.inf.j.mix]
p.tmp <- +tmp9i[is.inf.j.mix]
if (tmp3.TF[ 2] && la.mix) dl.dpobs.mix[is.inf.j.mix ] <- n.tmp
if (tmp3.TF[ 8] && la.mlm) dl.dpobs.mlm[is.inf.j.mix, ] <- n.tmp
if (tmp3.TF[ 9] && li.mlm) dl.dpstr.mlm[is.inf.j.mix, ] <- n.tmp
if (tmp3.TF[10] && ld.mlm) dl.dpdip.mlm[is.inf.j.mix, ] <- p.tmp
if (tmp3.TF[ 6] && ld.mix) dl.dpdip.mix[is.inf.j.mix ] <- p.tmp
} # jay
} # li.mix > 0
if (tmp3.TF[ 6] && ld.mix > 0) { # aka \calD_{p}
for (jay in seq(ld.mix)) {
dval <- d.mix[jay]
is.def.j.mix <- extra$skip.mix.d[, jay] # Logical vector
tmp7b <- Numer * d1B.PD.mix[, jay] / DELTA.d.mix[, jay]
dl.dlambda.p[is.def.j.mix] <- tmp7b[is.def.j.mix]
tmp8 <- (d0B.PD.mix[, jay] - d0A.d[, jay]) / DELTA.d.mix[, jay]
dl.dpdip.mix[is.def.j.mix] <- tmp8[is.def.j.mix]
if (ld.mix > 1) {
tmp2 <- (-pdip.mix) * d1A.d[, jay] / DELTA.d.mix[, jay]
dl.dlambda.d[is.def.j.mix] <- tmp2[is.def.j.mix]
}
tmp9d <- d0B.PD.mix[, jay] / DELTA.d.mix[, jay]
n.tmp <- -tmp9d[is.def.j.mix]
p.tmp <- +tmp9d[is.def.j.mix]
if (tmp3.TF[ 9] && li.mlm) dl.dpstr.mlm[is.def.j.mix, ] <- n.tmp
if (tmp3.TF[ 4] && li.mix) dl.dpstr.mix[is.def.j.mix ] <- n.tmp
if (tmp3.TF[ 8] && la.mlm) dl.dpobs.mlm[is.def.j.mix, ] <- n.tmp
if (tmp3.TF[ 2] && la.mix) dl.dpobs.mix[is.def.j.mix ] <- n.tmp
if (tmp3.TF[10] && ld.mlm) dl.dpdip.mlm[is.def.j.mix, ] <- p.tmp
} # jay
} # ld.mix > 0
new.ansd <- matrix(0, n, M) # Same dimension as eta
tmp3.TF <- !is.na(rowSums(extra$indeta))
if (lall.len) { # An MLM fitted
all6.dldp <- cbind(if (tmp3.TF[ 2]) dl.dpobs.mix else NULL,
if (tmp3.TF[ 4]) dl.dpstr.mix else NULL,
if (tmp3.TF[ 6]) dl.dpdip.mix else NULL,
if (tmp3.TF[ 8]) dl.dpobs.mlm else NULL,
if (tmp3.TF[ 9]) dl.dpstr.mlm else NULL,
if (tmp3.TF[10]) dl.dpdip.mlm else NULL)
rSs.tmp <- rowSums(allprobs[, -ncol(allprobs), drop = FALSE] *
all6.dldp)
new.ansd[, -ind.lambda.z] <- allprobs[, -ncol(allprobs)] *
(all6.dldp - rSs.tmp)
} # lall.len
dlambda.p.deta <- dtheta.deta(lambda.p, .llambda.p , .elambda.p )
if (tmp3.TF[ 3])
dlambda.a.deta <- dtheta.deta(lambda.a, .llambda.a , .elambda.a )
if (tmp3.TF[ 5])
dlambda.i.deta <- dtheta.deta(lambda.i, .llambda.i , .elambda.i )
if (tmp3.TF[ 7])
dlambda.d.deta <- dtheta.deta(lambda.d, .llambda.d , .elambda.d )
new.ansd[, 1] <- dl.dlambda.p * dlambda.p.deta
if (tmp3.TF[ 3])
new.ansd[, extra$indeta[3, 1]] <- dl.dlambda.a * dlambda.a.deta
if (tmp3.TF[ 5])
new.ansd[, extra$indeta[5, 1]] <- dl.dlambda.i * dlambda.i.deta
if (tmp3.TF[ 7])
new.ansd[, extra$indeta[7, 1]] <- dl.dlambda.d * dlambda.d.deta
onecoln.indeta <- extra$indeta[1:7, ] # One coln params only
onecoln.indeta <- na.omit(onecoln.indeta) # Only those present
allcnames <- c(rownames(onecoln.indeta),
as.character(c(a.mlm, i.mlm, d.mlm)))
colnames(new.ansd) <- allcnames
c(w) * new.ansd
}), list(
.llambda.p = llambda.p, .elambda.p = elambda.p,
.llambda.a = llambda.a, .elambda.a = elambda.a,
.llambda.i = llambda.i, .elambda.i = elambda.i,
.llambda.d = llambda.d, .elambda.d = elambda.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.tmp3.TF = tmp3.TF, # .tmp3 = tmp3,
.truncate = truncate, .max.support = max.support ))),
weight = eval(substitute(expression({ # gaitdpoisson
wz <- matrix(0, n, M * (M + 1) / 2) # The complete size
cond.EY.p <-
c(lambda.p - Bits[["SumT1.p"]] -
Bits[["SumI1.mlm.p"]] - Bits[["SumI1.mix.p"]] -
Bits[["SumD1.mlm.p"]] - Bits[["SumD1.mix.p"]] - # 20211109
Bits[["SumA1.mlm.p"]] - Bits[["SumA1.mix.p"]]) / c(
Denom0.p -
Bits[["SumD0.mix.p"]] - Bits[["SumD0.mlm.p"]] - # 20211109
Bits[["SumI0.mix.p"]] - Bits[["SumI0.mlm.p"]])
probns <- Numer * (1 -
(c(Bits[["SumI0.mix.p"]] + Bits[["SumI0.mlm.p"]]) +
c(Bits[["SumD0.mix.p"]] + Bits[["SumD0.mlm.p"]])) / Denom0.p)
if (min(probns) < 0 || 1 < max(probns))
stop("variable 'probns' for P(nonspecial) is out of range")
zero0n <- numeric(n)
ned2l.dpobs.mix.lambda.p <- zero0n # mB overwritten below [4279]
ned2l.dpobs.mix.lambda.a <- zero0n # Fini; (2, 3) element
ned2l.dpobs.mix.lambda.i <- zero0n # mB overwritten below
ned2l.dpobs.mix.lambda.d <- zero0n # mB overwritten below
ned2l.dpstr.mix.lambda.p <- zero0n # Optional (1, 4) element
ned2l.dpstr.mix.lambda.a <- zero0n # Final; nothing to do
ned2l.dpstr.mix.lambda.i <- zero0n # mB overwritten below
ned2l.dpstr.mix.lambda.d <- zero0n # mB overwritten below
ned2l.dpdip.mix.lambda.p <- zero0n # Optional (1, 6) element
posn.pobs.mix <- as.vector(extra$indeta[ 2, 'launch'])
posn.lambda.a <- as.vector(extra$indeta[ 3, 'launch'])
posn.pstr.mix <- as.vector(extra$indeta[ 4, 'launch'])
posn.lambda.i <- as.vector(extra$indeta[ 5, 'launch'])
posn.pdip.mix <- as.vector(extra$indeta[ 6, 'launch'])
posn.lambda.d <- as.vector(extra$indeta[ 7, 'launch'])
posn.pobs.mlm <- as.vector(extra$indeta[ 8, 'launch'])
posn.pstr.mlm <- as.vector(extra$indeta[ 9, 'launch'])
posn.pdip.mlm <- as.vector(extra$indeta[10, 'launch'])
ned2l.dpdip.mix2 <- # Elt (6, 6)
ned2l.dpstr.mix2 <- # Elt (4, 4). Unchanged by deflation.
ned2l.dpobs.mlm.pstr.mix <- # Elts (4, >=8). (((09)))
ned2l.dpobs.mix.pstr.mix <- +probns / Numer^2 # ccc Elt (2, 4)
if (all(c(la.mix, li.mlm) > 0)) # (((08)))
ned2l.dpobs.mix.pstr.mlm <- matrix( probns / Numer^2, n, li.mlm)
if (all(c(li.mix, li.mlm) > 0)) # (((10)))
ned2l.dpstr.mix.pstr.mlm <- matrix( probns / Numer^2, n, li.mlm)
if (all(c(ld.mix, ld.mlm) > 0)) # (((21)))
ned2l.dpdip.mix.pdip.mlm <- matrix( probns / Numer^2, n, ld.mlm)
ned2l.dpobs.mlm.pdip.mix <- # Elts (6, >=8). (((19)))
ned2l.dpstr.mix.pdip.mix <- # Elt (4, 6)
ned2l.dpobs.mix.pdip.mix <- -probns / Numer^2 # ccc Elt (2, 6)
if (all(c(la.mix, ld.mlm) > 0)) # (((17)))
ned2l.dpobs.mix.pdip.mlm <- matrix(-probns / Numer^2, n, ld.mlm)
if (all(c(li.mix, ld.mlm) > 0)) # (((18)))
ned2l.dpstr.mix.pdip.mlm <- matrix(-probns / Numer^2, n, ld.mlm)
if (all(c(ld.mix, li.mlm) > 0)) # (((20)))
ned2l.dpdip.mix.pstr.mlm <- matrix(-probns / Numer^2, n, li.mlm)
ned2l.dlambda.p2 <- probns * (cond.EY.p / lambda.p^2 + # ccc
Denom2.p / Denom0.p - (Denom1.p / Denom0.p)^2) +
(if (tmp3.TF[ 4] && li.mix) Numer *
rowSums(Numer * (d1B.PI.mix^2) / DELTA.i.mix - d2B.PI.mix) else 0) +
(if (tmp3.TF[ 9] && li.mlm) Numer *
rowSums(Numer * (d1B.PI.mlm^2) / DELTA.i.mlm - d2B.PI.mlm) else 0) +
(if (tmp3.TF[ 6] && ld.mix) Numer *
rowSums(Numer * (d1B.PD.mix^2) / DELTA.d.mix - d2B.PD.mix) else 0) +
(if (tmp3.TF[10] && ld.mlm) Numer * # nnn.
rowSums(Numer * (d1B.PD.mlm^2) / DELTA.d.mlm - d2B.PD.mlm) else 0)
wz[, iam(1, 1, M)] <- ned2l.dlambda.p2 * dlambda.p.deta^2
ned2l.dpobs.mix2 <- 1 / pobs.mix + probns / Numer^2
if (tmp3.TF[ 4] && li.mix > 0) {
ned2l.dpobs.mix2 <- # More just below, ccc
ned2l.dpobs.mix2 + rowSums(d0B.PI.mix^2 / DELTA.i.mix)
}
if (tmp3.TF[ 9] && li.mlm > 0) {
ned2l.dpobs.mix2 <- # ccc.
ned2l.dpobs.mix2 + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
}
if (tmp3.TF[ 6] && ld.mix > 0) {
ned2l.dpobs.mix2 <- # nnn
ned2l.dpobs.mix2 + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
}
if (tmp3.TF[10] && ld.mlm > 0) {
ned2l.dpobs.mix2 <- # nnn
ned2l.dpobs.mix2 + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
}
if (tmp3.TF[ 2] && la.mix > 0)
wz[, iam(2, 2, M)] <- ned2l.dpobs.mix2 # Link done later
if (tmp3.TF[ 3] && la.mix > 1) {
ned2l.dlambda.a2 <- pobs.mix * (
rowSums((DA.mix.1mat.a^2) / DA.mix.0mat.a) / Denom0.a -
(Denom1.a / Denom0.a)^2) # ccc.
wz[, iam(3, 3, M)] <- ned2l.dlambda.a2 * dlambda.a.deta^2
}
if (tmp3.TF[ 4] && li.mix > 0) {
ned2l.dpstr.mix2 <-
ned2l.dpstr.mix2 +
rowSums((d0A.i - d0B.PI.mix)^2 / DELTA.i.mix)
if (tmp3.TF[ 2] && la.mix > 0)
ned2l.dpobs.mix.lambda.p <-
ned2l.dpobs.mix.lambda.p +
rowSums(d1B.PI.mix * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
ned2l.dpstr.mix.lambda.p <-
ned2l.dpstr.mix.lambda.p + rowSums(
d1B.PI.mix * (1 + Numer * (d0A.i - d0B.PI.mix) / DELTA.i.mix))
if (tmp3.TF[ 6])
ned2l.dpdip.mix.lambda.p <-
ned2l.dpdip.mix.lambda.p - rowSums(
d1B.PI.mix * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (all(tmp3.TF[c(2, 4)]))
ned2l.dpobs.mix.pstr.mix <- # ccc
ned2l.dpobs.mix.pstr.mix +
rowSums(-d0B.PI.mix * (d0A.i - d0B.PI.mix) / DELTA.i.mix)
if (all(tmp3.TF[c(4, 6)]))
ned2l.dpstr.mix.pdip.mix <-
ned2l.dpstr.mix.pdip.mix + rowSums(
d0B.PI.mix * (d0A.i - d0B.PI.mix) / DELTA.i.mix)
if (!is.na(posn.pdip.mix)) {
ned2l.dpdip.mix2 <-
ned2l.dpdip.mix2 + rowSums(d0B.PI.mix^2 / DELTA.i.mix)
}
} # (tmp3.TF[ 4] && li.mix > 0)
if (all(tmp3.TF[c(2, 4, 9)])) { # was la.mix > 0 & DELTA.i.mix
ned2l.dpobs.mix.pstr.mix <- # ccc
ned2l.dpobs.mix.pstr.mix + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
}
if (all(tmp3.TF[c(2, 4, 6)])) { # == ld.mix > 0 & DELTA.d.mix
ned2l.dpobs.mix.pstr.mix <- # nnn
ned2l.dpobs.mix.pstr.mix + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
}
if (all(tmp3.TF[c(2, 4, 10)])) { # == ld.mlm > 0 & DELTA.d.mlm
ned2l.dpobs.mix.pstr.mix <- # nnn.
ned2l.dpobs.mix.pstr.mix + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
}
if (!is.na(posn.pobs.mix) && !is.na(posn.pstr.mix))
wz[, iam(posn.pobs.mix, posn.pstr.mix, M)] <-
ned2l.dpobs.mix.pstr.mix # Link done later
if (all(tmp3.TF[c(2, 6)]))
ned2l.dpobs.mix.pdip.mix <- # nnn
ned2l.dpobs.mix.pdip.mix +
rowSums( d0B.PD.mix * (d0A.d - d0B.PD.mix) / DELTA.d.mix)
if (all(tmp3.TF[c(2, 6, 9)])) { # == li.mlm > 0 & DELTA.i.mix
ned2l.dpobs.mix.pdip.mix <- # nnn
ned2l.dpobs.mix.pdip.mix - rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
}
if (all(tmp3.TF[c(2, 6, 4)])) { # == li.mix > 0 & DELTA.i.mix
ned2l.dpobs.mix.pdip.mix <- # nnn
ned2l.dpobs.mix.pdip.mix - rowSums(d0B.PI.mix^2 / DELTA.i.mix)
}
if (all(tmp3.TF[c(2, 6, 10)])) { # == ld.mlm > 0 & DELTA.d.mlm
ned2l.dpobs.mix.pdip.mix <- # nnn.
ned2l.dpobs.mix.pdip.mix - rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
}
if (!is.na(posn.pobs.mix) && !is.na(posn.pdip.mix))
wz[, iam(posn.pobs.mix, posn.pdip.mix, M)] <-
ned2l.dpobs.mix.pdip.mix # Link done later
if (tmp3.TF[ 5] && li.mix > 1) { # \calI_{p}, includes \theta_i.
ned2l.dlambda.p.lambda.i <- pstr.mix * Numer *
rowSums(d1A.i * d1B.PI.mix / DELTA.i.mix) # ccc.
wz[, iam(1, posn.lambda.i, M)] <- ned2l.dlambda.p.lambda.i *
dlambda.p.deta * dlambda.i.deta # All links done here
ned2l.dlambda.i2 <- pstr.mix *
rowSums(pstr.mix * (d1A.i^2) / DELTA.i.mix - d2A.i) # ccc.
wz[, iam(posn.lambda.i, posn.lambda.i, M)] <-
ned2l.dlambda.i2 * dlambda.i.deta^2
if (tmp3.TF[ 2]) { # tmp3.TF[ 4] is TRUE, given tmp3.TF[ 5]
ned2l.dpobs.mix.lambda.i <-
rowSums(-pstr.mix * d1A.i * d0B.PI.mix / DELTA.i.mix) # ccc.
wz[, iam(posn.pobs.mix, posn.lambda.i, M)] <-
ned2l.dpobs.mix.lambda.i # * dlambda.i.deta done later
}
if (tmp3.TF[ 4]) {
ned2l.dpstr.mix.lambda.i <- rowSums( # ccc.
d1A.i * (pstr.mix * (d0A.i - d0B.PI.mix) / DELTA.i.mix - 1))
wz[, iam(posn.pstr.mix, posn.lambda.i, M)] <-
ned2l.dpstr.mix.lambda.i # * dlambda.i.deta done later
}
if (all(tmp3.TF[c(5, 6)])) {
ned2l.dpdip.mix.lambda.i <- rowSums(
(-pstr.mix) * d0B.PI.mix * d1A.i / DELTA.i.mix)
wz[, iam(posn.pdip.mix, posn.lambda.i, M)] <-
ned2l.dpdip.mix.lambda.i # link done later
}
if (tmp3.TF[ 8]) {
ned2l.dpobs.mlm.lambda.i <- rowSums(
-pstr.mix * d0B.PI.mix * d1A.i / DELTA.i.mix) # ccc.
for (uuu in seq(la.mlm))
wz[, iam(posn.pobs.mlm - 1 + uuu, posn.lambda.i, M)] <-
ned2l.dpobs.mlm.lambda.i # * dlambda.i.deta done later
}
} # (tmp3.TF[ 5] && li.mix > 1)
if (tmp3.TF[ 6] && ld.mix > 0) { # \calD_{p}, maybe w. \theta_d
if (tmp3.TF[ 2] && la.mix > 0)
ned2l.dpobs.mix.lambda.p <-
ned2l.dpobs.mix.lambda.p +
rowSums(d1B.PD.mix * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
ned2l.dpstr.mix.lambda.p <-
ned2l.dpstr.mix.lambda.p + rowSums(
d1B.PD.mix * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
ned2l.dpdip.mix.lambda.p <-
ned2l.dpdip.mix.lambda.p - rowSums(
d1B.PD.mix * (1 + Numer * (d0A.d - d0B.PD.mix) / DELTA.d.mix))
if (!is.na(posn.pstr.mix)) {
ned2l.dpstr.mix2 <-
ned2l.dpstr.mix2 + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
}
if (all(tmp3.TF[c(4, 6)]))
ned2l.dpstr.mix.pdip.mix <-
ned2l.dpstr.mix.pdip.mix + rowSums(
d0B.PD.mix * (d0A.d - d0B.PD.mix) / DELTA.d.mix)
ned2l.dpdip.mix2 <-
ned2l.dpdip.mix2 +
rowSums((d0A.d - d0B.PD.mix)^2 / DELTA.d.mix)
} # (tmp3.TF[ 6] && ld.mix > 0)
if (tmp3.TF[ 7] && ld.mix > 1) { # \calD_{p}, includes \theta_d
ned2l.dlambda.p.lambda.d <- (-pdip.mix) * Numer *
rowSums(d1A.d * d1B.PD.mix / DELTA.d.mix) # nnn.
wz[, iam(1, posn.lambda.d, M)] <- ned2l.dlambda.p.lambda.d *
dlambda.p.deta * dlambda.d.deta # All links done here
if (tmp3.TF[ 2]) { # tmp3.TF[ 6] is TRUE, given tmp3.TF[ 7]
ned2l.dpobs.mix.lambda.d <-
rowSums(pdip.mix * d1A.d * d0B.PD.mix / DELTA.d.mix) # nnn.
wz[, iam(posn.pobs.mix, posn.lambda.d, M)] <-
ned2l.dpobs.mix.lambda.d # link done later
}
if (tmp3.TF[ 4]) {
ned2l.dpstr.mix.lambda.d <- rowSums(
pdip.mix * d1A.d * d0B.PD.mix / DELTA.d.mix)
wz[, iam(posn.pstr.mix, posn.lambda.d, M)] <-
ned2l.dpstr.mix.lambda.d # * dlambda.i.deta done later
}
ned2l.dpdip.mix.lambda.d <- rowSums(
d1A.d * (1 + pdip.mix * (d0A.d - d0B.PD.mix) / DELTA.d.mix))
wz[, iam(posn.pdip.mix, posn.lambda.d, M)] <-
ned2l.dpdip.mix.lambda.d # * dlambda.d.deta done later
ned2l.dlambda.d2 <- pdip.mix *
rowSums(pdip.mix * (d1A.d^2) / DELTA.d.mix + d2A.d) # nnn.
wz[, iam(posn.lambda.d, posn.lambda.d, M)] <-
ned2l.dlambda.d2 * dlambda.d.deta^2
if (tmp3.TF[ 8]) {
ned2l.dpobs.mlm.lambda.d <- rowSums(
pdip.mix * d0B.PD.mix * d1A.d / DELTA.d.mix) # nnn.
for (uuu in seq(la.mlm))
wz[, iam(posn.pobs.mlm - 1 + uuu, posn.lambda.d, M)] <-
ned2l.dpobs.mlm.lambda.d # * dlambda.d.deta done later
}
} # (tmp3.TF[ 7] && ld.mix > 1)
if (tmp3.TF[ 9] && li.mlm > 0) { # \calI_{np}, includes \phi_s.
if (la.mix && tmp3.TF[ 2])
ned2l.dpobs.mix.lambda.p <- # ccc
ned2l.dpobs.mix.lambda.p +
rowSums(d1B.PI.mlm * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
ned2l.dpstr.mix.lambda.p <- # ccc.
ned2l.dpstr.mix.lambda.p + rowSums(
d1B.PI.mlm * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
if (tmp3.TF[ 6])
ned2l.dpdip.mix.lambda.p <-
ned2l.dpdip.mix.lambda.p - rowSums(
d1B.PI.mlm * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
if (!is.na(posn.pstr.mix)) {
ned2l.dpstr.mix2 <-
ned2l.dpstr.mix2 + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
}
if (all(tmp3.TF[c(4, 6)]))
ned2l.dpstr.mix.pdip.mix <-
ned2l.dpstr.mix.pdip.mix - rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
if (!is.na(posn.pdip.mix)) {
ned2l.dpdip.mix2 <-
ned2l.dpdip.mix2 + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
}
} # tmp3.TF[ 9] && li.mlm > 0
if (tmp3.TF[10] && ld.mlm > 0) { # \calD_{np}, includes \psi_s.
if (la.mix && tmp3.TF[ 2])
ned2l.dpobs.mix.lambda.p <- # nnn.
ned2l.dpobs.mix.lambda.p +
rowSums(d1B.PD.mlm * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
ned2l.dpstr.mix.lambda.p <- # nnn.
ned2l.dpstr.mix.lambda.p + rowSums(
d1B.PD.mlm * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
if (tmp3.TF[ 6])
ned2l.dpdip.mix.lambda.p <-
ned2l.dpdip.mix.lambda.p - rowSums(
d1B.PD.mlm * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
if (!is.na(posn.pstr.mix)) {
ned2l.dpstr.mix2 <-
ned2l.dpstr.mix2 + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
}
if (all(tmp3.TF[c(4, 6)]))
ned2l.dpstr.mix.pdip.mix <-
ned2l.dpstr.mix.pdip.mix - rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
if (!is.na(posn.pdip.mix)) {
ned2l.dpdip.mix2 <-
ned2l.dpdip.mix2 + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
}
} # tmp3.TF[10] && ld.mlm > 0
if (!is.na(posn.pobs.mix)) # Optional (1, 2) element:
wz[, iam(1, posn.pobs.mix, M)] <-
ned2l.dpobs.mix.lambda.p # One link done later
if (!is.na(posn.pstr.mix)) # Optional (1, 4) element
wz[, iam(1, posn.pstr.mix, M)] <-
ned2l.dpstr.mix.lambda.p # One link done later
if (!is.na(posn.pdip.mix)) # Optional (1, 6) element
wz[, iam(1, posn.pdip.mix, M)] <-
ned2l.dpdip.mix.lambda.p # One link done later
if (!is.na(posn.pstr.mix) &&
!is.na(posn.pdip.mix)) # Optional (4, 6) element
wz[, iam(posn.pstr.mix, posn.pdip.mix, M)] <-
ned2l.dpstr.mix.pdip.mix # Links done later zz1
if (!is.na(posn.pstr.mix)) # Optional (4, 4) element
wz[, iam(posn.pstr.mix, # Link done later
posn.pstr.mix, M)] <- ned2l.dpstr.mix2
if (!is.na(posn.pdip.mix)) # Optional (6, 6) element
wz[, iam(posn.pdip.mix, # Link done later
posn.pdip.mix, M)] <- ned2l.dpdip.mix2
if (tmp3.TF[ 8] && la.mlm) { # \calA_{np}, includes \omega_s
ofset <- posn.pobs.mlm - 1 # 7 for GAITD combo
for (uuu in seq(la.mlm)) { # Diagonal elts only
wz[, iam(ofset + uuu,
ofset + uuu, M)] <- 1 / pobs.mlm[, uuu]
} # uuu
tmp8a <- probns / Numer^2
if (tmp3.TF[ 4] && li.mix)
tmp8a <- tmp8a + rowSums((d0B.PI.mix^2) / DELTA.i.mix)
if (tmp3.TF[ 9] && li.mlm)
tmp8a <- tmp8a + rowSums((d0B.PI.mlm^2) / DELTA.i.mlm)
if (tmp3.TF[ 6] && ld.mix)
tmp8a <- tmp8a + rowSums((d0B.PD.mix^2) / DELTA.d.mix)
if (tmp3.TF[10] && ld.mlm)
tmp8a <- tmp8a + rowSums((d0B.PD.mlm^2) / DELTA.d.mlm)
for (uuu in seq(la.mlm)) # All elts
for (vvv in uuu:la.mlm)
wz[, iam(ofset + uuu, ofset + vvv, M)] <-
wz[, iam(ofset + uuu, ofset + vvv, M)] + tmp8a # All elts
} # la.mlm
if (tmp3.TF[ 8] && la.mlm) {
init0.i.val <- init0.d.val <- 0
if (tmp3.TF[ 9] && li.mlm) init0.i.val <-
rowSums(d1B.PI.mlm * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
if (tmp3.TF[10] && ld.mlm) init0.d.val <-
rowSums(d1B.PD.mlm * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
ned2l.dpobs.mlm.lambda.p <- init0.i.val + init0.d.val # Vector
if (tmp3.TF[ 4] && li.mix)
ned2l.dpobs.mlm.lambda.p <-
ned2l.dpobs.mlm.lambda.p + rowSums(
d1B.PI.mix * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (tmp3.TF[ 6] && ld.mix)
ned2l.dpobs.mlm.lambda.p <-
ned2l.dpobs.mlm.lambda.p + rowSums( # nnn
d1B.PD.mix * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
ofset <- posn.pobs.mlm - 1 # 5 for combo
for (vvv in seq(la.mlm)) # ccc.
wz[, iam(1, ofset + vvv, M)] <- ned2l.dpobs.mlm.lambda.p
} # la.mlm > 0
if (tmp3.TF[ 9] && li.mlm > 0) { # \calI_{np}, includes \phi_s
init0.val <- probns / Numer^2
if (li.mix)
init0.val <- init0.val + rowSums((d0B.PI.mix^2) / DELTA.i.mix)
if (ld.mix) # nnn
init0.val <- init0.val + rowSums((d0B.PD.mix^2) / DELTA.d.mix)
if (ld.mlm) # nnn
init0.val <- init0.val + rowSums((d0B.PD.mlm^2) / DELTA.d.mlm)
ned2l.dpstr.mlm2 <-
matrix(init0.val, n, li.mlm * (li.mlm + 1) / 2)
for (uuu in seq(li.mlm))
for (sss in seq(li.mlm))
ned2l.dpstr.mlm2[, iam(uuu, uuu, li.mlm)] <-
ned2l.dpstr.mlm2[, iam(uuu, uuu, li.mlm)] +
((sss == uuu) - d0B.PI.mlm[, sss])^2 / DELTA.i.mlm[, sss]
if (li.mlm > 1) {
for (uuu in seq(li.mlm - 1))
for (vvv in (uuu + 1):li.mlm)
for (sss in seq(li.mlm))
ned2l.dpstr.mlm2[, iam(uuu, vvv, li.mlm)] <-
ned2l.dpstr.mlm2[, iam(uuu, vvv, li.mlm)] +
((sss == uuu) - d0B.PI.mlm[, sss]) *
((sss == vvv) - d0B.PI.mlm[, sss]) / DELTA.i.mlm[, sss]
} # if (li.mlm > 1)
ofset <- posn.pstr.mlm - 1
for (uuu in seq(li.mlm))
for (vvv in uuu:li.mlm)
wz[, iam(ofset + uuu, ofset + vvv, M)] <-
ned2l.dpstr.mlm2[, iam(uuu, vvv, li.mlm)]
} # li.mlm > 0
if (tmp3.TF[10] && ld.mlm > 0) { # \calD_{np}, includes \psi_s
init0.val <- probns / Numer^2
if (ld.mix)
init0.val <- init0.val + rowSums((d0B.PD.mix^2) / DELTA.d.mix)
if (li.mix)
init0.val <- init0.val + rowSums((d0B.PI.mix^2) / DELTA.i.mix)
if (li.mlm)
init0.val <- init0.val + rowSums((d0B.PI.mlm^2) / DELTA.i.mlm)
ned2l.dpdip.mlm2 <-
matrix(init0.val, n, ld.mlm * (ld.mlm + 1) / 2)
for (uuu in seq(ld.mlm))
for (sss in seq(ld.mlm))
ned2l.dpdip.mlm2[, iam(uuu, uuu, ld.mlm)] <-
ned2l.dpdip.mlm2[, iam(uuu, uuu, ld.mlm)] +
(d0B.PD.mlm[, sss] - (sss == uuu))^2 / DELTA.d.mlm[, sss]
if (ld.mlm > 1) {
for (uuu in seq(ld.mlm - 1))
for (vvv in (uuu + 1):ld.mlm)
for (sss in seq(ld.mlm))
ned2l.dpdip.mlm2[, iam(uuu, vvv, ld.mlm)] <-
ned2l.dpdip.mlm2[, iam(uuu, vvv, ld.mlm)] +
(d0B.PD.mlm[, sss] - (sss == uuu)) *
(d0B.PD.mlm[, sss] - (sss == vvv)) / DELTA.d.mlm[, sss]
} # if (ld.mlm > 1)
ofset <- posn.pdip.mlm - 1
for (uuu in seq(ld.mlm))
for (vvv in uuu:ld.mlm)
wz[, iam(ofset + uuu, ofset + vvv, M)] <-
ned2l.dpdip.mlm2[, iam(uuu, vvv, ld.mlm)]
} # ld.mlm > 0
if (tmp3.TF[ 9] && li.mlm > 0) {
ned2l.dpstr.mlm.theta.p <- matrix(0, n, li.mlm)
for (vvv in seq(li.mlm))
for (sss in seq(li.mlm))
ned2l.dpstr.mlm.theta.p[, vvv] <-
ned2l.dpstr.mlm.theta.p[, vvv] +
d1B.PI.mlm[, sss] * (1 + Numer *
(max(0, sss == vvv) - d0B.PI.mlm[, sss]) / (
DELTA.i.mlm[, sss]))
if (li.mix && tmp3.TF[ 4])
ned2l.dpstr.mlm.theta.p <-
ned2l.dpstr.mlm.theta.p +
rowSums(d1B.PI.mix * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (ld.mix && tmp3.TF[ 6])
ned2l.dpstr.mlm.theta.p <- # nnn
ned2l.dpstr.mlm.theta.p +
rowSums(d1B.PD.mix * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
if (ld.mlm && tmp3.TF[10])
ned2l.dpstr.mlm.theta.p <- # nnn.
ned2l.dpstr.mlm.theta.p +
rowSums(d1B.PD.mlm * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
ofset <- posn.pstr.mlm - 1
for (vvv in seq(li.mlm)) # ccc.
wz[, iam(1, ofset + vvv, M)] <- ned2l.dpstr.mlm.theta.p[, vvv]
} # li.mlm > 0
if (tmp3.TF[10] && ld.mlm > 0) {
ned2l.dpdip.mlm.theta.p <- matrix(0, n, ld.mlm)
for (vvv in seq(ld.mlm))
for (sss in seq(ld.mlm))
ned2l.dpdip.mlm.theta.p[, vvv] <-
ned2l.dpdip.mlm.theta.p[, vvv] - # Minus
d1B.PD.mlm[, sss] * (1 + Numer *
(max(0, sss == vvv) - d0B.PD.mlm[, sss]) / (
DELTA.d.mlm[, sss]))
if (ld.mix && tmp3.TF[ 6])
ned2l.dpdip.mlm.theta.p <-
ned2l.dpdip.mlm.theta.p - # Minus
rowSums(d1B.PD.mix * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
if (li.mix && tmp3.TF[ 4])
ned2l.dpdip.mlm.theta.p <-
ned2l.dpdip.mlm.theta.p - # Minus
rowSums(d1B.PI.mix * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (li.mlm && tmp3.TF[ 9])
ned2l.dpdip.mlm.theta.p <- # nnn.
ned2l.dpdip.mlm.theta.p - # Minus
rowSums(d1B.PI.mlm * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
ofset <- posn.pdip.mlm - 1
for (vvv in seq(ld.mlm)) # nnn.
wz[, iam(1, ofset + vvv, M)] <- ned2l.dpdip.mlm.theta.p[, vvv]
} # ld.mlm > 0
if (li.mlm && li.mix > 1) {
ned2l.dpstr.mlm.theta.i <- # Not a matrix, just a vector
rowSums(-pstr.mix * d0B.PI.mix * d1A.i / DELTA.i.mix)
for (vvv in seq(li.mlm))
wz[, iam(posn.lambda.i, posn.pstr.mlm - 1 + vvv, M)] <-
ned2l.dpstr.mlm.theta.i # ccc.
} # li.mlm && li.mix > 1
if (ld.mlm && ld.mix > 1) {
ned2l.dpdip.mlm.theta.d <- # Not a matrix, just a vector
rowSums(pdip.mix * d0B.PD.mix * d1A.d / DELTA.d.mix)
for (vvv in seq(ld.mlm))
wz[, iam(posn.lambda.d, posn.pdip.mlm - 1 + vvv, M)] <-
ned2l.dpdip.mlm.theta.d # nnn.
} # ld.mlm && ld.mix > 1
if (ld.mlm && li.mix > 1) {
ned2l.dpdip.mlm.theta.i <- # Not a matrix, just a vector
rowSums(-pstr.mix * d0B.PI.mix * d1A.i / DELTA.i.mix)
for (vvv in seq(ld.mlm))
wz[, iam(posn.lambda.i, posn.pdip.mlm - 1 + vvv, M)] <-
ned2l.dpdip.mlm.theta.i # nnn.
} # ld.mlm && li.mix > 1
if (li.mlm && ld.mix > 1) {
ned2l.dpstr.mlm.theta.d <- # Not a matrix, just a vector
rowSums(pdip.mix * d0B.PD.mix * d1A.d / DELTA.d.mix)
for (vvv in seq(li.mlm))
wz[, iam(posn.lambda.d, posn.pstr.mlm - 1 + vvv, M)] <-
ned2l.dpstr.mlm.theta.d # nnn.
} # li.mlm && ld.mix > 1
if (all(c(la.mlm, li.mlm) > 0)) {
ned2l.dpobs.mlm.pstr.mlm <-
array(probns / Numer^2, c(n, la.mlm, li.mlm))
for (uuu in seq(la.mlm))
for (vvv in seq(li.mlm))
for (sss in seq(li.mlm))
ned2l.dpobs.mlm.pstr.mlm[, uuu, vvv] <-
ned2l.dpobs.mlm.pstr.mlm[, uuu, vvv] - d0B.PI.mlm[, sss] *
((sss == vvv) - d0B.PI.mlm[, sss]) / DELTA.i.mlm[, sss]
if (tmp3.TF[ 4] && li.mix)
ned2l.dpobs.mlm.pstr.mlm <-
ned2l.dpobs.mlm.pstr.mlm + rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (tmp3.TF[ 6] && ld.mix)
ned2l.dpobs.mlm.pstr.mlm <- # nnn
ned2l.dpobs.mlm.pstr.mlm + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
if (tmp3.TF[10] && ld.mlm)
ned2l.dpobs.mlm.pstr.mlm <- # nnn
ned2l.dpobs.mlm.pstr.mlm + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
ofset.pobs <- posn.pobs.mlm - 1
ofset.pstr <- posn.pstr.mlm - 1
for (uuu in seq(la.mlm))
for (vvv in seq(li.mlm))
wz[, iam(ofset.pobs + uuu, ofset.pstr + vvv, M)] <-
ned2l.dpobs.mlm.pstr.mlm[, uuu, vvv]
} # all(c(la.mlm, li.mlm) > 0)
if (all(c(li.mlm, ld.mlm) > 0)) {
ned2l.dpstr.mlm.pdip.mlm <-
array(-probns / Numer^2, c(n, li.mlm, ld.mlm))
for (uuu in seq(li.mlm))
for (vvv in seq(ld.mlm))
for (sss in seq(li.mlm))
ned2l.dpstr.mlm.pdip.mlm[, uuu, vvv] <-
ned2l.dpstr.mlm.pdip.mlm[, uuu, vvv] + d0B.PI.mlm[, sss] *
((sss == uuu) - d0B.PI.mlm[, sss]) / DELTA.i.mlm[, sss]
for (uuu in seq(li.mlm))
for (vvv in seq(ld.mlm))
for (sss in seq(ld.mlm))
ned2l.dpstr.mlm.pdip.mlm[, uuu, vvv] <-
ned2l.dpstr.mlm.pdip.mlm[, uuu, vvv] + d0B.PD.mlm[, sss] *
((sss == vvv) - d0B.PD.mlm[, sss]) / DELTA.d.mlm[, sss]
if (tmp3.TF[ 4] && li.mix)
ned2l.dpstr.mlm.pdip.mlm <-
ned2l.dpstr.mlm.pdip.mlm - rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (tmp3.TF[ 6] && ld.mix)
ned2l.dpstr.mlm.pdip.mlm <- # nnn.
ned2l.dpstr.mlm.pdip.mlm - rowSums(d0B.PD.mix^2 / DELTA.d.mix)
ofset.pstr <- posn.pstr.mlm - 1
ofset.pdip <- posn.pdip.mlm - 1
for (uuu in seq(li.mlm))
for (vvv in seq(ld.mlm))
wz[, iam(ofset.pstr + uuu, ofset.pdip + vvv, M)] <-
ned2l.dpstr.mlm.pdip.mlm[, uuu, vvv]
} # all(c(li.mlm, ld.mlm) > 0)
if (all(c(la.mlm, ld.mlm) > 0)) {
ned2l.dpobs.mlm.pdip.mlm <-
array(-probns / Numer^2, c(n, la.mlm, ld.mlm))
for (uuu in seq(la.mlm))
for (vvv in seq(ld.mlm))
for (sss in seq(ld.mlm))
ned2l.dpobs.mlm.pdip.mlm[, uuu, vvv] <-
ned2l.dpobs.mlm.pdip.mlm[, uuu, vvv] + d0B.PD.mlm[, sss] *
((sss == vvv) - d0B.PD.mlm[, sss]) / DELTA.d.mlm[, sss]
if (tmp3.TF[ 4] && li.mix)
ned2l.dpobs.mlm.pdip.mlm <-
ned2l.dpobs.mlm.pdip.mlm - rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (tmp3.TF[ 9] && li.mlm)
ned2l.dpobs.mlm.pdip.mlm <-
ned2l.dpobs.mlm.pdip.mlm - rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
if (tmp3.TF[ 6] && ld.mix)
ned2l.dpobs.mlm.pdip.mlm <-
ned2l.dpobs.mlm.pdip.mlm - rowSums(d0B.PD.mix^2 / DELTA.d.mix)
ofset.pobs <- posn.pobs.mlm - 1
ofset.pdip <- posn.pdip.mlm - 1
for (uuu in seq(la.mlm))
for (vvv in seq(ld.mlm))
wz[, iam(ofset.pobs + uuu, ofset.pdip + vvv, M)] <-
ned2l.dpobs.mlm.pdip.mlm[, uuu, vvv]
} # all(c(la.mlm, li.mlm) > 0)
if (all(c(la.mix, la.mlm) > 0)) {
ned2l.dpobs.mix.pobs.mlm <- probns / Numer^2 # Initialize
if (li.mix) # tmp3.TF[ 4]
ned2l.dpobs.mix.pobs.mlm <-
ned2l.dpobs.mix.pobs.mlm + rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (li.mlm) # tmp3.TF[ 7]
ned2l.dpobs.mix.pobs.mlm <-
ned2l.dpobs.mix.pobs.mlm + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
if (ld.mix) # tmp3.TF[ 6] nnn
ned2l.dpobs.mix.pobs.mlm <-
ned2l.dpobs.mix.pobs.mlm + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
if (ld.mlm) # tmp3.TF[10] nnn
ned2l.dpobs.mix.pobs.mlm <-
ned2l.dpobs.mix.pobs.mlm + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
for (uuu in seq(la.mlm)) # ccc.
wz[, iam(posn.pobs.mix, posn.pobs.mlm - 1 + uuu, M)] <-
ned2l.dpobs.mix.pobs.mlm # Link done later
}
if (all(c(la.mix, li.mlm) > 0)) { # all(tmp3.TF[c(2, 9)])
if (li.mix) # tmp3.TF[ 4]
ned2l.dpobs.mix.pstr.mlm <-
ned2l.dpobs.mix.pstr.mlm + rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (ld.mix) # tmp3.TF[ 6]
ned2l.dpobs.mix.pstr.mlm <- # nnn
ned2l.dpobs.mix.pstr.mlm + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
if (ld.mlm) # tmp3.TF[10]
ned2l.dpobs.mix.pstr.mlm <- # nnn; + is correct, not -
ned2l.dpobs.mix.pstr.mlm + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
for (uuu in seq(li.mlm))
for (sss in seq(li.mlm))
ned2l.dpobs.mix.pstr.mlm[, uuu] <-
ned2l.dpobs.mix.pstr.mlm[, uuu] -
((sss == uuu) - d0B.PI.mlm[, sss]) *
d0B.PI.mlm[, sss] / DELTA.i.mlm[, sss]
for (uuu in seq(li.mlm)) # ccc.
wz[, iam(posn.pobs.mix,
posn.pstr.mlm - 1 + uuu, M)] <-
ned2l.dpobs.mix.pstr.mlm[, uuu] # Link done later
} # all(c(la.mix, li.mlm) > 0)
if (all(c(la.mix, ld.mlm) > 0)) { # all(tmp3.TF[c(2, 10)])
if (li.mix) # tmp3.TF[ 4]
ned2l.dpobs.mix.pdip.mlm <-
ned2l.dpobs.mix.pdip.mlm - rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (li.mlm) # tmp3.TF[ 9]
ned2l.dpobs.mix.pdip.mlm <-
ned2l.dpobs.mix.pdip.mlm - rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
if (ld.mix) # tmp3.TF[ 6]
ned2l.dpobs.mix.pdip.mlm <-
ned2l.dpobs.mix.pdip.mlm - rowSums(d0B.PD.mix^2 / DELTA.d.mix)
for (uuu in seq(ld.mlm))
for (sss in seq(ld.mlm))
ned2l.dpobs.mix.pdip.mlm[, uuu] <-
ned2l.dpobs.mix.pdip.mlm[, uuu] +
((sss == uuu) - d0B.PD.mlm[, sss]) *
d0B.PD.mlm[, sss] / DELTA.d.mlm[, sss]
for (uuu in seq(ld.mlm)) # nnn.
wz[, iam(posn.pobs.mix,
posn.pdip.mlm - 1 + uuu, M)] <-
ned2l.dpobs.mix.pdip.mlm[, uuu] # Link done later
} # all(c(la.mix, ld.mlm) > 0)
if (all(c(li.mix, la.mlm) > 0)) { # all(tmp3.TF[c(4, 8)])
if (li.mlm) # tmp3.TF[ 9]
ned2l.dpobs.mlm.pstr.mix <-
ned2l.dpobs.mlm.pstr.mix + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
if (ld.mix) # tmp3.TF[ 6]
ned2l.dpobs.mlm.pstr.mix <- # nnn
ned2l.dpobs.mlm.pstr.mix + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
if (ld.mlm) # tmp3.TF[10]
ned2l.dpobs.mlm.pstr.mix <- # nnn
ned2l.dpobs.mlm.pstr.mix + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
ned2l.dpobs.mlm.pstr.mix <- # tmp3.TF[ 4] && li.mix
ned2l.dpobs.mlm.pstr.mix -
rowSums((d0A.i - d0B.PI.mix) * d0B.PI.mix / DELTA.i.mix)
for (uuu in seq(la.mlm)) # ccc.
wz[, iam(posn.pstr.mix,
posn.pobs.mlm - 1 + uuu, M)] <-
ned2l.dpobs.mlm.pstr.mix # Link done later
} # all(c(li.mix, la.mlm) > 0
if (all(c(ld.mix, la.mlm) > 0)) { # all(tmp3.TF[c(6, 8)])
if (ld.mlm) # tmp3.TF[10]
ned2l.dpobs.mlm.pdip.mix <-
ned2l.dpobs.mlm.pdip.mix - rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
if (li.mix) # tmp3.TF[ 4]
ned2l.dpobs.mlm.pdip.mix <-
ned2l.dpobs.mlm.pdip.mix - rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (li.mlm) # tmp3.TF[ 9]
ned2l.dpobs.mlm.pdip.mix <-
ned2l.dpobs.mlm.pdip.mix - rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
ned2l.dpobs.mlm.pdip.mix <- # all(tmp3.TF[c(6, 8)])
ned2l.dpobs.mlm.pdip.mix +
rowSums((d0A.d - d0B.PD.mix) * d0B.PD.mix / DELTA.d.mix)
for (uuu in seq(la.mlm)) # nnn.
wz[, iam(posn.pdip.mix,
posn.pobs.mlm - 1 + uuu, M)] <-
ned2l.dpobs.mlm.pdip.mix # Link done later
} # all(c(ld.mix, la.mlm) > 0
if (all(c(li.mix, li.mlm) > 0)) { # all(tmp3.TF[c(4, 9)])
for (uuu in seq(li.mlm)) # tmp3.TF[ 9]
for (sss in seq(li.mlm))
ned2l.dpstr.mix.pstr.mlm[, uuu] <-
ned2l.dpstr.mix.pstr.mlm[, uuu] -
((sss == uuu) - d0B.PI.mlm[, sss]) *
d0B.PI.mlm[, sss] / DELTA.i.mlm[, sss]
ned2l.dpstr.mix.pstr.mlm <-
ned2l.dpstr.mix.pstr.mlm -
rowSums((d0A.i - d0B.PI.mix) * d0B.PI.mix / DELTA.i.mix)
if (ld.mix) # tmp3.TF[ 6]
ned2l.dpstr.mix.pstr.mlm <- # nnn
ned2l.dpstr.mix.pstr.mlm + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
if (ld.mlm) # tmp3.TF[10]
ned2l.dpstr.mix.pstr.mlm <- # nnn
ned2l.dpstr.mix.pstr.mlm + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
for (uuu in seq(li.mlm)) # Copy it. ccc.
wz[, iam(posn.pstr.mix,
posn.pstr.mlm - 1 + uuu, M)] <-
ned2l.dpstr.mix.pstr.mlm[, uuu] # Link done later
} # all(c(li.mix, li.mlm) > 0
if (all(c(ld.mix, ld.mlm) > 0)) { # all(tmp3.TF[c(6, 10)])
for (uuu in seq(ld.mlm)) # tmp3.TF[ 9]
for (sss in seq(ld.mlm))
ned2l.dpdip.mix.pdip.mlm[, uuu] <-
ned2l.dpdip.mix.pdip.mlm[, uuu] -
((sss == uuu) - d0B.PD.mlm[, sss]) *
d0B.PD.mlm[, sss] / DELTA.d.mlm[, sss]
if (ld.mix) # tmp3.TF[ 6]
ned2l.dpdip.mix.pdip.mlm <-
ned2l.dpdip.mix.pdip.mlm -
rowSums((d0A.d - d0B.PD.mix) * d0B.PD.mix / DELTA.d.mix)
if (li.mix) # tmp3.TF[ 4]
ned2l.dpdip.mix.pdip.mlm <-
ned2l.dpdip.mix.pdip.mlm + rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (li.mlm) # tmp3.TF[ 9]
ned2l.dpdip.mix.pdip.mlm <-
ned2l.dpdip.mix.pdip.mlm + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
for (uuu in seq(ld.mlm)) # Copy it. ccc.
wz[, iam(posn.pdip.mix,
posn.pdip.mlm - 1 + uuu, M)] <-
ned2l.dpdip.mix.pdip.mlm[, uuu] # Link done later
} # all(c(ld.mix, ld.mlm) > 0
if (all(c(ld.mix, li.mlm) > 0)) { # all(tmp3.TF[c(4, 9)])
for (uuu in seq(li.mlm)) # tmp3.TF[ 9]
for (sss in seq(li.mlm))
ned2l.dpdip.mix.pstr.mlm[, uuu] <-
ned2l.dpdip.mix.pstr.mlm[, uuu] +
((sss == uuu) - d0B.PI.mlm[, sss]) *
d0B.PI.mlm[, sss] / DELTA.i.mlm[, sss]
if (ld.mix) # tmp3.TF[ 6]
ned2l.dpdip.mix.pstr.mlm <-
ned2l.dpdip.mix.pstr.mlm +
rowSums((d0A.d - d0B.PD.mix) * d0B.PD.mix / DELTA.d.mix)
if (li.mix) # tmp3.TF[ 4]
ned2l.dpdip.mix.pstr.mlm <-
ned2l.dpdip.mix.pstr.mlm - rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (ld.mlm) # tmp3.TF[10]
ned2l.dpdip.mix.pstr.mlm <-
ned2l.dpdip.mix.pstr.mlm - rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
for (uuu in seq(li.mlm)) # Copy it. ccc.
wz[, iam(posn.pdip.mix,
posn.pstr.mlm - 1 + uuu, M)] <-
ned2l.dpdip.mix.pstr.mlm[, uuu] # Link done later
} # all(c(ld.mix, li.mlm) > 0
if (all(c(li.mix, ld.mlm) > 0)) { # all(tmp3.TF[c(4, 10)])
for (uuu in seq(ld.mlm)) # tmp3.TF[10]
for (sss in seq(ld.mlm))
ned2l.dpstr.mix.pdip.mlm[, uuu] <-
ned2l.dpstr.mix.pdip.mlm[, uuu] +
((sss == uuu) - d0B.PD.mlm[, sss]) *
d0B.PD.mlm[, sss] / DELTA.d.mlm[, sss]
if (li.mix) # tmp3.TF[ 4]
ned2l.dpstr.mix.pdip.mlm <-
ned2l.dpstr.mix.pdip.mlm +
rowSums((d0A.i - d0B.PI.mix) * d0B.PI.mix / DELTA.i.mix)
if (ld.mix) # tmp3.TF[ 6]
ned2l.dpstr.mix.pdip.mlm <-
ned2l.dpstr.mix.pdip.mlm - rowSums(d0B.PD.mix^2 / DELTA.d.mix)
if (li.mlm) # tmp3.TF[ 9]
ned2l.dpstr.mix.pdip.mlm <- # nnn.
ned2l.dpstr.mix.pdip.mlm - rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
for (uuu in seq(ld.mlm)) # Copy it. ccc.
wz[, iam(posn.pstr.mix,
posn.pdip.mlm - 1 + uuu, M)] <-
ned2l.dpstr.mix.pdip.mlm[, uuu] # Link done later
} # all(c(li.mix, ld.mlm) > 0)
if (lall.len) {
wz.6 <- matrix(0, n, M * (M + 1) / 2) # Or == 0 * wz
ind.rc <- setdiff(1:M, ind.lambda.z) # Contiguous rows and
lind.rc <- length(ind.rc) # cols of the DAMLM
# Copy in the thetas values: the looping is overkill.
for (uuu in ind.lambda.z)
for (sss in seq(M))
wz.6[, iam(uuu, sss, M)] <- wz[, iam(uuu, sss, M)]
speed.up <- intercept.only && (
length(offset) == 1 || all(offset[1] == offset))
IND.mlm <- iam(NA, NA, lind.rc, both = TRUE, diag = TRUE)
n.use <- if (speed.up) 2 else n # For sandwich.mlm
if (!length(extra$ind.wz.match)) {
Imat <- matrix(NA, lind.rc, lind.rc)
for (jay in seq(lind.rc)) {
iptr <- jay
for (kay in (ind.rc[jay]):M) {
if (!any(kay %in% ind.lambda.z)) {
Imat[jay, iptr] <-
which(extra$index.M$row == ind.rc[jay] &
extra$index.M$col == kay)
iptr <- iptr + 1
} # if
} # kay
} # jay
ind.wz.match <- Imat[cbind(IND.mlm$row.ind,
IND.mlm$col.ind)]
extra$ind.wz.match <- ind.wz.match # Assign it once
} # !length(extra$ind.wz.match)
filling <- if (speed.up)
wz[1:n.use, extra$ind.wz.match, drop = FALSE] else
wz[, extra$ind.wz.match, drop = FALSE]
M.mlm <- lind.rc
if (is.null(extra$iamlist)) {
extra$iamlist <- iamlist <-
iam(NA, NA, M = M.mlm, both = TRUE)
if (M.mlm > 1) { # Offdiagonal elts
extra$iamlist.nod <- iamlist.nod <-
iam(NA, NA, M.mlm, both = TRUE, diag = FALSE)
}
} # is.null(extra$iamlist)
iamlist <- extra$iamlist
iamlist.nod <- extra$iamlist.nod
MM12.mlm <- M.mlm * (M.mlm + 1) / 2
Qf3 <- rowSums(filling[, 1:M.mlm, drop = FALSE] * # Diag elts
(allprobs[1:n.use, 1:M.mlm, drop = FALSE])^2)
if (M.mlm > 1) # Offdiagonal elts
Qf3 <- Qf3 + 2 * rowSums(allprobs[1:n.use, iamlist.nod$row] *
filling[, -(1:M.mlm), drop = FALSE] * # n-vector
allprobs[1:n.use, iamlist.nod$col])
Qf3 <- matrix(Qf3, n.use, MM12.mlm)
Qf2rowsums <- matrix(0, n.use, M.mlm) # rowsums stored colnwise
for (want in seq(M.mlm)) { # Want the \equiv of rowSums(Qf2a)
iamvec <- iam(want, 1:M.mlm, M = M.mlm) # Diagonals included
Qf2rowsums[, want] <-
rowSums(filling[, iamvec, drop = FALSE] *
allprobs[1:n.use, 1:M.mlm])
} # want
Qf2a <- Qf2rowsums[, iamlist$row]
Qf2b <- Qf2rowsums[, iamlist$col]
Qform <- filling - Qf2a - Qf2b + Qf3 # n x MM12.mlm
Qform <- Qform *
allprobs[1:n.use, iamlist$row, drop = FALSE] *
allprobs[1:n.use, iamlist$col, drop = FALSE]
wz.6[, extra$ind.wz.match] <- if (speed.up)
matrix(Qform[1, ], n, ncol(Qform), byrow = TRUE) else
c(Qform)
dstar.deta <- cbind(dlambda.p.deta,
if (tmp3.TF[ 3]) dlambda.a.deta else NULL,
if (tmp3.TF[ 5]) dlambda.i.deta else NULL,
if (tmp3.TF[ 7]) dlambda.d.deta else NULL)
iptr <- 0
if (length(ind.lambda.z))
for (uuu in ind.lambda.z) { # Could delete 3 4 lambda.a (orthog)
iptr <- iptr + 1
for (ttt in seq(lind.rc)) {
wz.6[, iam(uuu, ind.rc[ttt], M)] <- 0 # Initialize
for (sss in seq(lind.rc)) {
wz.6[, iam(uuu, ind.rc[ttt], M)] <-
wz.6[, iam(uuu, ind.rc[ttt], M)] +
allprobs[, sss] *
(max(0, sss == ttt) - allprobs[, ttt]) *
wz[, iam(uuu, ind.rc[sss], M)] * dstar.deta[, iptr]
} # sss
} # ttt
} # uuu
wz <- wz.6 # Completed
} # lall.len
if (lall.len) { # A MLM was fitted
mytiny <- (allprobs < sqrt(.Machine$double.eps)) |
(allprobs > 1.0 - sqrt(.Machine$double.eps))
atiny <- rowSums(mytiny) > 0
if (any(atiny)) {
ind.diags <- setdiff(1:M, ind.lambda.z) # Exclude thetas
wz[atiny, ind.diags] <- .Machine$double.eps +
wz[atiny, ind.diags] * (1 + .Machine$double.eps^0.5)
}
} # lall.len
c(w) * wz
}), list( .truncate = truncate ))))
} # gaitdpoisson
dgaitdpois <-
function(x, lambda.p,
a.mix = NULL,
a.mlm = NULL,
i.mix = NULL,
i.mlm = NULL,
d.mix = NULL,
d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0, # vector
pobs.mlm = 0, # matrix
pstr.mix = 0, # vector
pstr.mlm = 0, # matrix
pdip.mix = 0, # vector
pdip.mlm = 0, # matrix
byrow.aid = FALSE, # Applies to 'pobs.mlm' & 'pstr.mlm'
lambda.a = lambda.p, lambda.i = lambda.p,
lambda.d = lambda.p,
log = FALSE) {
log.arg <- log; rm(log)
lowsup <- 0 # Lower support
gaitd.errorcheck(a.mix, a.mlm, i.mix, i.mlm,
d.mix, d.mlm, truncate, max.support)
la.mix <- length(a.mix <- sort(a.mix))
li.mix <- length(i.mix <- sort(i.mix))
ld.mix <- length(d.mix <- sort(d.mix))
la.mlm <- length(a.mlm)
li.mlm <- length(i.mlm)
ld.mlm <- length(d.mlm)
ltrunc <- length(truncate <- sort(truncate))
if (la.mix + la.mlm + li.mix + li.mlm + ld.mix + ld.mlm +
ltrunc == 0 &&
is.infinite(max.support))
return(dpois(x, lambda.p, log = log.arg))
if (la.mix == 0) pobs.mix <- 0
if (la.mlm == 0) pobs.mlm <- 0
if (li.mix == 0) pstr.mix <- 0
if (li.mlm == 0) pstr.mlm <- 0
if (ld.mix == 0) pdip.mix <- 0
if (ld.mlm == 0) pdip.mlm <- 0
if (any(pobs.mix < 0 | 1 <= pobs.mix, na.rm = TRUE))
stop("bad input for argument 'pobs.mix'")
if (any(pobs.mlm < 0 | 1 <= pobs.mlm, na.rm = TRUE))
stop("bad input for argument 'pobs.mlm'")
if (any(pstr.mix < 0 | 1 <= pstr.mix, na.rm = TRUE))
stop("bad input for argument 'pstr.mix'")
if (any(pstr.mlm < 0 | 1 <= pstr.mlm, na.rm = TRUE))
stop("bad input for argument 'pstr.mlm'")
if (any(pdip.mix < 0 | 1 <= pdip.mix, na.rm = TRUE)) {
stop("bad input for argument 'pdip.mix'")
}
if (any(pdip.mlm < 0 | 1 <= pdip.mlm, na.rm = TRUE)) {
stop("bad input for argument 'pdip.mlm'")
}
LLL <- max(length(x),
length(pobs.mix), length(pstr.mix), length(pdip.mix),
length(lambda.p), length(lambda.a),
length(lambda.i), length(lambda.d))
if (length(x) < LLL) x <- rep_len(x, LLL)
if (length(lambda.p) < LLL) lambda.p <- rep_len(lambda.p, LLL)
if (length(lambda.a) < LLL) lambda.a <- rep_len(lambda.a, LLL)
if (length(lambda.i) < LLL) lambda.i <- rep_len(lambda.i, LLL)
if (length(lambda.d) < LLL) lambda.d <- rep_len(lambda.d, LLL)
if (length(pobs.mix) < LLL) pobs.mix <- rep_len(pobs.mix, LLL)
if (length(pstr.mix) < LLL) pstr.mix <- rep_len(pstr.mix, LLL)
if (length(pdip.mix) < LLL) pdip.mix <- rep_len(pdip.mix, LLL)
sumt <- 0 # Initialization to 0 important
if (ltrunc)
for (tval in truncate)
sumt <- sumt + dpois(tval, lambda.p) # Need tval <= max.support
vecTF.t <- is.finite(x) & ((x %in% truncate) | (max.support < x))
cdf.max.s <- ppois(max.support, lambda.p) # Usually 1
denom.t <- cdf.max.s - sumt # No sumt on RHS
pmf0 <- ifelse(vecTF.t, 0, dpois(x, lambda.p) / denom.t)
sum.a <- suma <- 0 # numeric(LLL)
vecTF.a <- rep_len(FALSE, LLL)
if (la.mlm) {
pobs.mlm <- matrix(pobs.mlm, LLL, la.mlm, byrow = byrow.aid)
sum.a <- .rowSums(pobs.mlm, LLL, la.mlm)
if (any(1 < sum.a, na.rm = TRUE))
stop("bad input for argument 'pobs.mlm'") # zz
for (aval in a.mlm)
suma <- suma + dpois(aval, lambda.p) # Part i
for (jay in seq(la.mlm)) {
aval <- a.mlm[jay]
if (any(vecTF <- is.finite(x) & aval == x)) {
pmf0[vecTF] <- pobs.mlm[vecTF, jay]
}
vecTF.a <- vecTF.a | vecTF # Cumulative
} # jay
} # la.mlm
pmf2.a <- pmf2.i <- pmf2.d <- 0
if (la.mix) {
allx.a <- lowsup:max(a.mix)
pmf2.a <- dgaitdpois(x, lambda.a, # Outer distribution---mlm type
truncate = setdiff(allx.a, a.mix),
max.support = max(a.mix))
for (aval in a.mix) {
suma <- suma + dpois(aval, lambda.p) # Part ii added; cumulative
vecTF <- is.finite(x) & aval == x
pmf0[vecTF] <- 0 # added; the true values are assigned below
vecTF.a <- vecTF.a | vecTF # Cumulative; added
}
} # la.mix
if (li.mix) {
allx.i <- lowsup:max(i.mix)
pmf2.i <- dgaitdpois(x, lambda.i, # Outer distn---mlm type
truncate = setdiff(allx.i, i.mix),
max.support = max(i.mix))
} # li.mix
sum.d <- 0 # numeric(LLL)
if (ld.mlm) {
pdip.mlm <- matrix(pdip.mlm, LLL, ld.mlm, byrow = byrow.aid)
sum.d <- .rowSums(pdip.mlm, LLL, ld.mlm)
if (any(1 < sum.d, na.rm = TRUE))
stop("bad input for argument 'pdip.mlm'")
} # ld.mlm
if (ld.mix) {
allx.d <- lowsup:max(d.mix)
pmf2.d <- dgaitdpois(x, lambda.d, # Outer distn---mlm type
truncate = setdiff(allx.d, d.mix),
max.support = max(d.mix))
} # ld.mix
sum.i <- 0
if (li.mlm) {
pstr.mlm <- matrix(pstr.mlm, LLL, li.mlm, byrow = byrow.aid)
sum.i <- .rowSums(pstr.mlm, LLL, li.mlm)
if (any(1 < sum.i, na.rm = TRUE))
stop("bad input for argument 'pstr.mlm'")
} # li.mlm
skip <- vecTF.t | vecTF.a # Leave these values alone
tmp6 <- 1 - sum.a - sum.i - pobs.mix - pstr.mix +
sum.d + pdip.mix
if (any(tmp6[!skip] < 0, na.rm = TRUE)) {
warning("the vector of normalizing constants contains ",
"some negative values. Replacing them with NAs")
tmp6[!skip & tmp6 < 0] <- NA
}
denom1 <- cdf.max.s - sumt - suma
Delt3 <- tmp6 / denom1
pmf0[!skip] <- (Delt3 * dpois(x, lambda.p))[!skip]
if (li.mlm) {
for (jay in seq(li.mlm)) {
ival <- i.mlm[jay]
if (any(vecTF <- is.finite(x) & ival == x)) {
pmf0[vecTF] <- pmf0[vecTF] + pstr.mlm[vecTF, jay]
if (max(pmf0[vecTF], na.rm = TRUE) > 1) {
warning("PMF > 1; too much inflation? NaNs produced")
pmf0[vecTF] <- NaN # Too much (excessive)
}
}
} # jay
} # li.mlm
if (ld.mlm) {
for (jay in seq(ld.mlm)) {
dval <- d.mlm[jay]
if (any(vecTF <- is.finite(x) & dval == x)) {
pmf0[vecTF] <- pmf0[vecTF] - pdip.mlm[vecTF, jay]
if (max(pmf0[vecTF], na.rm = TRUE) < 0) {
warning("PMF < 0; too much deflation? NaNs produced")
pmf0[vecTF] <- NaN # Too much (excessive)
}
}
} # jay
} # ld.mlm
if (any(vecTF <- !is.na(tmp6) & tmp6 <= 0)) {
pmf0[vecTF] <- NaN
pobs.mix[vecTF] <- NaN
pstr.mix[vecTF] <- NaN
pdip.mix[vecTF] <- NaN
}
if (any(vecTF <- !is.na(denom1) & denom1 <= 0)) {
pmf0[vecTF] <- NaN
pobs.mix[vecTF] <- NaN
pstr.mix[vecTF] <- NaN
pdip.mix[vecTF] <- NaN
}
pmf0 <- pmf0 + pobs.mix * pmf2.a + pstr.mix * pmf2.i -
pdip.mix * pmf2.d
if (any(vecTF <- !is.na(pmf0) & pmf0 < 0)) {
warning("Negative PMF: too much deflation? NaNs produced")
pmf0[vecTF] <- NaN
}
if (any(vecTF <- !is.na(pmf0) & pmf0 > 1)) {
warning("PMF > 1: too much inflation? NaNs produced")
pmf0[vecTF] <- NaN
}
if (log.arg) log(pmf0) else pmf0
} # dgaitdpois
pgaitdpois <-
function(q, lambda.p,
a.mix = NULL,
a.mlm = NULL,
i.mix = NULL,
i.mlm = NULL,
d.mix = NULL,
d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0,
pobs.mlm = 0,
pstr.mix = 0,
pstr.mlm = 0,
pdip.mix = 0,
pdip.mlm = 0,
byrow.aid = FALSE,
lambda.a = lambda.p, lambda.i = lambda.p,
lambda.d = lambda.p, lower.tail = TRUE,
checkd = FALSE) {
lowsup <- 0
gaitd.errorcheck(a.mix, a.mlm, i.mix, i.mlm,
d.mix, d.mlm, truncate, max.support)
la.mix <- length(a.mix <- sort(a.mix))
li.mix <- length(i.mix <- sort(i.mix))
ld.mix <- length(d.mix <- sort(d.mix))
la.mlm <- length(a.mlm)
li.mlm <- length(i.mlm)
ld.mlm <- length(d.mlm)
ltrunc <- length(truncate <- sort(truncate))
if (la.mix + la.mlm + li.mix + li.mlm + ld.mix + ld.mlm +
ltrunc == 0 &&
is.infinite(max.support))
return(ppois(q, lambda.p, lower.tail = lower.tail)) # log.p
if (la.mix == 0) pobs.mix <- 0
if (la.mlm == 0) pobs.mlm <- 0
if (li.mix == 0) pstr.mix <- 0
if (li.mlm == 0) pstr.mlm <- 0
if (ld.mix == 0) pdip.mix <- 0
if (ld.mlm == 0) pdip.mlm <- 0
if (any(pobs.mix < 0 | 1 <= pobs.mix, na.rm = TRUE))
stop("bad input for argument 'pobs.mix'")
if (any(pobs.mlm < 0 | 1 <= pobs.mlm, na.rm = TRUE))
stop("bad input for argument 'pobs.mlm'")
if (any(pstr.mix < 0 | 1 <= pstr.mix, na.rm = TRUE))
stop("bad input for argument 'pstr.mix'")
if (any(pstr.mlm < 0 | 1 <= pstr.mlm, na.rm = TRUE))
stop("bad input for argument 'pstr.mlm'")
if (any(pdip.mix < 0 | 1 <= pdip.mix, na.rm = TRUE))
stop("bad input for argument 'pdip.mix'")
if (any(pdip.mlm < 0 | 1 <= pdip.mlm, na.rm = TRUE))
stop("bad input for argument 'pdip.mlm'")
LLL <- max(length(q),
length(pobs.mix), length(pstr.mix), length(pdip.mix),
length(lambda.p), length(lambda.a),
length(lambda.i), length(lambda.d))
offset.a <- offset.i <- offset.d <-
Offset.a <- Offset.i <- Offset.d <- numeric(LLL)
if (length(q) < LLL) q <- rep_len(q, LLL)
if (length(lambda.p) < LLL) lambda.p <- rep_len(lambda.p, LLL)
if (length(lambda.a) < LLL) lambda.a <- rep_len(lambda.a, LLL)
if (length(lambda.i) < LLL) lambda.i <- rep_len(lambda.i, LLL)
if (length(lambda.d) < LLL) lambda.d <- rep_len(lambda.d, LLL)
if (length(pobs.mix) < LLL) pobs.mix <- rep_len(pobs.mix, LLL)
if (length(pstr.mix) < LLL) pstr.mix <- rep_len(pstr.mix, LLL)
if (length(pdip.mix) < LLL) pdip.mix <- rep_len(pdip.mix, LLL)
sumt <- 0
fudge.t <- numeric(LLL)
cdf.max.s <- ppois(max.support, lambda.p) # Usually 1
if (ltrunc) {
for (tval in truncate) {
pmf.p <- dpois(tval, lambda.p)
sumt <- sumt + pmf.p
if (any(vecTF <- is.finite(q) & tval <= q))
fudge.t[vecTF] <- fudge.t[vecTF] + pmf.p[vecTF]
}
} # ltrunc
sum.a <- suma <- 0 # numeric(LLL)
fudge.a <- numeric(LLL)
if (la.mlm) {
pobs.mlm <- matrix(pobs.mlm, LLL, la.mlm, byrow = byrow.aid)
sum.a <- .rowSums(pobs.mlm, LLL, la.mlm)
if (any(1 < sum.a, na.rm = TRUE))
stop("bad input for argument 'pobs.mlm'")
for (jay in seq(la.mlm)) {
aval <- a.mlm[jay]
pmf.p <- dpois(aval, lambda.p)
suma <- suma + pmf.p # cumulative; part i
if (any(vecTF <- (is.finite(q) & aval <= q))) {
offset.a[vecTF] <- offset.a[vecTF] + pobs.mlm[vecTF, jay]
fudge.a[vecTF] <- fudge.a[vecTF] + pmf.p[vecTF] # cumulative
}
} # jay
} # la.mlm
sum.i <- 0
if (li.mlm) {
pstr.mlm <- matrix(pstr.mlm, LLL, li.mlm, byrow = byrow.aid)
sum.i <- .rowSums(pstr.mlm, LLL, li.mlm)
if (any(1 < sum.i, na.rm = TRUE))
stop("bad input for argument 'pstr.mlm'")
for (jay in seq(li.mlm)) {
ival <- i.mlm[jay]
if (any(vecTF <- (is.finite(q) & ival <= q))) {
offset.i[vecTF] <- offset.i[vecTF] + pstr.mlm[vecTF, jay]
}
} # jay
} # li.mlm
use.pobs.mix <- 0
if (la.mix) {
use.pobs.mix <- matrix(0, LLL, la.mix)
for (jay in seq(la.mix)) {
aval <- a.mix[jay]
pmf.a <- dpois(aval, lambda.a)
pmf.p <- dpois(aval, lambda.p)
use.pobs.mix[, jay] <- pmf.a
suma <- suma + pmf.p # cumulative; part ii
}
use.pobs.mix <- pobs.mix *
use.pobs.mix / rowSums(use.pobs.mix)
for (jay in seq(la.mix)) {
aval <- a.mix[jay]
pmf.p <- dpois(aval, lambda.p)
if (any(vecTF <- (is.finite(q) & aval <= q))) {
Offset.a[vecTF] <- Offset.a[vecTF] + use.pobs.mix[vecTF, jay]
fudge.a[vecTF] <- fudge.a[vecTF] + pmf.p[vecTF] # cumulative
}
} # jay
} # la.mix
use.pstr.mix <- 0
if (li.mix) {
use.pstr.mix <- matrix(0, LLL, li.mix)
for (jay in seq(li.mix)) {
ival <- i.mix[jay]
use.pstr.mix[, jay] <- dpois(ival, lambda.i)
}
use.pstr.mix <- pstr.mix *
use.pstr.mix / rowSums(use.pstr.mix)
for (jay in seq(li.mix)) {
ival <- i.mix[jay]
pmf.p <- dpois(ival, lambda.p)
if (any(vecTF <- (is.finite(q) & ival <= q))) {
Offset.i[vecTF] <- Offset.i[vecTF] +
use.pstr.mix[vecTF, jay]
}
} # jay
} # li.mix
sum.d <- 0
if (ld.mlm) {
pdip.mlm <- matrix(pdip.mlm, LLL, ld.mlm, byrow = byrow.aid)
sum.d <- .rowSums(pdip.mlm, LLL, ld.mlm)
if (any(1 < sum.d, na.rm = TRUE))
stop("bad input for argument 'pdip.mlm'")
for (jay in seq(ld.mlm)) {
dval <- d.mlm[jay]
if (any(vecTF <- (is.finite(q) & dval <= q))) {
offset.d[vecTF] <- offset.d[vecTF] + pdip.mlm[vecTF, jay]
}
} # jay
} # ld.mlm
use.pdip.mix <- 0
if (ld.mix) {
use.pdip.mix <- matrix(0, LLL, ld.mix)
for (jay in seq(ld.mix)) {
dval <- d.mix[jay]
use.pdip.mix[, jay] <- dpois(dval, lambda.d)
}
use.pdip.mix <- pdip.mix *
use.pdip.mix / rowSums(use.pdip.mix)
for (jay in seq(ld.mix)) {
dval <- d.mix[jay]
pmf.p <- dpois(dval, lambda.p)
if (any(vecTF <- (is.finite(q) & dval <= q))) {
Offset.d[vecTF] <- Offset.d[vecTF] +
use.pdip.mix[vecTF, jay]
}
} # jay
} # ld.mix
numer1 <- 1 - sum.i - sum.a - pstr.mix - pobs.mix +
sum.d + pdip.mix
denom1 <- cdf.max.s - sumt - suma
ans <- numer1 * (ppois(q, lambda.p) - fudge.t -
fudge.a) / denom1 +
offset.a + offset.i - offset.d +
Offset.a + Offset.i - Offset.d
ans[max.support <= q] <- 1
ans[ans < 0] <- 0 # Occasional roundoff error
if (checkd) {
checkvec <- numeric(LLL)
for (jay in 1:LLL) {
use.pobs.mlm <- if (la.mlm) pobs.mlm[jay, ] else NULL
use.pstr.mlm <- if (li.mlm) pstr.mlm[jay, ] else NULL
use.pdip.mlm <- if (ld.mlm) pdip.mlm[jay, ] else NULL
checkvec[jay] <- sum(
dgaitdpois(0:floor(q[jay]), lambda.p[jay],
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate,
max.support = max.support,
pobs.mix = pobs.mix[jay],
pobs.mlm = use.pobs.mlm,
pstr.mix = pstr.mix[jay],
pstr.mlm = use.pstr.mlm,
pdip.mix = pdip.mix[jay],
pdip.mlm = use.pdip.mlm,
byrow.aid = TRUE,
lambda.a = lambda.a[jay], lambda.i = lambda.i[jay],
lambda.d = lambda.d[jay]))
} # jay
if (any(vecTF <- is.nan(checkvec)))
ans[vecTF] <- NaN # Transfer the NaN from d- to p-.
} # checkd
vecTF <- ans < 0
if (any(vecTF, na.rm = TRUE)) {
warning("negative PMF; too much deflation? NaNs produced")
ans[vecTF] <- NaN
}
vecTF <- ans > 1
if (any(vecTF, na.rm = TRUE)) {
warning("PMF > 1; too much inflation? NaNs produced")
ans[vecTF] <- NaN
}
if (lower.tail) ans else 1 - ans
} # pgaitdpois
qgaitdpois <-
function(p, lambda.p,
a.mix = NULL,
a.mlm = NULL,
i.mix = NULL,
i.mlm = NULL,
d.mix = NULL,
d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0,
pobs.mlm = 0,
pstr.mix = 0,
pstr.mlm = 0,
pdip.mix = 0,
pdip.mlm = 0,
byrow.aid = FALSE,
lambda.a = lambda.p, lambda.i = lambda.p,
lambda.d = lambda.p) {
lowsup <- 0
gaitd.errorcheck(a.mix, a.mlm, i.mix, i.mlm,
d.mix, d.mlm, truncate, max.support)
la.mix <- length(a.mix <- sort(a.mix))
li.mix <- length(i.mix <- sort(i.mix))
ld.mix <- length(d.mix <- sort(d.mix))
la.mlm <- length(a.mlm)
li.mlm <- length(i.mlm)
ld.mlm <- length(d.mlm)
ltrunc <- length(truncate <- sort(truncate))
if (la.mix + la.mlm + li.mix + li.mlm + ld.mix + ld.mlm +
ltrunc == 0 &&
is.infinite(max.support))
return(qpois(p, lambda.p)) # lower.tail = TRUE, log.p = FALSE
if (la.mix == 0) pobs.mix <- 0
if (la.mlm == 0) pobs.mlm <- 0
if (li.mix == 0) pstr.mix <- 0
if (li.mlm == 0) pstr.mlm <- 0
if (ld.mix == 0) pdip.mix <- 0
if (ld.mlm == 0) pdip.mlm <- 0
if (any(pobs.mix < 0 | 1 <= pobs.mix, na.rm = TRUE))
stop("bad input for argument 'pobs.mix'")
if (any(pobs.mlm < 0 | 1 <= pobs.mlm, na.rm = TRUE))
stop("bad input for argument 'pobs.mlm'")
if (any(pstr.mix < 0 | 1 <= pstr.mix, na.rm = TRUE))
stop("bad input for argument 'pstr.mix'")
if (any(pstr.mlm < 0 | 1 <= pstr.mlm, na.rm = TRUE))
stop("bad input for argument 'pstr.mlm'")
if (any(pdip.mix < 0 | 1 <= pdip.mix, na.rm = TRUE))
stop("bad input for argument 'pdip.mix'")
if (any(pdip.mlm < 0 | 1 <= pdip.mlm, na.rm = TRUE))
stop("bad input for argument 'pdip.mlm'")
LLL <- max(length(p),
length(pobs.mix), length(pstr.mix), length(pdip.mix),
length(lambda.p), length(lambda.a),
length(lambda.i), length(lambda.d))
if (length(p) < LLL) p <- rep_len(p, LLL)
if (length(lambda.p) < LLL) lambda.p <- rep_len(lambda.p, LLL)
if (length(lambda.a) < LLL) lambda.a <- rep_len(lambda.a, LLL)
if (length(lambda.i) < LLL) lambda.i <- rep_len(lambda.i, LLL)
if (length(lambda.d) < LLL) lambda.d <- rep_len(lambda.d, LLL)
if (length(pobs.mix) < LLL) pobs.mix <- rep_len(pobs.mix, LLL)
if (length(pstr.mix) < LLL) pstr.mix <- rep_len(pstr.mix, LLL)
if (length(pdip.mix) < LLL) pdip.mix <- rep_len(pdip.mix, LLL)
pobs.mlm <- matrix(pobs.mlm, LLL, max(la.mlm, 1),
byrow = byrow.aid)
pstr.mlm <- matrix(pstr.mlm, LLL, max(li.mlm, 1),
byrow = byrow.aid)
pdip.mlm <- matrix(pdip.mlm, LLL, max(ld.mlm, 1),
byrow = byrow.aid)
min.support <- lowsup # Usual case; same as lowsup
min.support.use <- if (ltrunc)
min(setdiff(min.support:(ltrunc+5), truncate)) else min.support
ans <- p + lambda.p
bad0 <- !is.finite(lambda.p) | lambda.p <= 0 |
!is.finite(lambda.a) | lambda.a <= 0 |
!is.finite(lambda.i) | lambda.i <= 0 |
!is.finite(lambda.d) | lambda.d <= 0
bad <- bad0 | !is.finite(p) | p <= 0 | 1 <= p
Lo <- rep_len(min.support.use - 0.5, LLL)
approx.ans <- Lo # True at lhs
Hi <- if (is.finite(max.support))
rep(max.support + 0.5, LLL) else 2 * Lo + 10.5
dont.iterate <- bad
done <- dont.iterate |
p <= pgaitdpois(Hi, lambda.p,
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pstr.mix = pstr.mix, pobs.mix = pobs.mix,
pdip.mix = pdip.mix,
pstr.mlm = pstr.mlm, pobs.mlm = pobs.mlm,
pdip.mlm = pdip.mlm,
lambda.a = lambda.a, lambda.i = lambda.i,
lambda.d = lambda.d,
byrow.aid = FALSE)
iter <- 0
max.iter <- round(log2(.Machine$double.xmax)) - 3
while (!all(done) && iter < max.iter) {
Lo[!done] <- Hi[!done]
Hi[!done] <- 2 * Hi[!done] + 10.5 # Bug fixed
Hi <- pmin(max.support + 0.5, Hi) # 20190924
done[!done] <-
(p[!done] <= pgaitdpois(Hi[!done], lambda.p[!done],
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate,
max.support = max.support,
pobs.mix = pobs.mix[!done],
pstr.mix = pstr.mix[!done],
pdip.mix = pdip.mix[!done],
pobs.mlm = pobs.mlm[!done, , drop = FALSE],
pstr.mlm = pstr.mlm[!done, , drop = FALSE],
pdip.mlm = pdip.mlm[!done, , drop = FALSE],
lambda.a = lambda.a[!done],
lambda.i = lambda.i[!done],
lambda.d = lambda.d[!done],
byrow.aid = FALSE))
iter <- iter + 1
}
foo <- function(q, lambda.p,
a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0, pstr.mix = 0, pdip.mix = 0,
pobs.mlm = 0, pstr.mlm = 0, pdip.mlm = 0,
lambda.a = lambda.p, lambda.i = lambda.p,
lambda.d = lambda.p,
byrow.aid = FALSE, p)
pgaitdpois(q, lambda.p = lambda.p,
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate,
max.support = max.support,
pobs.mix = pobs.mix,
pstr.mix = pstr.mix,
pdip.mix = pdip.mix,
pobs.mlm = pobs.mlm,
pstr.mlm = pstr.mlm,
pdip.mlm = pdip.mlm,
lambda.a = lambda.a, lambda.i = lambda.i,
lambda.d = lambda.d,
byrow.aid = FALSE) - p
lhs <- dont.iterate |
p <= dgaitdpois(min.support.use, lambda.p = lambda.p,
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate,
max.support = max.support,
pobs.mix = pobs.mix,
pstr.mix = pstr.mix,
pdip.mix = pdip.mix,
pobs.mlm = pobs.mlm,
pstr.mlm = pstr.mlm,
pdip.mlm = pdip.mlm,
lambda.a = lambda.a, lambda.i = lambda.i,
lambda.d = lambda.d,
byrow.aid = FALSE)
if (any(!lhs)) {
approx.ans[!lhs] <-
bisection.basic(foo, Lo[!lhs], Hi[!lhs], tol = 1/16,
lambda.p = lambda.p[!lhs],
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate,
max.support = max.support,
pstr.mix = pstr.mix[!lhs],
pstr.mlm = pstr.mlm[!lhs, , drop = FALSE],
pobs.mix = pobs.mix[!lhs],
pobs.mlm = pobs.mlm[!lhs, , drop = FALSE],
pdip.mix = pdip.mix[!lhs],
pdip.mlm = pdip.mlm[!lhs, , drop = FALSE],
lambda.a = lambda.a[!lhs],
lambda.i = lambda.i[!lhs],
lambda.d = lambda.d[!lhs],
byrow.aid = FALSE,
p = p[!lhs])
faa <- floor(approx.ans[!lhs])
tmp <-
ifelse(pgaitdpois(faa, lambda.p[!lhs],
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate,
max.support = max.support,
pstr.mix = pstr.mix[!lhs],
pstr.mlm = pstr.mlm[!lhs, , drop = FALSE],
pobs.mix = pobs.mix[!lhs],
pobs.mlm = pobs.mlm[!lhs, , drop = FALSE],
pdip.mix = pdip.mix[!lhs],
pdip.mlm = pdip.mlm[!lhs, , drop = FALSE],
lambda.a = lambda.a[!lhs],
lambda.i = lambda.i[!lhs],
lambda.d = lambda.d[!lhs],
byrow.aid = FALSE) < p[!lhs] &
p[!lhs] <= pgaitdpois(faa + 1, lambda.p[!lhs],
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate,
max.support = max.support,
pstr.mix = pstr.mix[!lhs],
pstr.mlm = pstr.mlm[!lhs, , drop = FALSE],
pobs.mix = pobs.mix[!lhs],
pobs.mlm = pobs.mlm[!lhs, , drop = FALSE],
pdip.mix = pdip.mix[!lhs],
pdip.mlm = pdip.mlm[!lhs, , drop = FALSE],
lambda.a = lambda.a[!lhs],
lambda.i = lambda.i[!lhs],
lambda.d = lambda.d[!lhs],
byrow.aid = FALSE),
faa + 1, faa)
ans[!lhs] <- tmp
} # any(!lhs)
if (ltrunc)
while (any(vecTF <- !bad & ans %in% truncate))
ans[vecTF] <- 1 + ans[vecTF]
vecTF <- !bad0 & !is.na(p) &
p <= dgaitdpois(min.support.use, lambda.p,
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate,
max.support = max.support,
pobs.mix = pobs.mix,
pstr.mix = pstr.mix,
pdip.mix = pdip.mix,
pobs.mlm = pobs.mlm,
pstr.mlm = pstr.mlm,
pdip.mlm = pdip.mlm,
lambda.a = lambda.a, lambda.i = lambda.i,
lambda.d = lambda.d,
byrow.aid = FALSE)
ans[vecTF] <- min.support.use
ans[!bad0 & !is.na(p) & p == 0] <- min.support.use
ans[!bad0 & !is.na(p) & p == 1] <- max.support # Inf
ans[!bad0 & !is.na(p) & p < 0] <- NaN
ans[!bad0 & !is.na(p) & p > 1] <- NaN
ans[ bad0] <- NaN
ans
} # qgaitdpois
rgaitdpois <-
function(n, lambda.p,
a.mix = NULL,
a.mlm = NULL,
i.mix = NULL,
i.mlm = NULL,
d.mix = NULL,
d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0, # vector
pobs.mlm = 0, # matrix
pstr.mix = 0, # vector
pstr.mlm = 0, # matrix
pdip.mix = 0, # vector
pdip.mlm = 0, # matrix
byrow.aid = FALSE,
lambda.a = lambda.p, lambda.i = lambda.p,
lambda.d = lambda.p) {
qgaitdpois(runif(n), lambda.p,
a.mix = a.mix,
a.mlm = a.mlm,
i.mix = i.mix,
i.mlm = i.mlm,
d.mix = d.mix,
d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pobs.mix = pobs.mix,
pobs.mlm = pobs.mlm,
pstr.mix = pstr.mix,
pstr.mlm = pstr.mlm,
pdip.mix = pdip.mix,
pdip.mlm = pdip.mlm,
lambda.a = lambda.a, lambda.i = lambda.i,
lambda.d = lambda.p,
byrow.aid = byrow.aid)
} # rgaitdpois
dgaitdplot <-
function( # xx, pmf,
theta.p, # scalar, else a 2-vector
fam = "pois",
a.mix = NULL, i.mix = NULL, # Unstructured probs are
d.mix = NULL,
a.mlm = NULL, i.mlm = NULL, # contiguous
d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0, # scalar
pobs.mlm = 0, # vector of length a.mlm
pstr.mix = 0, # scalar
pstr.mlm = 0, # vector of length a.mlm
pdip.mix = 0, # scalar
pdip.mlm = 0, # vector of length a.mlm
byrow.aid = FALSE, # Applies to 'pobs.mlm' & 'pstr.mlm'
theta.a = theta.p, # scalar, else a 2-vector
theta.i = theta.p, # scalar, else a 2-vector
theta.d = theta.p, # scalar, else a 2-vector
deflation = FALSE, # Single logical FALSE, TRUE
plot.it = TRUE, new.plot = TRUE,
offset.x = ifelse(new.plot, 0, 0.25),
type.plot = "h", # Matches 'type' argument
xlim = c(0, min(100, max.support + 2)),
ylim = NULL, # Same as NA too
xlab = "", # Was "y" prior to using oma
ylab = "Probability",
main = "",
cex.main = 1.2, posn.main = NULL,
all.col = NULL, all.lty = NULL, all.lwd = NULL,
lty.p = "solid", # longdash, dashed, twodash, solid
lty.a.mix = "longdash",
lty.a.mlm = "longdash",
lty.i.mix = "dashed",
lty.i.mlm = "dashed",
lty.d.mix = "solid",
lty.d.mlm = "solid",
lty.d.dip = "dashed",
col.p = "pink2", # peach "salmon" # salmon1,..., salmon4
col.a.mix = artichoke.col, # amazon.col, # azure.col,
col.a.mlm = asparagus.col, # avocado.col, # "blue",
col.i.mix = indigo.col,
col.i.mlm = iris.col, # "purple", #
col.d.mix = deer.col,
col.d.mlm = dirt.col,
col.d.dip = desire.col, # "red", # "orangered" maybe
col.t = turquoise.col, # "tan",
cex.p = 1,
lwd.p = NULL, lwd.a = NULL,
lwd.i = NULL, lwd.d = NULL, # Default: par()$lwd
iontop = TRUE, dontop = TRUE,
las = 0, lend = "round", # "round", "butt", "square", 0:2
axes.x = TRUE, axes.y = TRUE,
Plot.trunc = TRUE, cex.t = 1, pch.t = 1,
baseparams.argnames = NULL, #, # Optional safety
nparams = 1,
flip.args = FALSE, # Set TRUE for "gaitdnbinomial"
...
) { # ... ignored currently.
if (!length(lwd.p)) lwd.p <- 1
if (!length(lwd.a)) lwd.a <- 1
if (!length(lwd.i)) lwd.i <- 1
if (!length(lwd.d)) lwd.d <- 1
if (length(all.col))
col.p <- col.a.mix <- col.a.mlm <- col.i.mix <- col.i.mlm <-
col.d.mix <- col.d.mlm <- col.t <- all.col
if (length(all.lty))
lty.p <- lty.a.mix <- lty.a.mlm <- lty.i.mix <- lty.i.mlm <-
lty.d.mix <- lty.d.mlm <- all.lty
if (length(all.lwd))
lwd.p <- lwd.a <- lwd.i <- lwd.d <- all.lwd
gaitd.errorcheck(a.mix, a.mlm, i.mix, i.mlm,
d.mix, d.mlm, truncate, max.support,
nparams = nparams) # length(theta.p) might be okay
la.mix <- length(a.mix <- sort(a.mix))
li.mix <- length(i.mix <- sort(i.mix))
ld.mix <- length(d.mix <- sort(d.mix))
la.mlm <- length(a.mlm)
li.mlm <- length(i.mlm)
ld.mlm <- length(d.mlm)
ltrunc <- length(truncate <- sort(truncate))
MM <- length(theta.p)
if (MM != 1 && MM != 2)
stop("can only handle 1 or 2 parameters")
xx <- seq(floor(xlim[1]), ceiling(xlim[2]))
ind.A.mlm <- ind.A.mix <- ind.trunc <-
ind.I.mlm <- ind.I.mix <-
ind.D.mlm <- ind.D.mix <- FALSE
if (length(truncate))
ind.trunc <- (xx %in% truncate | max.support < xx)
if (length(a.mix)) {
ind.A.mix <- xx %in% a.mix
} else {
pobs.mix <- 0 # Make sure
}
if (length(a.mlm)) {
ind.A.mlm <- xx %in% a.mlm
} else {
pobs.mlm <- 0 # Make sure
}
if (length(i.mix)) {
ind.I.mix <- xx %in% i.mix
} else {
pstr.mix <- 0 # Make sure
}
if (length(i.mlm)) {
ind.I.mlm <- xx %in% i.mlm
} else {
pstr.mlm <- 0 # Make sure
}
if (length(d.mix)) {
ind.D.mix <- xx %in% d.mix
} else {
pdip.mix <- 0 # Make sure
}
if (length(d.mlm)) {
ind.D.mlm <- xx %in% d.mlm
} else {
pdip.mlm <- 0 # Make sure
}
special.xx <- ind.A.mix | ind.A.mlm | ind.I.mix | ind.I.mlm |
ind.D.mix | ind.D.mlm | ind.trunc
if (length(pobs.mix) != 1) stop("bad input for argument 'pobs.mix'")
if (length(pstr.mix) != 1) stop("bad input for argument 'pstr.mix'")
if (length(pdip.mix) != 1) stop("bad input for argument 'pdip.mix'")
if (length(a.mlm) && length(pobs.mlm) > length(a.mlm))
warning("bad input for argument 'pobs.mlm'?")
if (length(i.mlm) && length(pstr.mlm) > length(i.mlm))
warning("bad input for argument 'pstr.mlm'?")
if (length(d.mlm) && length(pdip.mlm) > length(d.mlm))
warning("bad input for argument 'pdip.mlm'?")
if (any(ind.A.mlm))
pobs.mlm <- matrix(pobs.mlm, 1, # length(xx),
length(a.mlm), byrow = byrow.aid)
if (any(ind.I.mlm))
pstr.mlm <- matrix(pstr.mlm, 1, # length(xx),
length(i.mlm), byrow = byrow.aid)
if (any(ind.D.mlm))
pdip.mlm <- matrix(pdip.mlm, 1, # length(xx),
length(d.mlm), byrow = byrow.aid)
dfun <- paste0("dgaitd", fam)
pmf.p <-
if (MM == 1)
do.call(dfun, list(x = xx, theta.p)) else
if (MM == 2) {
if (flip.args)
do.call(dfun, list(x = xx, theta.p[2], theta.p[1])) else
do.call(dfun, list(x = xx, theta.p[1], theta.p[2]))
}
if (any(!is.finite(pmf.p)))
stop("NAs found in pmf.p")
alist <- list( # x = xx, # theta.p,
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pobs.mix = pobs.mix, pobs.mlm = pobs.mlm,
pstr.mix = pstr.mix, pstr.mlm = pstr.mlm,
pdip.mix = pdip.mix, pdip.mlm = pdip.mlm,
byrow.aid = byrow.aid)
if (length(baseparams.argnames)) {
alist[[paste0(baseparams.argnames[1], ".p")]] <- theta.p[1]
alist[[paste0(baseparams.argnames[1], ".a")]] <- theta.a[1]
alist[[paste0(baseparams.argnames[1], ".i")]] <- theta.i[1]
alist[[paste0(baseparams.argnames[1], ".d")]] <- theta.d[1]
if (MM == 2) {
alist[[paste0(baseparams.argnames[2], ".p")]] <- theta.p[2]
alist[[paste0(baseparams.argnames[2], ".a")]] <- theta.a[2]
alist[[paste0(baseparams.argnames[2], ".i")]] <- theta.i[2]
alist[[paste0(baseparams.argnames[2], ".d")]] <- theta.d[2]
} # else
} else {
if (MM == 1) {
alist <- c(alist, # Unnamed, for lambda.p, etc.:
list(theta.p, theta.a, theta.i, theta.d))
} else { # MM == 2
alist <- if (flip.args)
c(alist,
list(theta.p[2], theta.p[1], # Order is crucial.
theta.a[2], theta.i[2], theta.d[2],
theta.a[1], theta.i[1], theta.d[1])) else
c(alist,
list(theta.p[1], theta.p[2], # Order is crucial.
theta.a[1], theta.i[1], theta.d[1],
theta.a[2], theta.i[2], theta.d[2]))
}
}
dlist <- alist
dlist$x <- xx
dlist$log <- FALSE
pmf.z <- do.call(dfun, dlist)
if (any(!is.finite(pmf.z)))
stop("Too much alteration/inflation/deflation;",
" NAs found in pmf.z")
if (!all(is.finite(pmf.z)))
warning("some PMF values are not finite")
if ((rp.z <- range(pmf.z, na.rm = TRUE))[1] < 0 || rp.z[2] > 1)
warning("some computed PMF values not in [0, 1]")
mlist <- alist
mlist$type.fitted <- "All"
mlist$moments2 <- TRUE
mom.fun <- paste0("moments.gaitdcombo.", fam)
Bits <- do.call(mom.fun, mlist)
myylim <- if (is.null(ylim) || # orig.
any(is.na(ylim))) # 20240215
c(0, max(0, pmf.z, na.rm = TRUE) * 1.04) else ylim
if (plot.it) {
if (new.plot)
plot(xx[!special.xx] + offset.x,
pmf.z[!special.xx], type = "n",
las = las, axes = axes.x && axes.y, # axes,
xlim = xlim,
ylim = myylim, # c(0, 0.11), # Fix ylim here
xlab = xlab, ylab = ylab) # Parent distribution
lines(xx[!special.xx] + offset.x,
pmf.z[!special.xx], type = type.plot, col = col.p,
lwd = lwd.p, # Ordinary points
cex = cex.p, lend = lend, lty = lty.p)
if (length(posn.main)) {
posn.main <- rep(posn.main, 2)
text(posn.main[1], posn.main[2], labels = main,
cex = cex.main)
} else {
title(main = main) # , cex = cex.main
}
} # plot.it
if (plot.it && !(axes.x && axes.y)) {
box()
axis(1, labels = FALSE, tick = TRUE)
axis(2, labels = FALSE, tick = TRUE)
}
if (plot.it && !axes.x && axes.y) { # Avoid clutter
axis(1, labels = FALSE)
axis(2, las = 1)
}
if (plot.it && axes.x && !axes.y) { # Avoid clutter
axis(1)
axis(2, labels = FALSE)
}
if (plot.it && length(a.mlm)) # Altered mlm
lines(xx[ ind.A.mlm] + offset.x, pmf.z[ind.A.mlm],
lwd = lwd.a, type = type.plot,
col = col.a.mlm, lty = lty.a.mlm, lend = lend)
if (plot.it && length(a.mix)) # Altered mix
lines(xx[ ind.A.mix] + offset.x, pmf.z[ind.A.mix],
lwd = lwd.a, type = type.plot,
col = col.a.mix, lty = lty.a.mix, lend = lend)
Denom.p <- as.vector(Bits[["cdf.max.s"]] - Bits[["SumT0.p"]] -
Bits[["SumA0.mix.p"]] - Bits[["SumA0.mlm.p"]])
if (any(Denom.p == 0))
stop("0s found in the denominator (variable 'Denom.p')")
Numer <- as.vector(1 -
(if (length(a.mix)) pobs.mix else 0) -
(if (length(i.mix)) pstr.mix else 0) +
(if (length(d.mix)) pdip.mix else 0) -
(if (length(a.mlm)) rowSums(rbind(pobs.mlm)) else 0) -
(if (length(i.mlm)) rowSums(rbind(pstr.mlm)) else 0) +
(if (length(d.mlm)) rowSums(rbind(pdip.mlm)) else 0))
if (any(Numer < 0))
stop("variable 'Numer' has a negative value: ",
"too much alteration/inflation/deflation")
Numer <- Numer[1]
if (any(ind.I.mix)) { # Inflated mix
spikes.mix <- pmf.z[ind.I.mix] # Top of the spike
start.pt.i.mix <- Numer * pmf.p[ind.I.mix] / Denom.p # Skin
if (plot.it)
segments(xx[ind.I.mix] + offset.x,
if (iontop) start.pt.i.mix else # Outer distn
spikes.mix - start.pt.i.mix,
xx[ind.I.mix] + offset.x,
spikes.mix, # This value is unchanged
lwd = if (iontop) lwd.i else lwd.p,
lty = if (iontop) lty.i.mix else lty.p,
col = if (iontop) col.i.mix else col.p, lend = lend)
if (plot.it)
lines(xx[ind.I.mix] + offset.x,
if (iontop) start.pt.i.mix else
spikes.mix - start.pt.i.mix,
lend = lend,
lwd = if (iontop) lwd.p else lwd.i,
lty = if (iontop) lty.p else lty.i.mix,
col = if (iontop) col.p else col.i.mix,
type = type.plot) # Blend in
} # ind.I.mix
if (any(ind.I.mlm)) { # Inflated mlm
start.pt.i.mlm <- Numer * pmf.p[ind.I.mlm] / Denom.p
spikes.mlm <- pmf.z[ind.I.mlm] # Top of the spike
if (plot.it)
segments(xx[ind.I.mlm] + offset.x,
if (iontop) start.pt.i.mlm else # Outer distn
spikes.mlm - start.pt.i.mlm,
xx[ind.I.mlm] + offset.x,
spikes.mlm, # This value is unchanged
lend = lend,
lwd = if (iontop) lwd.i else lwd.p,
col = if (iontop) col.i.mlm else col.p,
lty = if (iontop) lty.i.mlm else lty.p)
if (plot.it)
lines(xx[ind.I.mlm] + offset.x,
if (iontop) start.pt.i.mlm else
spikes.mlm - start.pt.i.mlm,
lend = lend,
lwd = if (iontop) lwd.p else lwd.i,
lty = if (iontop) lty.p else lty.i.mlm,
col = if (iontop) col.p else col.i.mlm,
type = type.plot) # Blend in
} # ind.I.mlm
if (any(ind.D.mix)) { # Deflated mix
start.pt.d.mix <- Numer * pmf.p[ind.D.mix] / Denom.p # Skin
dips.mix <- pmf.z[ind.D.mix] # Bottom of the dip
if (plot.it && deflation) {
bottom.y <- if (dontop) dips.mix else
start.pt.d.mix - dips.mix
if (any(is.na(bottom.y)) ||
min(bottom.y) < 0)
stop("too much deflation")
segments(xx[ind.D.mix] + offset.x,
start.pt.d.mix, # This value is unchanged; top
xx[ind.D.mix] + offset.x,
bottom.y,
lwd = if (dontop) lwd.d else lwd.d,
lty = if (dontop) lty.d.dip else lty.d.mix,
col = if (dontop) col.d.dip else col.d.mix,
lend = lend)
}
if (plot.it)
lines(xx[ind.D.mix] + offset.x,
if (deflation) {
if (dontop) dips.mix else start.pt.d.mix - dips.mix
} else dips.mix,
lend = lend,
lwd = if (deflation && !dontop) lwd.d else lwd.d,
lty = if (deflation && !dontop) lty.d.dip else lty.d.mix,
col = if (deflation && !dontop) col.d.dip else col.d.mix,
type = type.plot) # Blend in
} # ind.D.mix
if (any(ind.D.mlm)) { # Inflated mlm
start.pt.d.mlm <- Numer * pmf.p[ind.D.mlm] / Denom.p # Skin
dips.mlm <- pmf.z[ind.D.mlm] # Bottom of the dip; midstream
if (plot.it && deflation)
segments(xx[ind.D.mlm] + offset.x,
start.pt.d.mlm, # This value is unchanged; top
xx[ind.D.mlm] + offset.x,
if (dontop) dips.mlm else start.pt.d.mlm - dips.mlm,
lwd = if (dontop) lwd.d else lwd.d,
lty = if (dontop) lty.d.dip else lty.d.mlm,
col = if (dontop) col.d.dip else col.d.mlm,
lend = lend)
if (plot.it)
lines(xx[ind.D.mlm] + offset.x,
if (deflation && !dontop) start.pt.d.mlm - dips.mlm else
dips.mlm,
lend = lend,
lwd = if (deflation && !dontop) lwd.d else lwd.d,
lty = if (deflation && !dontop) lty.d.dip else lty.d.mlm,
col = if (deflation && !dontop) col.d.dip else col.d.mlm,
type = type.plot) # Blend in
if (any((if (deflation && !dontop) start.pt.d.mlm - dips.mlm else
dips.mlm) < 0))
stop("negative probabilities; 'pdip.mlm' too large?")
} # ind.D.mlm
if (Plot.trunc && plot.it && any(ind.trunc)) {
lhs.tvec <- xx[ind.trunc] + offset.x * 0
lhs.tvec <- lhs.tvec[ceiling(par()$usr[1]) + 0.5 < lhs.tvec]
if (length(lhs.tvec))
points(lhs.tvec, numeric(length(lhs.tvec)),
col = col.t, cex = cex.t, pch = pch.t)
}
if (Plot.trunc && plot.it) {
rhs.tvec <- if (floor(par()$usr[2]) > max.support + 2)
(max.support + 1):(floor(par()$usr[2]) - 1) else NULL
if (length(rhs.tvec))
points(rhs.tvec + offset.x * 0,
numeric(length(rhs.tvec)),
col = col.t, cex = cex.t, pch = pch.t)
}
names(pmf.p) <- as.character(xx)
invisible(list(x = xx,
pmf.z = pmf.z, # Top profile == PMF.
sc.parent = Numer * pmf.p / Denom.p, # Skin.
unsc.parent = pmf.p)) # FYI only.
} # dgaitdplot
plotdgaitd.vglm <-
function(object, ...) {
infos.list <- object@family@infos()
specvals <- specials(object)
Inside <- sapply(specvals, is.null)
if (length(Inside) == 7 && all(Inside))
stop("'object' has no special values. ",
"Is it a GAITD regression object?")
if (length(Inside) == 8 && all(Inside[1:7]) &&
infos.list$max.support == infos.list$Support[2])
stop("'object' has no special values. ",
"Is it really a GAITD regression object?")
use.max.support <- if (is.numeric(infos.list$max.support))
infos.list$max.support else Inf
if (!is.numeric(MM1 <- infos.list$MM1))
MM1 <- 1 # Default really
if (MM1 > 2)
stop("Can only handle 1- or 2-parameter distributions")
etamat <- predict(object) # n x M
eta.p <- etamat[, 1:MM1, drop = FALSE] # n x MM1
theta.p1 <- as.vector(eta2theta(eta.p[, 1], linkfun(object)[1]))
theta.p2 <- if (MM1 == 2)
as.vector(eta2theta(eta.p[, 2], linkfun(object)[2])) else NULL
theta.p <- cbind(theta.p1, theta.p2)
colnames(theta.p) <- paste0(infos.list$baseparams.argnames, ".p")
if (!is.logical(intercept.only <- object@misc$intercept.only))
stop("cannot determine whether 'object' is intercept-only")
if (!intercept.only)
warning("argument 'object' is not intercept-only")
pobs.mix <- if (length(specvals$a.mix))
fitted(object, type.fitted = "pobs.mix") else cbind(0, 0)
pobs.mlm <- if (length(specvals$a.mlm))
fitted(object, type.fitted = "pobs.mlm") else cbind(0, 0)
pstr.mix <- if (length(specvals$i.mix))
fitted(object, type.fitted = "pstr.mix") else cbind(0, 0)
pstr.mlm <- if (length(specvals$i.mlm))
fitted(object, type.fitted = "pstr.mlm") else cbind(0, 0)
pdip.mix <- if (length(specvals$d.mix))
fitted(object, type.fitted = "pdip.mix") else cbind(0, 0)
pdip.mlm <- if (length(specvals$d.mlm))
fitted(object, type.fitted = "pdip.mlm") else cbind(0, 0)
indeta <- object@extra$indeta
if (MM1 == 1) {
theta.a <- if (any(is.na(indeta[ 3, ]))) theta.p else
as.vector(eta2theta(etamat[, (indeta[ 3, 1])],
linkfun(object)[(indeta[ 3, 1])]))
theta.i <- if (any(is.na(indeta[ 5, ]))) theta.p else
as.vector(eta2theta(etamat[, (indeta[ 5, 1])],
linkfun(object)[(indeta[ 5, 1])]))
theta.d <- if (any(is.na(indeta[ 7, ]))) theta.p else
as.vector(eta2theta(etamat[, (indeta[ 7, 1])],
linkfun(object)[(indeta[ 7, 1])]))
theta.a <- cbind(theta.a)
theta.i <- cbind(theta.i)
theta.d <- cbind(theta.d)
} else {
theta.a <- if (any(is.na(indeta[ 4, ]))) theta.p else
cbind(eta2theta(etamat[, (indeta[ 4, 1])],
linkfun(object)[(indeta[ 4, 1])]),
eta2theta(etamat[, (indeta[ 5, 1])],
linkfun(object)[(indeta[ 5, 1])]))
colnames(theta.a) <- paste0(infos.list$baseparams.argnames, ".a")
theta.i <- if (any(is.na(indeta[ 7, ]))) theta.p else
cbind(eta2theta(etamat[, (indeta[ 7, 1])],
linkfun(object)[(indeta[ 7, 1])]),
eta2theta(etamat[, (indeta[ 8, 1])],
linkfun(object)[(indeta[ 8, 1])]))
colnames(theta.i) <- paste0(infos.list$baseparams.argnames, ".i")
theta.d <- if (any(is.na(indeta[10, ]))) theta.p else
cbind(eta2theta(etamat[, (indeta[10, 1])],
linkfun(object)[(indeta[10, 1])]),
eta2theta(etamat[, (indeta[11, 1])],
linkfun(object)[(indeta[11, 1])]))
colnames(theta.d) <- paste0(infos.list$baseparams.argnames, ".d")
}
flip.args <- object@family@infos()$flip.args
dgaitdplot(theta.p[1, ], # Reverse ordering may be needed.
fam = infos.list$parent.name[2],
a.mix = specvals$a.mix, i.mix = specvals$i.mix,
d.mix = specvals$d.mix,
a.mlm = specvals$a.mlm, i.mlm = specvals$i.mlm,
d.mlm = specvals$d.mlm,
truncate = specvals$truncate,
theta.a = theta.a[1, ], # Reverse ordering may be needed.
theta.i = theta.i[1, ],
theta.d = theta.d[1, ],
max.support = use.max.support,
pobs.mix = pobs.mix[1, ],
pobs.mlm = pobs.mlm[1, ],
pstr.mix = pstr.mix[1, ],
pstr.mlm = pstr.mlm[1, ],
pdip.mix = pdip.mix[1, ], # 1-coln matrix
pdip.mlm = pdip.mlm[1, ],
byrow.aid = TRUE, # Important really here 20201008
baseparams.argnames = infos.list$baseparams.argnames,
nparams = object@family@infos()$MM1, # Unnecessary?
flip.args = ifelse(is.logical(flip.args), flip.args, FALSE),
...)
} # plotdgaitd.vglm
if (!isGeneric("plotdgaitd"))
setGeneric("plotdgaitd",
function(object, ...) standardGeneric("plotdgaitd"))
setMethod("plotdgaitd", signature(object = "vglm"),
function(object, ...)
invisible(plotdgaitd.vglm(object, ...)))
dgaitdnbinom <-
function(x, size.p, # prob.p = NULL,
munb.p, # = NULL,
a.mix = NULL,
a.mlm = NULL,
i.mix = NULL,
i.mlm = NULL,
d.mix = NULL,
d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0, # vector
pobs.mlm = 0, # matrix
pstr.mix = 0, # vector
pstr.mlm = 0, # matrix
pdip.mix = 0, # vector
pdip.mlm = 0, # matrix
byrow.aid = FALSE, # Applies to 'pobs.mlm' & 'pstr.mlm'
size.a = size.p, size.i = size.p, size.d = size.p,
munb.a = munb.p, munb.i = munb.p, munb.d = munb.p,
log = FALSE) {
prob.p = NULL
prob.a = prob.p; prob.i = prob.p; prob.d = prob.p
log.arg <- log; rm(log)
lowsup <- 0
gaitd.errorcheck(a.mix, a.mlm, i.mix, i.mlm,
d.mix, d.mlm, truncate,
max.support, nparams = 2)
if ((is.prob <- as.logical(length(prob.p))) &&
length(munb.p))
stop("cannot specify both 'prob.p' and 'munb.p' arguments")
la.mix <- length(a.mix <- sort(a.mix))
li.mix <- length(i.mix <- sort(i.mix))
ld.mix <- length(d.mix <- sort(d.mix))
la.mlm <- length(a.mlm)
li.mlm <- length(i.mlm)
ld.mlm <- length(d.mlm)
ltrunc <- length(truncate <- sort(truncate))
if (la.mix + la.mlm + li.mix + li.mlm + ld.mix + ld.mlm +
ltrunc == 0 &&
is.infinite(max.support))
return(if (is.prob)
dnbinom(x, size = size.p, prob = prob.p, log = log.arg) else
dnbinom(x, size = size.p, mu = munb.p, log = log.arg))
if (la.mix == 0) pobs.mix <- 0
if (la.mlm == 0) pobs.mlm <- 0
if (li.mix == 0) pstr.mix <- 0
if (li.mlm == 0) pstr.mlm <- 0
if (ld.mix == 0) pdip.mix <- 0
if (ld.mlm == 0) pdip.mlm <- 0
if (any(pobs.mix < 0 | 1 <= pobs.mix, na.rm = TRUE))
stop("bad input for argument 'pobs.mix'")
if (any(pobs.mlm < 0 | 1 <= pobs.mlm, na.rm = TRUE))
stop("bad input for argument 'pobs.mlm'")
if (any(pstr.mix < 0 | 1 <= pstr.mix, na.rm = TRUE))
stop("bad input for argument 'pstr.mix'")
if (any(pstr.mlm < 0 | 1 <= pstr.mlm, na.rm = TRUE))
stop("bad input for argument 'pstr.mlm'")
if (any(pdip.mix < 0 | 1 <= pdip.mix, na.rm = TRUE)) {
stop("bad input for argument 'pdip.mix'")
}
if (any(pdip.mlm < 0 | 1 <= pdip.mlm, na.rm = TRUE)) {
stop("bad input for argument 'pdip.mlm'")
}
LLL <- max(length(x),
length(pobs.mix), length(pstr.mix), length(pdip.mix),
length(size.p), length(size.a), length(size.i),
length(size.d),
length(munb.p), length(munb.a), length(munb.i),
length(munb.d),
length(prob.p), length(prob.a), length(prob.i),
length(prob.d))
if (length(x) < LLL) x <- rep_len(x, LLL)
if (length(size.p) < LLL) size.p <- rep_len(size.p, LLL)
if (length(size.a) < LLL) size.a <- rep_len(size.a, LLL)
if (length(size.i) < LLL) size.i <- rep_len(size.i, LLL)
if (length(size.d) < LLL) size.d <- rep_len(size.d, LLL)
if (is.prob) {
if (length(prob.p) < LLL) prob.p <- rep_len(prob.p, LLL)
if (length(prob.a) < LLL) prob.a <- rep_len(prob.a, LLL)
if (length(prob.i) < LLL) prob.i <- rep_len(prob.i, LLL)
if (length(prob.d) < LLL) prob.d <- rep_len(prob.d, LLL)
} else {
if (length(munb.p) < LLL) munb.p <- rep_len(munb.p, LLL)
if (length(munb.a) < LLL) munb.a <- rep_len(munb.a, LLL)
if (length(munb.i) < LLL) munb.i <- rep_len(munb.i, LLL)
if (length(munb.d) < LLL) munb.d <- rep_len(munb.d, LLL)
}
if (length(pobs.mix) < LLL) pobs.mix <- rep_len(pobs.mix, LLL)
if (length(pstr.mix) < LLL) pstr.mix <- rep_len(pstr.mix, LLL)
if (length(pdip.mix) < LLL) pdip.mix <- rep_len(pdip.mix, LLL)
sumt <- 0 # Initialization to 0 important
if (ltrunc) {
if (is.prob) { # Need tval <= max.support
for (tval in truncate)
sumt <- sumt + dnbinom(tval, size.p, prob = prob.p)
} else {
for (tval in truncate)
sumt <- sumt + dnbinom(tval, size.p, mu = munb.p)
}
}
vecTF.t <- is.finite(x) & ((x %in% truncate) | (max.support < x))
cdf.max.s <- if (is.prob)
pnbinom(max.support, size.p, prob = prob.p) else
pnbinom(max.support, size.p, mu = munb.p) # Usually 1
denom.t <- cdf.max.s - sumt # No sumt on RHS
pmf0 <- if (is.prob) # dgtnbinom
ifelse(vecTF.t, 0,
dnbinom(max.support, size.p,
prob = prob.p) / denom.t) else
ifelse(vecTF.t, 0,
dnbinom(max.support, size.p,
mu = munb.p) / denom.t)
sum.a <- suma <- 0 # numeric(LLL)
vecTF.a <- rep_len(FALSE, LLL)
if (la.mlm) {
pobs.mlm <- matrix(pobs.mlm, LLL, la.mlm, byrow = byrow.aid)
sum.a <- .rowSums(pobs.mlm, LLL, la.mlm)
if (any(1 < sum.a, na.rm = TRUE))
stop("bad input for argument 'pobs.mlm'") # zz
if (is.prob) { # Part i
for (aval in a.mlm)
suma <- suma + dnbinom(aval, size.p, prob = prob.p)
} else {
for (aval in a.mlm)
suma <- suma + dnbinom(aval, size.p, mu = munb.p)
}
for (jay in seq(la.mlm)) {
aval <- a.mlm[jay]
if (any(vecTF <- is.finite(x) & aval == x)) {
pmf0[vecTF] <- pobs.mlm[vecTF, jay]
}
vecTF.a <- vecTF.a | vecTF # Cumulative
} # jay
} # la.mlm
pmf2.a <- pmf2.i <- pmf2.d <- 0
if (la.mix) {
allx.a <- lowsup:max(a.mix)
pmf2.a <- dgaitdnbinom(x, # Outer distribution---mlm type
size.p = size.a,
munb.p = munb.a,
truncate = setdiff(allx.a, a.mix),
max.support = max(a.mix))
for (aval in a.mix) {
suma <- suma + (if (is.prob) # Part ii added; cumulative
dnbinom(aval, size = size.p, prob = prob.p) else
dnbinom(aval, size = size.p, mu = munb.p))
vecTF <- is.finite(x) & aval == x
pmf0[vecTF] <- 0 # added; the true values are assigned below
vecTF.a <- vecTF.a | vecTF # Cumulative; added
}
} # la.mix
if (li.mix) {
allx.i <- if (length(i.mix)) lowsup:max(i.mix) else NULL
pmf2.i <- dgaitdnbinom(x, # Outer distn---mlm type
size.p = size.i,
munb.p = munb.i,
truncate = setdiff(allx.i, i.mix),
max.support = max(i.mix))
} # li.mix
sum.d <- 0 # numeric(LLL)
if (ld.mlm) {
pdip.mlm <- matrix(pdip.mlm, LLL, ld.mlm, byrow = byrow.aid)
sum.d <- .rowSums(pdip.mlm, LLL, ld.mlm)
if (any(1 < sum.d, na.rm = TRUE))
stop("bad input for argument 'pdip.mlm'")
} # ld.mlm
if (ld.mix) {
allx.d <- lowsup:max(d.mix)
pmf2.d <- dgaitdnbinom(x, size.p = size.d, # prob.p = prob.d,
munb.p = munb.d,
truncate = setdiff(allx.d, d.mix),
max.support = max(d.mix))
} # ld.mix
sum.i <- 0
if (li.mlm) {
pstr.mlm <- matrix(pstr.mlm, LLL, li.mlm, byrow = byrow.aid)
sum.i <- .rowSums(pstr.mlm, LLL, li.mlm)
if (any(1 < sum.i, na.rm = TRUE))
stop("bad input for argument 'pstr.mlm'")
} # li.mlm
skip <- vecTF.t | vecTF.a # Leave these values alone
tmp6 <- 1 - sum.a - sum.i - pobs.mix - pstr.mix +
sum.d + pdip.mix
if (any(tmp6[!skip] < 0, na.rm = TRUE)) {
warning("the vector of normalizing constants contains ",
"some negative values. Replacing them with NAs")
tmp6[!skip & tmp6 < 0] <- NA
}
denom1 <- cdf.max.s - sumt - suma
pmf0[!skip] <- (tmp6 * (if (is.prob)
dnbinom(x, size.p, prob = prob.p) else
dnbinom(x, size.p, mu = munb.p)) / (
denom1))[!skip] # added
if (li.mlm) {
for (jay in seq(li.mlm)) {
ival <- i.mlm[jay]
if (any(vecTF <- is.finite(x) & ival == x)) {
pmf0[vecTF] <- pmf0[vecTF] + pstr.mlm[vecTF, jay]
}
} # jay
} # li.mlm
if (ld.mlm) {
for (jay in seq(ld.mlm)) {
dval <- d.mlm[jay]
if (any(vecTF <- is.finite(x) & dval == x)) {
pmf0[vecTF] <- pmf0[vecTF] - pdip.mlm[vecTF, jay]
}
} # jay
} # ld.mlm
if (any(vecTF <- !is.na(tmp6) & tmp6 <= 0)) {
pmf0[vecTF] <- NaN
pobs.mix[vecTF] <- NaN
pstr.mix[vecTF] <- NaN
pdip.mix[vecTF] <- NaN
}
if (any(vecTF <- !is.na(denom1) & denom1 <= 0)) {
pmf0[vecTF] <- NaN
pobs.mix[vecTF] <- NaN
pstr.mix[vecTF] <- NaN
pdip.mix[vecTF] <- NaN
}
pmf0 <- pmf0 + pobs.mix * pmf2.a + pstr.mix * pmf2.i -
pdip.mix * pmf2.d
if (any(vecTF <- !is.na(pmf0) & pmf0 < 0))
pmf0[vecTF] <- NaN
if (any(vecTF <- !is.na(pmf0) & pmf0 > 1))
pmf0[vecTF] <- NaN
if (log.arg) log(pmf0) else pmf0
} # dgaitdnbinom
pgaitdnbinom <-
function(q, size.p, # prob.p = NULL,
munb.p, # = NULL,
a.mix = NULL,
a.mlm = NULL,
i.mix = NULL,
i.mlm = NULL,
d.mix = NULL,
d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0,
pobs.mlm = 0,
pstr.mix = 0,
pstr.mlm = 0,
pdip.mix = 0,
pdip.mlm = 0,
byrow.aid = FALSE,
size.a = size.p, size.i = size.p, size.d = size.p,
munb.a = munb.p, munb.i = munb.p, munb.d = munb.p,
lower.tail = TRUE) {
prob.p = NULL
prob.a = prob.p; prob.i = prob.p; prob.d = prob.p
lowsup <- 0
gaitd.errorcheck(a.mix, a.mlm, i.mix, i.mlm,
d.mix, d.mlm, truncate, max.support, nparams = 2)
if ((is.prob <- as.logical(length(prob.p))) &&
length(munb.p))
stop("cannot specify both 'prob.p' and 'munb.p' arguments")
la.mix <- length(a.mix <- sort(a.mix))
li.mix <- length(i.mix <- sort(i.mix))
ld.mix <- length(d.mix <- sort(d.mix))
la.mlm <- length(a.mlm)
li.mlm <- length(i.mlm)
ld.mlm <- length(d.mlm)
ltrunc <- length(truncate <- sort(truncate))
if (la.mix + la.mlm + li.mix + li.mlm + ld.mix + ld.mlm +
ltrunc == 0 &&
is.infinite(max.support))
return(if (is.prob)
pnbinom(q, size = size.p, prob = prob.p,
lower.tail = lower.tail) else
pnbinom(q, size = size.p, mu = munb.p,
lower.tail = lower.tail)) # log.p
if (la.mix == 0) pobs.mix <- 0
if (la.mlm == 0) pobs.mlm <- 0
if (li.mix == 0) pstr.mix <- 0
if (li.mlm == 0) pstr.mlm <- 0
if (ld.mix == 0) pdip.mix <- 0
if (ld.mlm == 0) pdip.mlm <- 0
if (any(pobs.mix < 0 | 1 <= pobs.mix, na.rm = TRUE))
stop("bad input for argument 'pobs.mix'")
if (any(pobs.mlm < 0 | 1 <= pobs.mlm, na.rm = TRUE))
stop("bad input for argument 'pobs.mlm'")
if (any(pstr.mix < 0 | 1 <= pstr.mix, na.rm = TRUE))
stop("bad input for argument 'pstr.mix'")
if (any(pstr.mlm < 0 | 1 <= pstr.mlm, na.rm = TRUE))
stop("bad input for argument 'pstr.mlm'")
if (any(pdip.mix < 0 | 1 <= pdip.mix, na.rm = TRUE))
stop("bad input for argument 'pdip.mix'")
if (any(pdip.mlm < 0 | 1 <= pdip.mlm, na.rm = TRUE))
stop("bad input for argument 'pdip.mlm'")
LLL <- max(length(q),
length(pobs.mix), length(pstr.mix), length(pdip.mix),
length(size.p), length(size.a), length(size.i),
length(size.d),
length(munb.p), length(munb.a), length(munb.i),
length(munb.d),
length(prob.p), length(prob.a), length(prob.i),
length(prob.d))
offset.a <- offset.i <- offset.d <-
Offset.a <- Offset.i <- Offset.d <- numeric(LLL)
if (length(q) < LLL) q <- rep_len(q, LLL)
if (length(size.p) < LLL) size.p <- rep_len(size.p, LLL)
if (length(size.a) < LLL) size.a <- rep_len(size.a, LLL)
if (length(size.i) < LLL) size.i <- rep_len(size.i, LLL)
if (length(size.d) < LLL) size.d <- rep_len(size.d, LLL)
if (is.prob) {
if (length(prob.p) < LLL) prob.p <- rep_len(prob.p, LLL)
if (length(prob.a) < LLL) prob.a <- rep_len(prob.a, LLL)
if (length(prob.i) < LLL) prob.i <- rep_len(prob.i, LLL)
if (length(prob.d) < LLL) prob.d <- rep_len(prob.d, LLL)
} else {
if (length(munb.p) < LLL) munb.p <- rep_len(munb.p, LLL)
if (length(munb.a) < LLL) munb.a <- rep_len(munb.a, LLL)
if (length(munb.i) < LLL) munb.i <- rep_len(munb.i, LLL)
if (length(munb.d) < LLL) munb.d <- rep_len(munb.d, LLL)
}
if (length(pobs.mix) < LLL) pobs.mix <- rep_len(pobs.mix, LLL)
if (length(pstr.mix) < LLL) pstr.mix <- rep_len(pstr.mix, LLL)
if (length(pdip.mix) < LLL) pdip.mix <- rep_len(pdip.mix, LLL)
sumt <- 0
fudge.t <- numeric(LLL)
cdf.max.s <- if (is.prob)
pnbinom(max.support, size.p, prob = prob.p) else
pnbinom(max.support, size.p, mu = munb.p) # Usually 1
if (ltrunc) {
for (tval in truncate) {
pmf.p <- if (is.prob) dnbinom(tval, size.p, prob = prob.p) else
dnbinom(tval, size.p, mu = munb.p)
sumt <- sumt + pmf.p
if (any(vecTF <- is.finite(q) & tval <= q))
fudge.t[vecTF] <- fudge.t[vecTF] + pmf.p[vecTF]
}
} # ltrunc
sum.a <- suma <- 0 # numeric(LLL)
fudge.a <- numeric(LLL)
if (la.mlm) {
pobs.mlm <- matrix(pobs.mlm, LLL, la.mlm, byrow = byrow.aid)
sum.a <- .rowSums(pobs.mlm, LLL, la.mlm)
if (any(1 < sum.a, na.rm = TRUE))
stop("bad input for argument 'pobs.mlm'")
for (jay in seq(la.mlm)) {
aval <- a.mlm[jay]
pmf.p <- if (is.prob) dnbinom(aval, size.p, prob = prob.p) else
dnbinom(aval, size.p, mu = munb.p)
suma <- suma + pmf.p # cumulative; part i
if (any(vecTF <- (is.finite(q) & aval <= q))) {
offset.a[vecTF] <- offset.a[vecTF] + pobs.mlm[vecTF, jay]
fudge.a[vecTF] <- fudge.a[vecTF] + pmf.p[vecTF] # cumulative
}
} # jay
} # la.mlm
sum.i <- 0
if (li.mlm) {
pstr.mlm <- matrix(pstr.mlm, LLL, li.mlm, byrow = byrow.aid)
sum.i <- .rowSums(pstr.mlm, LLL, li.mlm)
if (any(1 < sum.i, na.rm = TRUE))
stop("bad input for argument 'pstr.mlm'")
for (jay in seq(li.mlm)) {
ival <- i.mlm[jay]
if (any(vecTF <- (is.finite(q) & ival <= q))) {
offset.i[vecTF] <- offset.i[vecTF] + pstr.mlm[vecTF, jay]
}
} # jay
} # li.mlm
use.pobs.mix <- 0
if (la.mix) {
use.pobs.mix <- matrix(0, LLL, la.mix)
for (jay in seq(la.mix)) {
aval <- a.mix[jay]
pmf.a <- if (is.prob) dnbinom(aval, size.a, prob = prob.a) else
dnbinom(aval, size.a, mu = munb.a)
pmf.p <- if (is.prob) dnbinom(aval, size.p, prob = prob.p) else
dnbinom(aval, size.p, mu = munb.p)
use.pobs.mix[, jay] <- pmf.a
suma <- suma + pmf.p # cumulative; part ii
}
use.pobs.mix <- pobs.mix *
use.pobs.mix / rowSums(use.pobs.mix)
for (jay in seq(la.mix)) {
aval <- a.mix[jay]
pmf.p <- if (is.prob) dnbinom(aval, size.p, prob = prob.p) else
dnbinom(aval, size.p, mu = munb.p)
if (any(vecTF <- (is.finite(q) & aval <= q))) {
Offset.a[vecTF] <- Offset.a[vecTF] + use.pobs.mix[vecTF, jay]
fudge.a[vecTF] <- fudge.a[vecTF] + pmf.p[vecTF] # cumulative
}
} # jay
} # la.mix
use.pstr.mix <- 0
if (li.mix) {
use.pstr.mix <- matrix(0, LLL, li.mix)
for (jay in seq(li.mix)) {
ival <- i.mix[jay]
use.pstr.mix[, jay] <- if (is.prob)
dnbinom(ival, size.i, prob = prob.i) else
dnbinom(ival, size.i, mu = munb.i)
}
use.pstr.mix <- pstr.mix *
use.pstr.mix / rowSums(use.pstr.mix)
for (jay in seq(li.mix)) {
ival <- i.mix[jay]
pmf.p <- if (is.prob) dnbinom(ival, size.p, prob = prob.p) else
dnbinom(ival, size.p, mu = munb.p)
if (any(vecTF <- (is.finite(q) & ival <= q))) {
Offset.i[vecTF] <- Offset.i[vecTF] + use.pstr.mix[vecTF, jay]
}
} # jay
} # li.mix
sum.d <- 0
if (ld.mlm) {
pdip.mlm <- matrix(pdip.mlm, LLL, ld.mlm, byrow = byrow.aid)
sum.d <- .rowSums(pdip.mlm, LLL, ld.mlm)
if (any(1 < sum.d, na.rm = TRUE))
stop("bad input for argument 'pdip.mlm'")
for (jay in seq(ld.mlm)) {
dval <- d.mlm[jay]
if (any(vecTF <- (is.finite(q) & dval <= q))) {
offset.d[vecTF] <- offset.d[vecTF] + pdip.mlm[vecTF, jay]
}
} # jay
} # ld.mlm
use.pdip.mix <- 0
if (ld.mix) {
use.pdip.mix <- matrix(0, LLL, ld.mix)
for (jay in seq(ld.mix)) {
dval <- d.mix[jay]
use.pdip.mix[, jay] <- (if (is.prob)
dnbinom(dval, size.d, prob = prob.d) else
dnbinom(dval, size.d, mu = munb.d))
}
use.pdip.mix <- pdip.mix *
use.pdip.mix / rowSums(use.pdip.mix)
for (jay in seq(ld.mix)) {
dval <- d.mix[jay]
pmf.p <- if (is.prob)
pnbinom(dval, size.p, prob = prob.p) else
pnbinom(dval, size.p, mu = munb.p)
if (any(vecTF <- (is.finite(q) & dval <= q))) {
Offset.d[vecTF] <- Offset.d[vecTF] + use.pdip.mix[vecTF, jay]
}
} # jay
} # ld.mix
numer1 <- 1 - sum.i - sum.a - pstr.mix - pobs.mix + sum.d + pdip.mix
denom1 <- cdf.max.s - sumt - suma
ans <- numer1 * ((if (is.prob)
pnbinom(q, size.p, prob = prob.p) else
pnbinom(q, size.p, mu = munb.p)) -
fudge.t - fudge.a) / denom1 +
offset.a + offset.i - offset.d +
Offset.a + Offset.i - Offset.d
ans[max.support <= q] <- 1
ans[ans < 0] <- 0 # Occasional roundoff error
if (lower.tail) ans else 1 - ans
} # pgaitdnbinom
qgaitdnbinom <-
function(p, size.p, # prob.p = NULL,
munb.p, # = NULL,
a.mix = NULL,
a.mlm = NULL,
i.mix = NULL,
i.mlm = NULL,
d.mix = NULL,
d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0,
pobs.mlm = 0,
pstr.mix = 0,
pstr.mlm = 0,
pdip.mix = 0,
pdip.mlm = 0,
byrow.aid = FALSE,
size.a = size.p, size.i = size.p, size.d = size.p,
munb.a = munb.p, munb.i = munb.p, munb.d = munb.p) {
prob.p = NULL
prob.a = prob.p; prob.i = prob.p; prob.d = prob.p
lowsup <- 0
gaitd.errorcheck(a.mix, a.mlm, i.mix, i.mlm,
d.mix, d.mlm, truncate, max.support, nparams = 2)
if ((is.prob <- as.logical(length(prob.p))) &&
length(munb.p))
stop("cannot specify both 'prob.p' and 'munb.p' arguments")
la.mix <- length(a.mix <- sort(a.mix))
li.mix <- length(i.mix <- sort(i.mix))
ld.mix <- length(d.mix <- sort(d.mix))
la.mlm <- length(a.mlm)
li.mlm <- length(i.mlm)
ld.mlm <- length(d.mlm)
ltrunc <- length(truncate <- sort(truncate))
if (la.mix + la.mlm + li.mix + li.mlm + ld.mix + ld.mlm +
ltrunc == 0 &&
is.infinite(max.support))
return(if (is.prob)
qnbinom(p, size = size.p, prob = prob.p) else
qnbinom(p, size = size.p, mu = munb.p)) # lower.t,log.p
if (la.mix == 0) pobs.mix <- 0
if (la.mlm == 0) pobs.mlm <- 0
if (li.mix == 0) pstr.mix <- 0
if (li.mlm == 0) pstr.mlm <- 0
if (ld.mix == 0) pdip.mix <- 0
if (ld.mlm == 0) pdip.mlm <- 0
if (any(pobs.mix < 0 | 1 <= pobs.mix, na.rm = TRUE))
stop("bad input for argument 'pobs.mix'")
if (any(pobs.mlm < 0 | 1 <= pobs.mlm, na.rm = TRUE))
stop("bad input for argument 'pobs.mlm'")
if (any(pstr.mix < 0 | 1 <= pstr.mix, na.rm = TRUE))
stop("bad input for argument 'pstr.mix'")
if (any(pstr.mlm < 0 | 1 <= pstr.mlm, na.rm = TRUE))
stop("bad input for argument 'pstr.mlm'")
if (any(pdip.mix < 0 | 1 <= pdip.mix, na.rm = TRUE))
stop("bad input for argument 'pdip.mix'")
if (any(pdip.mlm < 0 | 1 <= pdip.mlm, na.rm = TRUE))
stop("bad input for argument 'pdip.mlm'")
LLL <- max(length(p),
length(pobs.mix), length(pstr.mix), length(pdip.mix),
length(size.p), length(size.a), length(size.i),
length(size.d),
length(munb.p), length(munb.a), length(munb.i),
length(munb.d),
length(prob.p), length(prob.a), length(prob.i),
length(prob.d))
if (length(p) < LLL) p <- rep_len(p, LLL)
if (length(size.p) < LLL) size.p <- rep_len(size.p, LLL)
if (length(size.a) < LLL) size.a <- rep_len(size.a, LLL)
if (length(size.i) < LLL) size.i <- rep_len(size.i, LLL)
if (length(size.d) < LLL) size.d <- rep_len(size.d, LLL)
if (is.prob) {
if (length(prob.p) < LLL) prob.p <- rep_len(prob.p, LLL)
if (length(prob.a) < LLL) prob.a <- rep_len(prob.a, LLL)
if (length(prob.i) < LLL) prob.i <- rep_len(prob.i, LLL)
if (length(prob.d) < LLL) prob.d <- rep_len(prob.d, LLL)
} else {
if (length(munb.p) < LLL) munb.p <- rep_len(munb.p, LLL)
if (length(munb.a) < LLL) munb.a <- rep_len(munb.a, LLL)
if (length(munb.i) < LLL) munb.i <- rep_len(munb.i, LLL)
if (length(munb.d) < LLL) munb.d <- rep_len(munb.d, LLL)
}
if (length(pobs.mix) < LLL) pobs.mix <- rep_len(pobs.mix, LLL)
if (length(pstr.mix) < LLL) pstr.mix <- rep_len(pstr.mix, LLL)
if (length(pdip.mix) < LLL) pdip.mix <- rep_len(pdip.mix, LLL)
pobs.mlm <- matrix(pobs.mlm, LLL, max(la.mlm, 1),
byrow = byrow.aid)
pstr.mlm <- matrix(pstr.mlm, LLL, max(li.mlm, 1),
byrow = byrow.aid)
pdip.mlm <- matrix(pdip.mlm, LLL, max(ld.mlm, 1),
byrow = byrow.aid)
min.support <- lowsup # Usual case; same as lowsup
min.support.use <- if (ltrunc)
min(setdiff(min.support:(ltrunc+5), truncate)) else min.support
ans <- p + size.p + size.a + size.i + size.d + (if (is.prob)
prob.p + prob.a + prob.i else
munb.p + munb.a + munb.i)
bad0.p <- !is.finite(size.p) | size.p <= 0 |
(if (is.prob)
!is.finite(prob.p) | prob.p <= 0 | 1 <= prob.p else
!is.finite(munb.p) | munb.p <= 0)
bad0.a <- !is.finite(size.a) | size.a <= 0 |
(if (is.prob)
!is.finite(prob.a) | prob.a <= 0 | 1 <= prob.a else
!is.finite(munb.a) | munb.a <= 0)
bad0.i <- !is.finite(size.i) | size.i <= 0 |
(if (is.prob)
!is.finite(prob.i) | prob.i <= 0 | 1 <= prob.i else
!is.finite(munb.i) | munb.i <= 0)
bad0.d <- !is.finite(size.d) | size.d <= 0 |
(if (is.prob)
!is.finite(prob.d) | prob.d <= 0 | 1 <= prob.d else
!is.finite(munb.d) | munb.d <= 0)
bad0 <- bad0.p | bad0.a | bad0.i | bad0.d
bad <- bad0 | !is.finite(p) | p <= 0 | 1 <= p
Lo <- rep_len(min.support.use - 0.5, LLL)
approx.ans <- Lo # True at lhs
Hi <- if (is.finite(max.support))
rep(max.support + 0.5, LLL) else 2 * Lo + 10.5
dont.iterate <- bad
done <- dont.iterate |
p <= pgaitdnbinom(Hi, size.p, # prob.p = prob.p,
munb.p = munb.p,
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pstr.mix = pstr.mix, pobs.mix = pobs.mix,
pdip.mix = pdip.mix,
pstr.mlm = pstr.mlm, pobs.mlm = pobs.mlm,
pdip.mlm = pdip.mlm,
munb.a = munb.a, munb.i = munb.i, munb.d = munb.d,
byrow.aid = FALSE)
iter <- 0
max.iter <- round(log2(.Machine$double.xmax)) - 3
while (!all(done) && iter < max.iter) {
Lo[!done] <- Hi[!done]
Hi[!done] <- 2 * Hi[!done] + 10.5 # Bug fixed
Hi <- pmin(max.support + 0.5, Hi) # 20190924
done[!done] <-
(p[!done] <= pgaitdnbinom(Hi[!done], size.p = size.p[!done],
munb.p = munb.p[!done],
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pobs.mix = pobs.mix[!done],
pstr.mix = pstr.mix[!done],
pdip.mix = pdip.mix[!done],
pobs.mlm = pobs.mlm[!done, , drop = FALSE],
pstr.mlm = pstr.mlm[!done, , drop = FALSE],
pdip.mlm = pdip.mlm[!done, , drop = FALSE],
size.a = size.a[!done], size.i = size.i[!done],
size.d = size.d[!done],
munb.a = munb.a[!done], munb.i = munb.i[!done],
munb.d = munb.d[!done],
byrow.aid = FALSE))
iter <- iter + 1
}
foo <- function(q, size.p, # prob.p = NULL,
munb.p, # = NULL,
a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0, pstr.mix = 0, pdip.mix = 0,
pobs.mlm = 0, pstr.mlm = 0, pdip.mlm = 0,
size.a = size.p, size.i = size.p, size.d = size.p,
munb.a = munb.p, munb.i = munb.p, munb.d = munb.p,
byrow.aid = FALSE, p)
pgaitdnbinom(q, size.p = size.p,
munb.p = munb.p,
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pobs.mix = pobs.mix,
pstr.mix = pstr.mix,
pdip.mix = pdip.mix,
pobs.mlm = pobs.mlm,
pstr.mlm = pstr.mlm,
pdip.mlm = pdip.mlm,
size.a = size.a, size.i = size.i, size.d = size.d,
munb.a = munb.a, munb.i = munb.i, munb.d = munb.d,
byrow.aid = FALSE) - p
lhs <- dont.iterate |
p <= dgaitdnbinom(min.support.use, size.p = size.p,
munb.p = munb.p,
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pobs.mix = pobs.mix,
pstr.mix = pstr.mix,
pdip.mix = pdip.mix,
pobs.mlm = pobs.mlm,
pstr.mlm = pstr.mlm,
pdip.mlm = pdip.mlm,
size.a = size.a, size.i = size.i, size.d = size.d,
munb.a = munb.a, munb.i = munb.i, munb.d = munb.d,
byrow.aid = FALSE)
if (any(!lhs)) {
approx.ans[!lhs] <-
bisection.basic(foo, Lo[!lhs], Hi[!lhs], tol = 1/16,
size.p = size.p[!lhs],
munb.p = munb.p[!lhs],
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pstr.mix = pstr.mix[!lhs],
pstr.mlm = pstr.mlm[!lhs, , drop = FALSE],
pobs.mix = pobs.mix[!lhs],
pobs.mlm = pobs.mlm[!lhs, , drop = FALSE],
pdip.mix = pdip.mix[!lhs],
pdip.mlm = pdip.mlm[!lhs, , drop = FALSE],
size.a = size.a[!lhs], size.i = size.i[!lhs],
size.d = size.d[!lhs],
munb.a = munb.a[!lhs], munb.i = munb.i[!lhs],
munb.d = munb.d[!lhs],
byrow.aid = FALSE,
p = p[!lhs])
faa <- floor(approx.ans[!lhs])
tmp <-
ifelse(pgaitdnbinom(faa, size.p = size.p[!lhs],
munb.p = munb.p[!lhs],
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pstr.mix = pstr.mix[!lhs],
pstr.mlm = pstr.mlm[!lhs, , drop = FALSE],
pobs.mix = pobs.mix[!lhs],
pobs.mlm = pobs.mlm[!lhs, , drop = FALSE],
pdip.mix = pdip.mix[!lhs],
pdip.mlm = pdip.mlm[!lhs, , drop = FALSE],
size.a = size.a[!lhs], size.i = size.i[!lhs],
size.d = size.d[!lhs],
munb.a = munb.a[!lhs], munb.i = munb.i[!lhs],
munb.d = munb.d[!lhs],
byrow.aid = FALSE) < p[!lhs] &
p[!lhs] <= pgaitdnbinom(faa + 1, size.p = size.p[!lhs],
munb.p = munb.p[!lhs],
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pstr.mix = pstr.mix[!lhs],
pstr.mlm = pstr.mlm[!lhs, , drop = FALSE],
pobs.mix = pobs.mix[!lhs],
pobs.mlm = pobs.mlm[!lhs, , drop = FALSE],
pdip.mix = pdip.mix[!lhs],
pdip.mlm = pdip.mlm[!lhs, , drop = FALSE],
size.a = size.a[!lhs], size.i = size.i[!lhs],
size.d = size.d[!lhs],
munb.a = munb.a[!lhs], munb.i = munb.i[!lhs],
munb.d = munb.d[!lhs],
byrow.aid = FALSE),
faa + 1, faa)
ans[!lhs] <- tmp
} # any(!lhs)
if (ltrunc)
while (any(vecTF <- !bad & ans %in% truncate))
ans[vecTF] <- 1 + ans[vecTF]
vecTF <- !bad0 & !is.na(p) &
p <= dgaitdnbinom(min.support.use, size.p = size.p,
munb.p = munb.p,
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pobs.mix = pobs.mix,
pstr.mix = pstr.mix,
pdip.mix = pdip.mix,
pobs.mlm = pobs.mlm,
pstr.mlm = pstr.mlm,
pdip.mlm = pdip.mlm,
size.a = size.a, size.i = size.i, size.d = size.d,
munb.a = munb.a, munb.i = munb.i, munb.d = munb.d,
byrow.aid = FALSE)
ans[vecTF] <- min.support.use
ans[!bad0 & !is.na(p) & p == 0] <- min.support.use
ans[!bad0 & !is.na(p) & p == 1] <- max.support # Inf
ans[!bad0 & !is.na(p) & p < 0] <- NaN
ans[!bad0 & !is.na(p) & p > 1] <- NaN
ans[ bad0] <- NaN
ans
} # qgaitdnbinom
rgaitdnbinom <-
function(n, size.p, # prob.p = NULL,
munb.p, # = NULL,
a.mix = NULL,
a.mlm = NULL,
i.mix = NULL,
i.mlm = NULL,
d.mix = NULL,
d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0, # vector
pobs.mlm = 0, # matrix
pstr.mix = 0, # vector
pstr.mlm = 0, # matrix
pdip.mix = 0, # vector
pdip.mlm = 0, # matrix
byrow.aid = FALSE,
size.a = size.p, size.i = size.p, size.d = size.p,
munb.a = munb.p, munb.i = munb.p, munb.d = munb.p) {
qgaitdnbinom(runif(n),
size.p = size.p, # prob.p = prob.p,
munb.p = munb.p,
a.mix = a.mix,
a.mlm = a.mlm,
i.mix = i.mix,
i.mlm = i.mlm,
d.mix = d.mix,
d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pobs.mix = pobs.mix,
pobs.mlm = pobs.mlm,
pstr.mix = pstr.mix,
pstr.mlm = pstr.mlm,
pdip.mix = pdip.mix,
pdip.mlm = pdip.mlm,
size.a = size.a, munb.a = munb.a,
size.i = size.i, munb.i = munb.i,
size.d = size.d, munb.d = munb.d,
byrow.aid = byrow.aid)
} # rgaitdnbinom
moments.gaitdcombo.nbinom <-
function(size.p, munb.p,
a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0, pobs.mlm = 0, # Vector and matrix resp.
pstr.mix = 0, pstr.mlm = 0, # Ditto
pdip.mix = 0, pdip.mlm = 0, # Ditto
byrow.aid = FALSE, # For pobs.mlm and pstr.mlm
size.a = size.p,
size.i = size.p,
size.d = size.p,
munb.a = munb.p,
munb.i = munb.p,
munb.d = munb.p,
type.fitted = "All", # or "mean"
moments2 = FALSE) { # Use this for variances.
if (is.infinite(max.support)) {
rmlife1 <- rmlife2 <- numeric(length(size.p)) # 0
} else {
stop("currently RML unknown for finite 'max.support'")
x.use <- max.support + 1
rmlife1 <- NA
rmlife2 <- NA
} # is.infinite(max.support)
mylist1 <-
moments.gaitdcombo.2par(
theta1.p = size.p, theta2.p = munb.p,
a.mix = a.mix, a.mlm = a.mlm,
i.mix = i.mix, i.mlm = i.mlm,
d.mix = d.mix, d.mlm = d.mlm,
truncate = truncate, max.support = max.support,
pobs.mix = pobs.mix, pobs.mlm = pobs.mlm,
pstr.mix = pstr.mix, pstr.mlm = pstr.mlm,
pdip.mix = pdip.mix, pdip.mlm = pdip.mlm,
byrow.aid = byrow.aid, # type.fitted = type.fitted,
theta1.a = size.a, theta2.a = munb.a,
theta1.i = size.i, theta2.i = munb.i,
theta1.d = size.d, theta2.d = munb.d,
moments2 = moments2,
rmlife1 = rmlife1, rmlife2 = rmlife2,
dfun = "dgaitdnbinom") # do.call() called.
themean <- with(mylist1,
aprd1.mix + iprd1.mix + aprd1.mlm + iprd1.mlm -
dprd1.mix - dprd1.mlm +
use.this * (munb.p - SumA1.mix.p -
SumA1.mlm.p - SumT1.p) / (
cdf.max.s - SumA0.mix.p - SumA0.mlm.p - SumT0.p))
if (type.fitted == "mean") {
return(themean)
}
ans <- c(mylist1,
list('rmlife1' = rmlife1, # Has the right dimension
'mean' = themean))
if (moments2) { # Add more info
ans <- c(ans,
list('rmlife2' = rmlife2))
}
ans
} # moments.gaitdcombo.nbinom
moments.gaitdcombo.2par <-
function(theta1.p, theta2.p,
a.mix = NULL, a.mlm = NULL,
i.mix = NULL, i.mlm = NULL,
d.mix = NULL, d.mlm = NULL,
truncate = NULL, max.support = Inf,
pobs.mix = 0, pobs.mlm = 0, # Vector and matrix resp.
pstr.mix = 0, pstr.mlm = 0, # Ditto
pdip.mix = 0, pdip.mlm = 0, # Ditto
byrow.aid = FALSE, # For pobs.mlm and pstr.mlm
theta1.a = theta1.p,
theta1.i = theta1.p,
theta1.d = theta1.p,
theta2.a = theta2.p,
theta2.i = theta2.p,
theta2.d = theta2.p,
moments2 = FALSE, # Use this for variances.
rmlife1 = 0, rmlife2 = 0,
dfun = "dgenpois1") { # "dgaitdnbinom" used
NOS <- 1
nnn <- length(theta1.p)
cdf.max.s0 <- pnbinom(max.support, size = theta1.p, mu = theta2.p)
pfun <- dfun
substring(pfun, 1) <- "p" # Replace the "d" by a "p"
cdf.max.s <- do.call(pfun, list(max.support, theta1.p, theta2.p))
LALT.MIX <- length(a.mix)
LALT.MLM <- length(a.mlm)
LINF.MIX <- length(i.mix)
LINF.MLM <- length(i.mlm)
LDEF.MIX <- length(d.mix)
LDEF.MLM <- length(d.mlm)
LTRUNCAT <- length(truncate)
if (LALT.MLM == 0) {
if (!all(pobs.mlm == 0))
warning("ignoring argument 'pobs.mlm'")
pobs.mlm <- 0
}
if (LINF.MLM == 0) {
if (!all(pstr.mlm == 0))
warning("ignoring argument 'pstr.mlm'")
pstr.mlm <- 0
}
if (LDEF.MLM == 0) {
if (!all(pdip.mlm == 0))
warning("ignoring argument 'pdip.mlm'")
pdip.mlm <- 0
}
if (LALT.MIX == 0) {
if (!all(pobs.mix == 0))
warning("ignoring argument 'pobs.mix'")
pobs.mix <- 0
}
if (LINF.MIX == 0) {
if (!all(pstr.mix == 0))
warning("ignoring argument 'pstr.mix'")
pstr.mix <- 0
}
if (LDEF.MIX == 0) {
if (!all(pdip.mix == 0))
warning("ignoring argument 'pdip.mix'")
pdip.mix <- 0
}
SumT0.p <- matrix(0, nnn, NOS) # Does not include upper RHS tail
SumT1.p <- matrix(rmlife1, nnn, NOS) # Includes RHS tail
SumT2.p <- matrix(rmlife2, nnn, NOS) # Includes RHS tail
if (LTRUNCAT)
for (tval in truncate) {
pmf.p <- do.call(dfun, list(tval, theta1.p, theta2.p))
SumT0.p <- SumT0.p + pmf.p # Need tval<=max.support
SumT1.p <- SumT1.p + pmf.p * tval
if (moments2)
SumT2.p <- SumT2.p + pmf.p * tval^2
}
use.pobs.mix <- use.pobs.mlm <- # So rowSums() works below.
use.pstr.mix <- use.pstr.mlm <-
use.pdip.mix <- use.pdip.mlm <- matrix(0, nnn, 1)
aprd1.mix <- aprd1.mlm <- # aprd1.m?? is an innerprod
aprd2.mix <- aprd2.mlm <- 0 # aprd2.m?? is an innerprod
SumA0.mix.p <- SumA0.mlm.p <-
SumA0.mix.a <- SumA0.mlm.a <-
SumA1.mix.p <- SumA1.mlm.p <-
SumA1.mix.a <- SumA1.mlm.a <-
SumA2.mix.p <- SumA2.mlm.p <-
SumA2.mix.a <- SumA2.mlm.a <-
SumA0.mix.x <- SumA0.mlm.x <-
SumA1.mix.x <- SumA1.mlm.x <-
SumA2.mix.x <- SumA2.mlm.x <- matrix(0, nnn, NOS)
if (LALT.MIX)
use.pobs.mix <- matrix(pobs.mix, nnn, 1)
if (LINF.MIX)
use.pstr.mix <- matrix(pstr.mix, nnn, 1)
if (LDEF.MIX)
use.pdip.mix <- matrix(pdip.mix, nnn, 1)
if (LALT.MLM)
use.pobs.mlm <- matrix(pobs.mlm, nnn, LALT.MLM, byrow = byrow.aid)
if (LINF.MLM)
use.pstr.mlm <- matrix(pstr.mlm, nnn, LINF.MLM, byrow = byrow.aid)
if (LDEF.MLM)
use.pdip.mlm <- matrix(pdip.mlm, nnn, LDEF.MLM, byrow = byrow.aid)
if (LALT.MIX) {
for (jay in seq_len(LALT.MIX)) {
aval <- a.mix[jay]
pmf.p <- do.call(dfun, list(aval, theta1.p, theta2.p))
pmf.a <- do.call(dfun, list(aval, theta1.a, theta2.a))
SumA0.mix.p <- SumA0.mix.p + pmf.p
SumA0.mix.a <- SumA0.mix.a + pmf.a
SumA1.mix.p <- SumA1.mix.p + pmf.p * aval
SumA1.mix.a <- SumA1.mix.a + pmf.a * aval
if (moments2) {
SumA2.mix.p <- SumA2.mix.p + pmf.p * aval^2
SumA2.mix.a <- SumA2.mix.a + pmf.a * aval^2
}
} # for jay
aprd1.mix <- use.pobs.mix * SumA1.mix.a / SumA0.mix.a
if (moments2)
aprd2.mix <- use.pobs.mix * SumA2.mix.a / SumA0.mix.a
} # LALT.MIX
if (LALT.MLM) {
for (jay in seq_len(LALT.MLM)) {
aval <- a.mlm[jay]
pmf.x <- use.pobs.mlm[, jay]
pmf.p <- do.call(dfun, list(aval, theta1.p, theta2.p))
pmf.a <- do.call(dfun, list(aval, theta1.a, theta2.a))
SumA0.mlm.p <- SumA0.mlm.p + pmf.p
SumA0.mlm.a <- SumA0.mlm.a + pmf.a
SumA1.mlm.p <- SumA1.mlm.p + pmf.p * aval
SumA1.mlm.a <- SumA1.mlm.a + pmf.a * aval
SumA1.mlm.x <- SumA1.mlm.x + pmf.x * aval
if (moments2) {
SumA2.mlm.p <- SumA2.mlm.p + pmf.p * aval^2
SumA2.mlm.a <- SumA2.mlm.a + pmf.a * aval^2
SumA2.mlm.x <- SumA2.mlm.x + pmf.x * aval^2
}
} # for jay
aprd1.mlm <- SumA1.mlm.x
if (moments2)
aprd2.mlm <- SumA2.mlm.x
} # LALT.MLM
iprd1.mix <- iprd1.mlm <- # iprd1.m?? is an innerprod
iprd2.mix <- iprd2.mlm <- 0 # iprd2.m?? is an innerprod
SumI0.mix.p <- SumI0.mlm.p <-
SumI0.mix.i <- SumI0.mlm.i <-
SumI1.mix.p <- SumI1.mlm.p <-
SumI1.mix.i <- SumI1.mlm.i <-
SumI2.mix.p <- SumI2.mlm.p <-
SumI2.mix.i <- SumI2.mlm.i <-
SumI0.mix.x <- SumI0.mlm.x <-
SumI1.mix.x <- SumI1.mlm.x <-
SumI2.mix.x <- SumI2.mlm.x <- matrix(0, nnn, NOS)
dprd1.mix <- dprd1.mlm <-
dprd2.mix <- dprd2.mlm <- 0
SumD0.mix.p <- SumD0.mlm.p <-
SumD0.mix.d <- SumD0.mlm.d <-
SumD1.mix.p <- SumD1.mlm.p <-
SumD1.mix.d <- SumD1.mlm.d <-
SumD1.mlm.x <-
SumD2.mix.p <- SumD2.mlm.p <-
SumD2.mix.d <- SumD2.mlm.d <-
SumD2.mlm.x <- matrix(0, nnn, NOS)
if (LINF.MIX) {
for (jay in seq_len(LINF.MIX)) {
ival <- i.mix[jay]
pmf.p <- do.call(dfun, list(ival, theta1.p, theta2.p))
pmf.i <- do.call(dfun, list(ival, theta1.i, theta2.i))
SumI0.mix.p <- SumI0.mix.p + pmf.p
SumI0.mix.i <- SumI0.mix.i + pmf.i
SumI1.mix.p <- SumI1.mix.p + pmf.p * ival
SumI1.mix.i <- SumI1.mix.i + pmf.i * ival
if (moments2) {
SumI2.mix.p <- SumI2.mix.p + pmf.p * ival^2
SumI2.mix.i <- SumI2.mix.i + pmf.i * ival^2
}
} # for jay
iprd1.mix <- use.pstr.mix * SumI1.mix.i / SumI0.mix.i
if (moments2)
iprd2.mix <- use.pstr.mix * SumI2.mix.i / SumI0.mix.i
} # LINF.MIX
if (LINF.MLM) {
for (jay in seq_len(LINF.MLM)) {
ival <- i.mlm[jay]
pmf.x <- use.pstr.mlm[, jay]
pmf.p <- do.call(dfun, list(ival, theta1.p, theta2.p))
pmf.i <- do.call(dfun, list(ival, theta1.i, theta2.i))
SumI0.mlm.p <- SumI0.mlm.p + pmf.p
SumI0.mlm.i <- SumI0.mlm.i + pmf.i
SumI1.mlm.p <- SumI1.mlm.p + pmf.p * ival
SumI1.mlm.i <- SumI1.mlm.i + pmf.i * ival
SumI1.mlm.x <- SumI1.mlm.x + pmf.x * ival
if (moments2) {
SumI2.mlm.p <- SumI2.mlm.p + pmf.p * ival^2
SumI2.mlm.i <- SumI2.mlm.i + pmf.i * ival^2
SumI2.mlm.x <- SumI2.mlm.x + pmf.x * ival^2
}
} # for jay
iprd1.mlm <- SumI1.mlm.x
if (moments2)
iprd2.mlm <- SumI2.mlm.x
} # LINF.MLM
if (LDEF.MIX) {
for (jay in seq_len(LDEF.MIX)) {
dval <- d.mix[jay]
pmf.p <- do.call(dfun, list(dval, theta1.p, theta2.p))
pmf.d <- do.call(dfun, list(dval, theta1.d, theta2.d))
SumD0.mix.p <- SumD0.mix.p + pmf.p
SumD0.mix.d <- SumD0.mix.d + pmf.d
SumD1.mix.p <- SumD1.mix.p + pmf.p * dval
SumD1.mix.d <- SumD1.mix.d + pmf.d * dval
if (moments2) {
SumD2.mix.p <- SumD2.mix.p + pmf.p * dval^2
SumD2.mix.d <- SumD2.mix.d + pmf.d * dval^2
}
} # for jay
dprd1.mix <- use.pdip.mix * SumD1.mix.d / SumD0.mix.d
if (moments2)
dprd2.mix <- use.pdip.mix * SumD2.mix.d / SumD0.mix.d
} # LDEF.MIX
if (LDEF.MLM) {
for (jay in seq_len(LDEF.MLM)) {
dval <- d.mlm[jay]
pmf.x <- use.pdip.mlm[, jay]
pmf.p <- do.call(dfun, list(dval, theta1.p, theta2.p))
pmf.d <- do.call(dfun, list(dval, theta1.d, theta2.d))
SumD0.mlm.p <- SumD0.mlm.p + pmf.p
SumD0.mlm.d <- SumD0.mlm.d + pmf.d
SumD1.mlm.p <- SumD1.mlm.p + pmf.p * dval
SumD1.mlm.d <- SumD1.mlm.d + pmf.d * dval
SumD1.mlm.x <- SumD1.mlm.x + pmf.x * dval
if (moments2) {
SumD2.mlm.p <- SumD2.mlm.p + pmf.p * dval^2
SumD2.mlm.d <- SumD2.mlm.d + pmf.d * dval^2
SumD2.mlm.x <- SumD2.mlm.x + pmf.x * dval^2
}
} # for jay
dprd1.mlm <- SumD1.mlm.x
if (moments2)
dprd2.mlm <- SumD2.mlm.x
} # LDEF.MLM
use.this <- 1 - rowSums(use.pobs.mlm) - rowSums(use.pstr.mlm) +
rowSums(use.pdip.mlm) -
use.pobs.mix - use.pstr.mix + use.pdip.mix
ans <- list('cdf.max.s' = cdf.max.s,
'SumT0.p' = SumT0.p,
'SumT1.p' = SumT1.p,
'SumA0.mix.a' = SumA0.mix.a,
'SumA0.mix.p' = SumA0.mix.p,
'SumA1.mix.a' = SumA1.mix.a,
'SumA1.mix.p' = SumA1.mix.p,
'SumA0.mlm.a' = SumA0.mlm.a,
'SumA0.mlm.p' = SumA0.mlm.p,
'SumA1.mlm.a' = SumA1.mlm.a,
'SumA1.mlm.p' = SumA1.mlm.p,
'SumI0.mix.i' = SumI0.mix.i,
'SumI0.mix.p' = SumI0.mix.p,
'SumI1.mix.i' = SumI1.mix.i,
'SumI1.mix.p' = SumI1.mix.p,
'SumI0.mlm.i' = SumI0.mlm.i,
'SumI0.mlm.p' = SumI0.mlm.p,
'SumI1.mlm.i' = SumI1.mlm.i,
'SumI1.mlm.p' = SumI1.mlm.p,
'SumD0.mix.d' = SumD0.mix.d, #
'SumD0.mix.p' = SumD0.mix.p,
'SumD1.mix.d' = SumD1.mix.d,
'SumD1.mix.p' = SumD1.mix.p,
'SumD0.mlm.d' = SumD0.mlm.d,
'SumD0.mlm.p' = SumD0.mlm.p,
'SumD1.mlm.d' = SumD1.mlm.d,
'SumD1.mlm.p' = SumD1.mlm.p, #
'aprd1.mix' = aprd1.mix,
'aprd1.mlm' = aprd1.mlm,
'iprd1.mix' = iprd1.mix,
'iprd1.mlm' = iprd1.mlm,
'dprd1.mix' = dprd1.mix, #
'dprd1.mlm' = dprd1.mlm, #
'use.this' = use.this)
if (moments2) { # Add more info
ans <- c(ans,
list( # 'rmlife2' = rmlife2, # May be scalar
'aprd2.mix' = aprd2.mix,
'aprd2.mlm' = aprd2.mlm,
'iprd2.mix' = iprd2.mix,
'iprd2.mlm' = iprd2.mlm,
'dprd2.mix' = dprd2.mix,
'dprd2.mlm' = dprd2.mlm,
'SumT2.p' = SumT2.p,
'SumA2.mix.p' = SumA2.mix.p,
'SumA2.mix.a' = SumA2.mix.a,
'SumI2.mix.p' = SumI2.mix.p,
'SumI2.mix.i' = SumI2.mix.i,
'SumD2.mix.p' = SumD2.mix.p,
'SumD2.mix.d' = SumD2.mix.d,
'SumA2.mlm.p' = SumA2.mlm.p,
'SumA2.mlm.a' = SumA2.mlm.a,
'SumI2.mlm.p' = SumI2.mlm.p,
'SumI2.mlm.i' = SumI2.mlm.i,
'SumD2.mlm.p' = SumD2.mlm.p, #
'SumD2.mlm.d' = SumD2.mlm.d)) #
}
ans
} # moments.gaitdcombo.2par
gaitdnbinomial <-
function(a.mix = NULL, i.mix = NULL, d.mix = NULL,
a.mlm = NULL, i.mlm = NULL, d.mlm = NULL,
truncate = NULL, # max.support = Inf,
zero = c("size", "pobs", "pstr", "pdip"),
eq.ap = TRUE, eq.ip = TRUE, eq.dp = TRUE,
parallel.a = FALSE, parallel.i = FALSE,
parallel.d = FALSE,
lmunb.p = "loglink",
lmunb.a = lmunb.p, lmunb.i = lmunb.p, lmunb.d = lmunb.p,
lsize.p = "loglink",
lsize.a = lsize.p, lsize.i = lsize.p, lsize.d = lsize.p,
type.fitted = c("mean", "munbs", "sizes",
"pobs.mlm", "pstr.mlm", "pdip.mlm",
"pobs.mix", "pstr.mix", "pdip.mix",
"Pobs.mix", "Pstr.mix", "Pdip.mix",
"nonspecial", "Numer", "Denom.p",
"sum.mlm.i", "sum.mix.i",
"sum.mlm.d", "sum.mix.d",
"ptrunc.p", "cdf.max.s"),
gpstr.mix = ppoints(7) / 3, # ppoints(9) / 2,
gpstr.mlm = ppoints(7) / (3 + length(i.mlm)),
imethod = 1,
mux.init = c(0.75, 0.5, 0.75, 0.5), # Order is A,I,D,size
imunb.p = NULL, imunb.a = imunb.p,
imunb.i = imunb.p, imunb.d = imunb.p,
isize.p = NULL, # NULL, 1 is easy but inflexible
isize.a = isize.p, # NULL, # isize.p, #
isize.i = isize.p, isize.d = isize.p,
ipobs.mix = NULL, ipstr.mix = NULL, # 0.25,
ipdip.mix = NULL, # 0.01, # Easy but inflexible 0.01
ipobs.mlm = NULL,
ipstr.mlm = NULL, # 0.25,
ipdip.mlm = NULL, # 0.01, # NULL, Easy but inflexible
byrow.aid = FALSE,
ishrinkage = 0.95,
probs.y = 0.35,
nsimEIM = 500, cutoff.prob = 0.999, # Maxiter = 5000,
eps.trig = 1e-7,
nbd.max.support = 4000,
max.chunk.MB = 30) { # max.memory = Inf is allowed
mux.init <- rep_len(mux.init, 4)
if (length(a.mix) == 0) a.mix <- NULL
if (length(i.mix) == 0) i.mix <- NULL
if (length(d.mix) == 0) d.mix <- NULL
if (length(a.mlm) == 0) a.mlm <- NULL
if (length(i.mlm) == 0) i.mlm <- NULL
if (length(d.mlm) == 0) d.mlm <- NULL
if (length(truncate) == 0) truncate <- NULL
max.support <- Inf # Currently, temporary measure?
lowsup <- 0
gaitd.errorcheck(a.mix, a.mlm, i.mix, i.mlm,
d.mix, d.mlm, truncate, max.support,
min.support = lowsup, nparams = 2)
la.mix <- length(a.mix <- sort(a.mix))
li.mix <- length(i.mix <- sort(i.mix))
ld.mix <- length(d.mix <- sort(d.mix))
la.mlm <- length(a.mlm)
li.mlm <- length(i.mlm)
ld.mlm <- length(d.mlm)
ltruncat <- length(truncate <- sort(truncate))
ltrunc.use <- ltruncat > 0 || !is.infinite(max.support)
lmunb.p <- as.list(substitute(lmunb.p))
emunb.p <- link2list(lmunb.p)
lmunb.p <- attr(emunb.p, "function.name")
lmunb.p.save <- lmunb.p
lsize.p <- as.list(substitute(lsize.p))
esize.p <- link2list(lsize.p)
lsize.p <- attr(esize.p, "function.name")
lsize.p.save <- lsize.p
lpobs.mix <- "multilogitlink" # \omega_p
epobs.mix <- list() # zz NULL for now 20200907 coz 'multilogitlink'
emunb.a <- link2list(lmunb.a)
lmunb.a <- attr(emunb.a, "function.name")
esize.a <- link2list(lsize.a)
lsize.a <- attr(esize.a, "function.name")
lpstr.mix <- "multilogitlink" # \phi_p
epstr.mix <- list() # zz NULL for now 20200907 coz 'multilogitlink'
lpdip.mix <- "multilogitlink" # zz unsure 20211002
epdip.mix <- list() # zz unsure 20211002
emunb.i <- link2list(lmunb.i)
lmunb.i <- attr(emunb.i, "function.name")
esize.i <- link2list(lsize.i)
lsize.i <- attr(esize.i, "function.name")
emunb.d <- link2list(lmunb.d)
lmunb.d <- attr(emunb.d, "function.name")
esize.d <- link2list(lsize.d)
lsize.d <- attr(esize.d, "function.name")
if (is.vector(zero) && is.character(zero) && length(zero) == 4) {
if (li.mix + li.mlm == 0)
zero <- setdiff(zero, "pstr")
if (la.mix + la.mlm == 0)
zero <- setdiff(zero, "pobs")
if (ld.mix + ld.mlm == 0)
zero <- setdiff(zero, "pdip")
if (length(zero) == 0)
zero <- NULL # Better than character(0)
}
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
if (lall.len + ltruncat == 0 && is.infinite(max.support))
return(eval(substitute(
negbinomial(lmu = .lmunb.p.save , lsize = .lsize.p.save ,
zero = NULL),
list( .lmunb.p.save = lmunb.p.save,
.lsize.p.save = lsize.p.save))))
if (!is.logical(eq.ap) || length(eq.ap) != 1)
stop("argument 'eq.ap' must be a single logical")
if (!is.logical(eq.ip) || length(eq.ip) != 1)
stop("argument 'eq.ip' must be a single logical")
if (!is.logical(parallel.a) || length(parallel.a) != 1)
stop("argument 'parallel.a' must be a single logical")
if (!is.logical(parallel.i) || length(parallel.i) != 1)
stop("argument 'parallel.i' must be a single logical")
if (!is.logical(parallel.d) || length(parallel.d) != 1)
stop("argument 'parallel.d' must be a single logical")
if (FALSE) { # Comment this out to allow default eq.ap = TRUE, etc.
if (la.mix <= 1 && eq.ap)
stop("<= one unstructured altered value (no 'munb.a')",
", so setting 'eq.ap = TRUE' is meaningless")
if (li.mix <= 1 && eq.ip)
stop("<= one unstructured inflated value (no 'munb.i')",
", so setting 'eq.ip = TRUE' is meaningless")
if (ld.mix <= 1 && eq.dp)
stop("<= one unstructured deflated value (no 'munb.d')",
", so setting 'eq.dp = TRUE' is meaningless")
if (la.mlm <= 1 && parallel.a) # Only \omega_1
stop("<= one altered mixture probability, 'pobs", a.mlm,
"', so setting 'parallel.a = TRUE' is meaningless")
if (li.mlm <= 1 && parallel.i) # Only \phi_1
stop("<= one inflated mixture probability, 'pstr", i.mlm,
"', so setting 'parallel.i = TRUE' is meaningless")
if (ld.mlm <= 1 && parallel.d) # Only \psi_1
stop("<= one deflated mixture probability, 'pdip", d.mlm,
"', so setting 'parallel.d = TRUE' is meaningless")
} # FALSE
type.fitted.choices <-
c("mean", "munbs", "sizes",
"pobs.mlm", "pstr.mlm", "pdip.mlm",
"pobs.mix", "pstr.mix", "pdip.mix",
"Pobs.mix", "Pstr.mix", "Pdip.mix",
"nonspecial", "Numer", "Denom.p",
"sum.mlm.i", "sum.mix.i",
"sum.mlm.d", "sum.mix.d",
"ptrunc.p", "cdf.max.s")
type.fitted <- match.arg(type.fitted[1], type.fitted.choices)[1]
tmp7a <- if (la.mlm) paste0("pobs.mlm", a.mlm) else NULL
tmp7b <- if (li.mlm) paste0("pstr.mlm", i.mlm) else NULL
tmp7c <- if (ld.mlm) paste0("pdip.mlm", d.mlm) else NULL
tmp3 <- c(munb.p = lmunb.p,
size.p = lsize.p,
pobs.mix = if (la.mix) "multilogitlink" else NULL,
munb.a = if (la.mix > 1) lmunb.a else NULL,
size.a = if (la.mix > 1) lsize.a else NULL,
pstr.mix = if (li.mix) "multilogitlink" else NULL,
munb.i = if (li.mix > 1) lmunb.i else NULL,
size.i = if (li.mix > 1) lsize.i else NULL,
pdip.mix = if (ld.mix) "multilogitlink" else NULL,
munb.d = if (ld.mix > 1) lmunb.d else NULL,
size.d = if (ld.mix > 1) lsize.d else NULL,
if (la.mlm) rep("multilogitlink", la.mlm) else NULL,
if (li.mlm) rep("multilogitlink", li.mlm) else NULL,
if (ld.mlm) rep("multilogitlink", ld.mlm) else NULL)
Ltmp3 <- length(tmp3)
if (la.mlm + li.mlm + ld.mlm)
names(tmp3)[(Ltmp3 - la.mlm - li.mlm - ld.mlm + 1):Ltmp3] <-
c(tmp7a, tmp7b, tmp7c)
par1or2 <- 2 # 1
tmp3.TF <- c(rep(TRUE, par1or2),
la.mix > 0, rep(la.mix > 1, par1or2),
li.mix > 0, rep(li.mix > 1, par1or2),
ld.mix > 0, rep(ld.mix > 1, par1or2),
la.mlm > 0, li.mlm > 0, ld.mlm > 0)
indeta.finish <- cumsum(c(rep(1, par1or2),
1, rep(1, par1or2),
1, rep(1, par1or2),
1, rep(1, par1or2),
la.mlm, li.mlm, ld.mlm,
ld.mlm + 1) * c(tmp3.TF, 1))
indeta.launch <- c(1, 1 + head(indeta.finish, -1))
indeta.launch <- head(indeta.launch, -1)
indeta.finish <- head(indeta.finish, -1)
indeta.launch[!tmp3.TF] <- NA # Not to be accessed
indeta.finish[!tmp3.TF] <- NA # Not to be accessed
indeta <- cbind(launch = indeta.launch,
finish = indeta.finish)
rownames(indeta) <- c("munb.p", "size.p",
"pobs.mix", "munb.a", "size.a",
"pstr.mix", "munb.i", "size.i",
"pdip.mix", "munb.d", "size.d",
"pobs.mlm", "pstr.mlm", "pdip.mlm")
M1 <- max(indeta, na.rm = TRUE)
predictors.names <- tmp3 # Passed into @infos and @initialize.
blurb1 <- ""
if (la.mlm + la.mix) blurb1 <- "Generally-altered "
if (li.mlm + li.mix) blurb1 <- "Generally-inflated "
if (ltrunc.use) blurb1 <- "Generally-truncated "
if ( (la.mlm + la.mix) && (li.mlm + li.mix) && !ltrunc.use)
blurb1 <- "Generally-altered & -inflated "
if ( (la.mlm + la.mix) && !(li.mlm + li.mix) && ltrunc.use)
blurb1 <- "Generally-altered & -truncated "
if (!(la.mlm + la.mix) && (li.mlm + li.mix) && ltrunc.use)
blurb1 <- "Generally-inflated & -truncated "
if ( (la.mlm + la.mix) && (li.mlm + li.mix) && ltrunc.use)
blurb1 <- "Generally-altered, -inflated & -truncated "
if (ld.mlm + ld.mix) blurb1 <-
c(blurb1,
if (la.mlm + la.mix + li.mlm + li.mix) "& " else "Generally",
"-deflated ")
new("vglmff",
blurb = c(blurb1, "NB regression\n",
"(GAITD-NB(munb.p, size.p)-",
"NB(munb.a, size.a)-MLM-",
"NB(munb.i, size.i)-MLM-\n",
"NB(munb.d, size.d)-MLM generally)\n\n",
"Links: ",
namesof("munb.p", lmunb.p, earg = emunb.p, tag = FALSE),
", ",
namesof("size.p", lsize.p, earg = esize.p, tag = FALSE),
if (la.mix) ", \n ",
if (la.mix > 0) c("multilogit(pobs.mix)"),
if (la.mix > 1) c(", ",
namesof("munb.a", lmunb.a, emunb.a, tag = FALSE), ", ",
namesof("size.a", lsize.a, esize.a, tag = FALSE)),
if (la.mix && li.mix) ", \n ",
if (li.mix > 0) c( if (la.mix) "" else ", ",
"multilogit(pstr.mix)"),
if (li.mix > 1) c(", ",
namesof("munb.i", lmunb.i, emunb.i, tag = FALSE), ", ",
namesof("size.i", lsize.i, esize.i, tag = FALSE)),
if (li.mix && ld.mix) ", \n ",
if (ld.mix > 0) c( if (li.mix) "" else ", ",
"multilogit(pdip.mix)"),
if (ld.mix > 1) c(", ",
namesof("munb.d", lmunb.d, emunb.d, tag = FALSE), ", ",
namesof("size.d", lsize.d, esize.d, tag = FALSE)),
if (la.mlm) paste0(",\n",
paste0(" multilogit(", tmp7a, collapse = "),\n"),
")") else NULL,
if (li.mlm) paste0(",\n",
paste0(" multilogit(", tmp7b, collapse = "),\n"),
")") else NULL,
if (ld.mlm) paste0(",\n",
paste0(" multilogit(", tmp7c, collapse = "),\n"),
")") else NULL),
constraints = eval(substitute(expression({
M1 <- max(extra$indeta, na.rm = TRUE)
la.mix <- ( .la.mix )
li.mix <- ( .li.mix )
ld.mix <- ( .ld.mix )
la.mlm <- ( .la.mlm )
li.mlm <- ( .li.mlm )
ld.mlm <- ( .ld.mlm )
use.mat.mlm.a <- if (la.mlm) {
if ( .parallel.a ) matrix(1, la.mlm, 1) else diag(la.mlm)
} else {
NULL
}
use.mat.mlm.i <- if (li.mlm) {
if ( .parallel.i ) matrix(1, li.mlm, 1) else diag(li.mlm)
} else {
NULL
}
use.mat.mlm.d <- if (ld.mlm) {
if ( .parallel.d ) matrix(1, ld.mlm, 1) else diag(ld.mlm)
} else {
NULL
}
if (la.mlm + li.mlm + ld.mlm == 0) {
warning("20211115; unsure; above vs. below line is right?")
Use.mat <- use.mat.mlm <- diag(M) # munb.p only 20211115
}
if (la.mlm + li.mlm + ld.mlm) {
nc1 <- if (length(use.mat.mlm.a)) ncol(use.mat.mlm.a) else 0
nc2 <- if (length(use.mat.mlm.i)) ncol(use.mat.mlm.i) else 0
nc3 <- if (length(use.mat.mlm.d)) ncol(use.mat.mlm.d) else 0
use.mat.mlm <- cbind(1, matrix(0, 1, nc1 + nc2 + nc3))
if (la.mlm)
use.mat.mlm <- rbind(use.mat.mlm,
cbind(matrix(0, la.mlm, 1),
use.mat.mlm.a,
if (length(use.mat.mlm.i) == 0)
NULL else matrix(0, la.mlm, nc2),
if (length(use.mat.mlm.d) == 0)
NULL else matrix(0, la.mlm, nc3)))
if (li.mlm )
use.mat.mlm <-
rbind(use.mat.mlm,
cbind(matrix(0, li.mlm, 1 + nc1),
use.mat.mlm.i,
matrix(0, li.mlm, nc3)))
if (ld.mlm)
use.mat.mlm <-
rbind(use.mat.mlm, # zz1 next line:
cbind(matrix(0, ld.mlm, 1 + nc1 + nc2),
use.mat.mlm.d))
} # la.mlm + li.mlm
tmp3.TF <- ( .tmp3.TF ) # Logical of length 10.
use.mat.mix <- cm3gaitd( .eq.ap , .eq.ip , .eq.dp , npar = 2)
tmp3.TF.subset <- tmp3.TF[-(12:14)] # tmp3.TF[-(8:10)] 4 Poisson
use.mat.mix <- use.mat.mix[tmp3.TF.subset, , drop = FALSE]
notall0 <- function(x) !all(x == 0)
use.mat.mix <- use.mat.mix[, apply(use.mat.mix, 2, notall0),
drop = FALSE]
if (la.mix + li.mix + ld.mix > 0)
Use.mat <- use.mat.mix # Possibly all done
if (la.mlm + li.mlm + ld.mlm > 0) {
Use.mat <- rbind(use.mat.mix,
matrix(0, nrow(use.mat.mlm) - 1, # bottom
ncol(use.mat.mix)))
Use.mat <- cbind(Use.mat,
matrix(0, nrow(Use.mat), # RHS
ncol(use.mat.mlm) - 1))
Use.mat[row(Use.mat) > nrow(use.mat.mix) &
col(Use.mat) > ncol(use.mat.mix)] <-
use.mat.mlm[-1, -1]
} # la.mlm + li.mlm + ld.mlm > 0
if (is.null(constraints)) {
constraints <-
cm.VGAM(Use.mat, x = x, apply.int = TRUE, # FALSE
bool = .eq.ap || .eq.ip || .eq.dp ||
.parallel.a || .parallel.i || .parallel.d ,
constraints = constraints) # FALSE
} # is.null(constraints)
if (la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm)
constraints <-
cm.zero.VGAM(constraints, x = x, .zero , M = M, M1 = M1,
predictors.names = paste0(predictors.names,
names(predictors.names)))
}),
list( .zero = zero, .tmp3.TF = tmp3.TF, # .tmp3 = tmp3,
.eq.ap = eq.ap, .eq.ip = eq.ip, .eq.dp = eq.dp,
.parallel.a = parallel.a, .parallel.i = parallel.i,
.parallel.d = parallel.d,
.la.mlm = la.mlm, .li.mlm = li.mlm, .ld.mlm = ld.mlm,
.la.mix = la.mix, .li.mix = li.mix, .ld.mix = ld.mix ))),
infos = eval(substitute(function(...) {
list(M1 = .M1 ,
Q1 = 1,
dpqrfun = "gaitdnbinom",
link = .predictors.names , # ...strips... from above
link1parameter = as.logical( .lall.len <= 2), # <= 1 safer
mixture.links = any(c( .la.mlm , .li.mlm , .ld.mlm ,
.la.mix , .li.mix ,
.ld.mix ) > 1), # FALSE if NULL
a.mix = as.vector( .a.mix ), # Handles NULL
a.mlm = as.vector( .a.mlm ),
i.mix = as.vector( .i.mix ),
i.mlm = as.vector( .i.mlm ),
d.mix = as.vector( .d.mix ),
d.mlm = as.vector( .d.mlm ),
truncate = as.vector( .truncate ),
max.support = as.vector( .max.support ),
Support = c( .lowsup , Inf, 1), # a(b)c format as a,c,b.
expected = TRUE,
multipleResponses = FALSE, # negbinomial can be called if TRUE
parameters.names = names( .predictors.names ),
parent.name = c("negbinomial", "nbinom"),
type.fitted = as.vector( .type.fitted ),
type.fitted.choices = ( .type.fitted.choices ),
baseparams.argnames = c("munb", "size"), # zz reorder this?
MM1 = 2, # 2 parameters for 1 response (munb & size). Needed.
flip.args = TRUE, # For dpqr arguments (GAITD plotting).
zero = .zero )
}, list( .zero = zero, .lowsup = lowsup,
.type.fitted = type.fitted,
.type.fitted.choices = type.fitted.choices,
.lmunb.p = lmunb.p, .emunb.p = emunb.p,
.lmunb.a = lmunb.a, .emunb.a = emunb.a,
.lmunb.i = lmunb.i, .emunb.i = emunb.i,
.lmunb.d = lmunb.d, .emunb.d = emunb.d,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.la.mlm = la.mlm, .li.mlm = li.mlm, .ld.mlm = ld.mlm,
.la.mix = la.mix, .li.mix = li.mix, .ld.mix = ld.mix,
.truncate = truncate, .max.support = max.support,
.predictors.names = predictors.names,
.M1 = M1, .lall.len = lall.len ))),
rqresslot = eval(substitute(
function(mu, y, w, eta, extra = NULL) {
if (!is.matrix(eta)) eta <- as.matrix(eta)
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
truncate <- as.vector( .truncate )
tmp3.TF <- ( .tmp3.TF ) # Logical of length 10.
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
pobs.mix <- pstr.mix <- pdip.mix <- 0 # 4 rowSums()
pobs.mlm <- pstr.mlm <- pdip.mlm <- 0 # matrix(0, NROW(eta), 1)
munb.p <- cbind(eta2theta(eta[, 1], .lmunb.p , .emunb.p ))
size.p <- cbind(eta2theta(eta[, 2], .lsize.p , .esize.p ))
ind.munb.z <- 1:2 # Points to munb.p and size.p only.
munb.a <- munb.i <- munb.d <- munb.p
size.a <- size.i <- size.d <- size.p
if (any(tmp3.TF[c(4, 7, 10)])) { # At least one munb.[aid]
ind.munb.z <- extra$indeta[c(1:2, 4:5, 7:8, 10:11), 'launch']
ind.munb.z <- c(na.omit(ind.munb.z)) # At least one value
munb.a <- if (!tmp3.TF[ 4]) munb.p else
eta2theta(eta[, extra$indeta[ 4, 1]], .lmunb.a , .emunb.a )
munb.i <- if (!tmp3.TF[ 7]) munb.p else
eta2theta(eta[, extra$indeta[ 7, 1]], .lmunb.i , .emunb.i )
munb.d <- if (!tmp3.TF[10]) munb.p else
eta2theta(eta[, extra$indeta[10, 1]], .lmunb.d , .emunb.d )
size.a <- if (!tmp3.TF[ 5]) size.p else
eta2theta(eta[, extra$indeta[ 5, 1]], .lsize.a , .esize.a )
size.i <- if (!tmp3.TF[ 8]) size.p else
eta2theta(eta[, extra$indeta[ 8, 1]], .lsize.i , .esize.i )
size.d <- if (!tmp3.TF[11]) size.p else
eta2theta(eta[, extra$indeta[11, 1]], .lsize.d , .esize.d )
} # la.mix + li.mix + ld.mix > 0
if (lall.len) { # An MLM was fitted
allprobs <-
multilogitlink(eta[, -ind.munb.z, drop = FALSE],
refLevel = "(Last)", # Make sure
inverse = TRUE) # rowSums == 1
if (anyNA(allprobs))
warning("there are NAs here in slot linkinv")
if (min(allprobs) == 0 || max(allprobs) == 1)
warning("fitted probabilities numerically 0 or 1 occurred")
Nextone <- 0 # Might not be used actually; 0, not 1
if (tmp3.TF[ 3])
pobs.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 6])
pstr.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 9])
pdip.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[12]) {
ind8 <- (Nextone + 1):(Nextone + la.mlm)
pobs.mlm <- allprobs[, ind8, drop = FALSE]
dimnames(pobs.mlm) <- list(rownames(eta),
as.character(a.mlm))
Nextone <- Nextone + la.mlm
}
if (tmp3.TF[13]) {
ind9 <- (Nextone + 1):(Nextone + li.mlm)
pstr.mlm <- allprobs[, ind9, drop = FALSE]
dimnames(pstr.mlm) <- list(rownames(eta),
as.character(i.mlm))
Nextone <- Nextone + li.mlm
}
if (tmp3.TF[14]) {
ind10 <- (Nextone + 1):(Nextone + ld.mlm)
pdip.mlm <- allprobs[, ind10, drop = FALSE]
dimnames(pdip.mlm) <- list(rownames(eta),
as.character(d.mlm))
Nextone <- Nextone + ld.mlm # Not needed
}
} # lall.len
scrambleseed <- runif(1) # To scramble the seed
qnorm(runif(length(y),
pgaitdnbinom(y - 1, munb.p = munb.p, size.p = size.p,
a.mix = a.mix, i.mix = i.mix, d.mix = d.mix,
a.mlm = a.mlm, i.mlm = i.mlm, d.mlm = d.mlm,
truncate = truncate,
max.support = as.vector( .max.support ),
munb.a = munb.a, munb.i = munb.i,
munb.d = munb.d,
size.a = size.a, size.i = size.i,
size.d = size.d,
pobs.mix = pobs.mix, pstr.mix = pstr.mix,
pdip.mix = pdip.mix,
pobs.mlm = pobs.mlm, pstr.mlm = pstr.mlm,
pdip.mlm = pdip.mlm),
pgaitdnbinom(y , munb.p = munb.p, size.p = size.p,
a.mix = a.mix, i.mix = i.mix, d.mix = d.mix,
a.mlm = a.mlm, i.mlm = i.mlm, d.mlm = d.mlm,
truncate = truncate,
max.support = as.vector( .max.support ),
munb.a = munb.a, munb.i = munb.i,
munb.d = munb.d,
size.a = size.a, size.i = size.i,
size.d = size.d,
pobs.mix = pobs.mix, pstr.mix = pstr.mix,
pdip.mix = pdip.mix,
pobs.mlm = pobs.mlm, pstr.mlm = pstr.mlm,
pdip.mlm = pdip.mlm)))
}, list(
.lmunb.p = lmunb.p, .emunb.p = emunb.p,
.lmunb.a = lmunb.a, .emunb.a = emunb.a,
.lmunb.i = lmunb.i, .emunb.i = emunb.i,
.lmunb.d = lmunb.d, .emunb.d = emunb.d,
.lsize.p = lsize.p, .esize.p = esize.p,
.lsize.a = lsize.a, .esize.a = esize.a,
.lsize.i = lsize.i, .esize.i = esize.i,
.lsize.d = lsize.d, .esize.d = esize.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.tmp3.TF = tmp3.TF,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support ))),
initialize = eval(substitute(expression({
extra$indeta <- ( .indeta ) # Avoids recomputing it
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
lall.len <- la.mix + li.mix + ld.mix +
la.mlm + li.mlm + ld.mlm
truncate <- as.vector( .truncate )
ltruncat <- length(truncate)
M1 <- max(extra$indeta, na.rm = TRUE)
NOS <- NCOL(y)
M <- NOS * M1
tmp3.TF <- ( .tmp3.TF )
temp5 <-
w.y.check(w = w, y = y,
Is.nonnegative.y = TRUE,
Is.integer.y = TRUE,
ncol.w.max = 1, # Since max.support = 9 is possible
ncol.y.max = 1,
out.wy = TRUE, colsyperw = 1, maximize = TRUE)
w <- temp5$w
y <- temp5$y
glist <- y.gaitcombo.check(y, truncate = truncate,
a.mlm = a.mlm, a.mix = a.mix,
i.mlm = i.mlm, i.mix = i.mix,
d.mlm = d.mlm, d.mix = d.mix,
max.support = .max.support )
extra$skip.mix.a <- glist$skip.mix.a
extra$skip.mix.i <- glist$skip.mix.i
extra$skip.mix.d <- glist$skip.mix.d
extra$skip.mlm.a <- glist$skip.mlm.a
extra$skip.mlm.i <- glist$skip.mlm.i
extra$skip.mlm.d <- glist$skip.mlm.d
extra$NOS <- NOS <- ncoly <- ncol(y) # Number of species
extra$type.fitted <- as.vector( .type.fitted )
extra$mux.init <- as.vector( .mux.init )
extra$colnames.y <- colnames(y)
extra$M1 <- M1
extra$index.M <- iam(NA, NA, M, both = TRUE) # Used in @weight
extra$control.trace <- control$trace # For summary(fit) postfit.
predictors.names <- ( .predictors.names ) # Got it, named
if (!length(etastart)) {
input.size.p <-
init.size.a <- init.size.i <- init.size.d <- 1 # Needed
init.munb.a <- init.munb.i <- init.munb.d <- # Needed
init.munb.p <- if (length( .imunb.p )) ( .imunb.p ) else
Init.mu(y = y, w = w, imethod = .imethod ,
imu = .imunb.p , # x = x,
ishrinkage = .ishrinkage ,
probs.y = .probs.y )
etastart <- matrix(nrow = n, ncol = M,
theta2eta(init.munb.p, .lmunb.p , earg = .emunb.p ))
Mom.nb.init <-
function(y, TFvec = TRUE,
w = rep_len(1, length(y)), mux.arg = 10) {
munb.z.init <- weighted.mean(y[TFvec], w = w[TFvec])
var.y.wted <- cov.wt(cbind(y[TFvec]), w = w[TFvec])$cov
size.z.init <- munb.z.init^2 / (var.y.wted - munb.z.init)
if (!is.Numeric(size.z.init, positive = TRUE))
size.z.init <- mux.arg * munb.z.init
c(munb = munb.z.init, size = size.z.init)
} # Mom.nb.init
mux.more.k <- extra$mux.init[4] # 0.5 and 0.25 seem good.
if (tmp3.TF[ 2]) {
init.size.p <-
if (length( .isize.p )) ( .isize.p ) else {
keep.Mom.p.mix <- Mom.nb.init(y, w = w) # TFvec = is.ns
keep.Mom.p.mix["size"] * mux.more.k
}
etastart[, extra$indeta[ 2, 1]] <-
theta2eta(init.size.p, .lsize.p , earg = .esize.p )
} # tmp3.TF[ 2]
if (tmp3.TF[ 5]) {
init.size.a <-
if (length( .isize.a )) ( .isize.a ) else {
keep.Mom.a.mix <- # Useful later for the mean.
Mom.nb.init(y, rowSums(extra$skip.mix.a) > 0, w = w)
0.5 * (keep.Mom.a.mix["size"] +
keep.Mom.p.mix["size"]) * mux.more.k
}
etastart[, extra$indeta[ 5, 1]] <-
theta2eta(init.size.a, .lsize.a , earg = .esize.a )
} # tmp3.TF[ 5]
if (tmp3.TF[ 8]) {
init.size.i <-
if (length( .isize.i )) ( .isize.i ) else {
keep.Mom.i.mix <- # Useful later for the mean.
Mom.nb.init(y, rowSums(extra$skip.mix.i) > 0, w = w)
0.5 * (keep.Mom.i.mix["size"] +
keep.Mom.p.mix["size"]) * mux.more.k
}
etastart[, extra$indeta[ 8, 1]] <-
theta2eta(init.size.i, .lsize.i , earg = .esize.i )
} # tmp3.TF[ 8]
if (tmp3.TF[11]) {
init.size.d <-
if (length( .isize.d )) ( .isize.d ) else {
keep.Mom.d.mix <- # Useful later for the mean.
Mom.nb.init(y, rowSums(extra$skip.mix.d) > 0, w = w)
0.5 * (keep.Mom.d.mix["size"] +
keep.Mom.p.mix["size"]) * mux.more.k
}
etastart[, extra$indeta[11, 1]] <-
theta2eta(init.size.d, .lsize.d , earg = .esize.d )
} # tmp3.TF[11]
mux.more.a <- extra$mux.init[1] # 0.75 Err to slightly smaller
init.pobs.mix <- numeric(n)
if (tmp3.TF[ 3]) { # la.mix > 0
init.pobs.mix <- if (length( .ipobs.mix )) {
rep_len( .ipobs.mix , n)
} else {
is.a.mix1 <- rowSums(extra$skip.mix.a) > 0
rep_len(mux.more.a * sum(w[is.a.mix1]) / sum(w), n)
}
} # la.mix > 0
if (tmp3.TF[ 4]) { # Assign coln 3; la.mix > 1
init.munb.a <- if (length( .imunb.a ))
rep_len( .imunb.a , n) else {
if ( .eq.ap ) init.munb.p else
rep_len(0.5 * (keep.Mom.a.mix["munb"] +
keep.Mom.p.mix["munb"]), n)
}
etastart[, 3] <-
theta2eta(init.munb.a, .lmunb.a , earg = .emunb.a )
} # tmp3.TF[ 4]
init.pstr.mix <- init.pdip.mix <- numeric(n)
try.gridsearch.pstr.mix <- FALSE
if (tmp3.TF[ 6]) { # li.mix > 0
init.pstr.mix <- if (length( .ipstr.mix )) {
rep_len( .ipstr.mix , n)
} else {
try.gridsearch.pstr.mix <- TRUE
numeric(n) # Overwritten by gridsearch
}
} # li.mix > 0
if (tmp3.TF[ 7]) { # li.mix > 1
init.munb.i <- if (length( .imunb.i ))
rep_len( .imunb.i , n) else {
if ( .eq.ip ) init.munb.p else
rep_len( keep.Mom.i.mix["munb"], n)
}
etastart[, (extra$indeta[ 7, 'launch'])] <-
theta2eta(init.munb.i, .lmunb.i , earg = .emunb.i )
} # li.mix > 1
if (tmp3.TF[12]) { # la.mlm
init.pobs.mlm <- if (length( .ipobs.mlm )) {
matrix( .ipobs.mlm , n, la.mlm, byrow = .byrow.aid )
} else {
mux.more.a <- extra$mux.init[1]
init.pobs.mlm <- colSums(c(w) *
extra$skip.mlm.a) / colSums(w)
init.pobs.mlm <- init.pobs.mlm * as.vector( mux.more.a )
matrix(init.pobs.mlm, n, la.mlm, byrow = TRUE)
}
} else {
init.pobs.mlm <- matrix(0, n, 1)
}
try.gridsearch.pstr.mlm <- FALSE
if (tmp3.TF[13]) { # li.mlm
try.gridsearch.pstr.mlm <- !(length( .ipstr.mlm ))
init.pstr.mlm <- 0 # Might be overwritten by gridsearch
if (length( .ipstr.mlm ))
init.pstr.mlm <- as.vector( .ipstr.mlm )
init.pstr.mlm <- matrix(init.pstr.mlm, n, li.mlm,
byrow = .byrow.aid )
} else {
init.pstr.mlm <- matrix(0, n, 1)
}
init.pdip.mlm <- matrix(0, n, 2) # rowSums() needs > 1 colns.
gaitNBD.Loglikfun1.mix <-
function(pstr.mix.val, y, x, w, extraargs) {
sum(c(w) *
dgaitdnbinom(y, pstr.mix = pstr.mix.val,
pstr.mlm = extraargs$pstr.mlm, # Differs here
munb.p = extraargs$munb.p,
munb.a = extraargs$munb.a,
munb.i = extraargs$munb.i,
munb.d = extraargs$munb.d,
size.p = extraargs$size.p,
size.a = extraargs$size.a,
size.i = extraargs$size.i,
size.d = extraargs$size.d,
a.mix = extraargs$a.mix,
a.mlm = extraargs$a.mlm,
i.mix = extraargs$i.mix,
i.mlm = extraargs$i.mlm,
d.mix = extraargs$d.mix,
d.mlm = extraargs$d.mlm,
max.support = extraargs$max.support,
truncate = extraargs$truncate,
pobs.mix = extraargs$pobs.mix,
pobs.mlm = extraargs$pobs.mlm,
pdip.mix = extraargs$pdip.mix,
pdip.mlm = extraargs$pdip.mlm, log = TRUE))
}
gaitNBD.Loglikfun1.mlm <-
function(pstr.mlm.val, y, x, w, extraargs) {
sum(c(w) *
dgaitdnbinom(y, pstr.mlm = pstr.mlm.val,
pstr.mix = extraargs$pstr.mix, # Differs here
munb.p = extraargs$munb.p,
munb.a = extraargs$munb.a,
munb.i = extraargs$munb.i,
munb.d = extraargs$munb.d,
size.p = extraargs$size.p,
size.a = extraargs$size.a,
size.i = extraargs$size.i,
size.d = extraargs$size.d,
a.mix = extraargs$a.mix,
a.mlm = extraargs$a.mlm,
i.mix = extraargs$i.mix,
i.mlm = extraargs$i.mlm,
d.mix = extraargs$d.mix,
d.mlm = extraargs$d.mlm,
max.support = extraargs$max.support,
truncate = extraargs$truncate,
pobs.mix = extraargs$pobs.mix,
pobs.mlm = extraargs$pobs.mlm,
pdip.mix = extraargs$pdip.mix,
pdip.mlm = extraargs$pdip.mlm, log = TRUE))
}
gaitNBD.Loglikfun2 <-
function(pstr.mix.val, pstr.mlm.val, y, x, w, extraargs) {
sum(c(w) *
dgaitdnbinom(y, pstr.mix = pstr.mix.val,
pstr.mlm = pstr.mlm.val,
munb.p = extraargs$munb.p,
munb.a = extraargs$munb.a,
munb.i = extraargs$munb.i,
munb.d = extraargs$munb.d,
size.p = extraargs$size.p,
size.a = extraargs$size.a,
size.i = extraargs$size.i,
size.d = extraargs$size.d,
a.mix = extraargs$a.mix,
a.mlm = extraargs$a.mlm,
i.mix = extraargs$i.mix,
i.mlm = extraargs$i.mlm,
d.mix = extraargs$d.mix,
d.mlm = extraargs$d.mlm,
max.support = extraargs$max.support,
truncate = extraargs$truncate,
pobs.mix = extraargs$pobs.mix,
pobs.mlm = extraargs$pobs.mlm,
pdip.mix = extraargs$pdip.mix,
pdip.mlm = extraargs$pdip.mlm, log = TRUE))
}
if (li.mix + li.mlm) {
extraargs <- list(
munb.p = init.munb.p,
munb.a = init.munb.a,
munb.i = init.munb.i,
munb.d = init.munb.d,
size.p = init.size.p, # .isize.p ,
size.a = init.size.a, # .isize.a ,
size.i = init.size.i, # .isize.i ,
size.d = init.size.d, # .isize.d ,
a.mix = a.mix,
a.mlm = a.mlm,
i.mix = i.mix,
i.mlm = i.mlm,
d.mix = d.mix,
d.mlm = d.mlm,
truncate = truncate,
max.support = as.vector( .max.support ),
pobs.mix = init.pobs.mix ,
pobs.mlm = init.pobs.mlm ,
pdip.mix = init.pdip.mix ,
pdip.mlm = init.pdip.mlm )
pre.warn <- options()$warn
options(warn = -1) # Ignore warnings during gridsearch
try.this <-
if (try.gridsearch.pstr.mix && try.gridsearch.pstr.mlm) {
grid.search2( .gpstr.mix , .gpstr.mlm ,
objfun = gaitNBD.Loglikfun2,
y = y, w = w, extraargs = extraargs,
ret.objfun = TRUE)
} else if (try.gridsearch.pstr.mix) {
extraargs$pstr.mlm <- init.pstr.mlm
grid.search ( .gpstr.mix ,
objfun = gaitNBD.Loglikfun1.mix,
y = y, w = w, extraargs = extraargs,
ret.objfun = TRUE)
} else if (try.gridsearch.pstr.mlm) {
extraargs$pstr.mix <- init.pstr.mix
grid.search ( .gpstr.mlm ,
objfun = gaitNBD.Loglikfun1.mlm,
y = y, w = w, extraargs = extraargs,
ret.objfun = TRUE)
}
options(warn = pre.warn) # Restore warnings
if (any(is.na(try.this)))
warning("gridsearch returned NAs. It's going to crash.",
immediate. = TRUE)
if (try.gridsearch.pstr.mix && try.gridsearch.pstr.mlm) {
init.pstr.mix <- rep_len(try.this["Value1"], n)
init.pstr.mlm <- matrix(try.this["Value2"], n, li.mlm)
if (any(is.na(try.this)))
stop("Crashing. ",
"Try something like 'gpstr.mix = seq(5) / 100'",
" and/or 'gpstr.mlm = seq(5) / 100'.")
} else if (try.gridsearch.pstr.mix) {
init.pstr.mix <- rep_len(try.this["Value"], n)
if (any(is.na(try.this)))
stop("Crashing. ",
"Try something like 'gpstr.mix = seq(5) / 100'.")
} else if (try.gridsearch.pstr.mlm) {
init.pstr.mlm <- matrix(try.this["Value"], n, li.mlm)
if (any(is.na(try.this)))
stop("Crashing. ",
"Try something like 'gpstr.mlm = seq(5) / 100'.")
}
} # la.mix + lnf.mix
mux.more.d <- extra$mux.init[3]
if (ld.mix) {
init.pdip.mix <- if (length( .ipdip.mix ))
rep_len( .ipdip.mix, n) else {
is.d.mix1 <- rowSums(extra$skip.mix.d) > 0
rep(mux.more.d * sum(w[is.d.mix1]) / sum(w), n)
}
} # ld.mix
if (ld.mlm) {
init.pdip.mlm <- if (length( .ipdip.mlm ))
matrix( .ipdip.mlm, n, ld.mlm, byrow = TRUE) else {
is.d.mlm1 <- rowSums(extra$skip.mlm.d) > 0
matrix(mux.more.d * (sum(w[is.d.mlm1]) / sum(w)) / ld.mlm,
n, ld.mlm)
}
} # ld.mlm
while (any((vecTF <- init.pobs.mix + init.pstr.mix + # -
init.pdip.mix +
rowSums(init.pobs.mlm) +
rowSums(init.pstr.mlm) + # -
rowSums(init.pdip.mlm) > 0.96875))) {
init.pobs.mix[vecTF] <- 0.875 * init.pobs.mix[vecTF]
init.pstr.mix[vecTF] <- 0.875 * init.pstr.mix[vecTF]
init.pdip.mix[vecTF] <- 0.875 * init.pdip.mix[vecTF]
init.pobs.mlm[vecTF, ] <- 0.875 * init.pobs.mlm[vecTF, ]
init.pstr.mlm[vecTF, ] <- 0.875 * init.pstr.mlm[vecTF, ]
init.pdip.mlm[vecTF, ] <- 0.875 * init.pdip.mlm[vecTF, ]
} # while
Numer.init1 <- 1 - rowSums(init.pobs.mlm) -
rowSums(init.pstr.mlm) - # +
rowSums(init.pdip.mlm) -
init.pobs.mix - init.pstr.mix - # +
init.pdip.mix # Differs from 'Numer'.
if (FALSE)
Numer.init2 <- 1 - rowSums(init.pobs.mlm) -
rowSums(init.pstr.mlm) +
rowSums(init.pdip.mlm) -
init.pobs.mix - init.pstr.mix +
init.pdip.mix # Same as 'Numer'.
etastart.z <- if (lall.len == 0) NULL else {
tmp.mat <- cbind(if (tmp3.TF[ 3]) init.pobs.mix else NULL,
if (tmp3.TF[ 6]) init.pstr.mix else NULL,
if (tmp3.TF[ 9]) init.pdip.mix else NULL,
if (tmp3.TF[12]) init.pobs.mlm else NULL,
if (tmp3.TF[13]) init.pstr.mlm else NULL,
if (tmp3.TF[14]) init.pdip.mlm else NULL,
Numer.init1) # Numer.init1 # Numer.init2
multilogitlink(tmp.mat)
} # etastart.z
if (!is.matrix(etastart.z)) etastart.z <- cbind(etastart.z)
nextone <- 1 # Might not be used actually
if (tmp3.TF[ 3]) {
etastart[, 3] <- etastart.z[, nextone]
nextone <- nextone + 1
}
if (tmp3.TF[ 6]) { # Coln 3 or 6
etastart[, (extra$indeta[ 6, 1])] <-
etastart.z[, nextone]
nextone <- nextone + 1
}
if (tmp3.TF[ 9]) { # Coln 3 or 6 or 9
etastart[, (extra$indeta[ 9, 1])] <-
etastart.z[, nextone]
nextone <- nextone + 1
}
if (tmp3.TF[12]) {
ind8 <- (extra$indeta[12, 1]):(extra$indeta[12, 2])
etastart[, ind8] <- etastart.z[, nextone:(nextone +
la.mlm - 1)]
nextone <- nextone + la.mlm
}
if (tmp3.TF[13]) {
ind9 <- (extra$indeta[13, 1]):(extra$indeta[13, 2])
etastart[, ind9] <- etastart.z[, nextone:(nextone +
li.mlm - 1)]
nextone <- nextone + li.mlm
}
if (tmp3.TF[14]) {
ind0 <- (extra$indeta[14, 1]):(extra$indeta[14, 2])
etastart[, ind0] <- etastart.z[, nextone:(nextone +
ld.mlm - 1)]
if (ncol(etastart.z) != nextone + ld.mlm - 1)
stop("miscalculation")
}
}
}), list(
.lmunb.p = lmunb.p, .emunb.p = emunb.p,
.lmunb.a = lmunb.a, .emunb.a = emunb.a,
.lmunb.i = lmunb.i, .emunb.i = emunb.i,
.lmunb.d = lmunb.d, .emunb.d = emunb.d,
.lsize.p = lsize.p, .esize.p = esize.p,
.lsize.a = lsize.a, .esize.a = esize.a,
.lsize.i = lsize.i, .esize.i = esize.i,
.lsize.d = lsize.d, .esize.d = esize.d,
.imunb.p = imunb.p, .isize.p = isize.p,
.imunb.a = imunb.a, .isize.a = isize.a,
.imunb.i = imunb.i, .isize.i = isize.i,
.imunb.d = imunb.d, .isize.d = isize.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.lpdip.mix = lpdip.mix,
.epdip.mix = epdip.mix,
.ipstr.mix = ipstr.mix, .ipobs.mix = ipobs.mix,
.ipstr.mlm = ipstr.mlm, .ipobs.mlm = ipobs.mlm,
.ipdip.mix = ipdip.mix,
.ipdip.mlm = ipdip.mlm,
.byrow.aid = byrow.aid,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support,
.tmp3.TF = tmp3.TF, # .tmp3 = tmp3,
.predictors.names = predictors.names,
.mux.init = mux.init,
.gpstr.mix = gpstr.mix, # .gpdip.mix = gpdip.mix,
.gpstr.mlm = gpstr.mlm, # .gpdip.mlm = gpdip.mlm,
.ishrinkage = ishrinkage, .probs.y = probs.y,
.indeta = indeta,
.eq.ap = eq.ap, .eq.ip = eq.ip, .eq.dp = eq.dp,
.imethod = imethod, .type.fitted = type.fitted ))),
linkinv = eval(substitute(function(eta, extra = NULL) {
n.obs <- NROW(eta)
type.fitted <-
if (length(extra$type.fitted)) extra$type.fitted else {
warning("cannot find 'type.fitted'. Returning the 'mean'.")
"mean"
}
type.fitted <-
match.arg(type.fitted[1],
c("mean", "munbs", "sizes",
"pobs.mlm", "pstr.mlm", "pdip.mlm",
"pobs.mix", "pstr.mix", "pdip.mix",
"Pobs.mix", "Pstr.mix", "Pdip.mix",
"nonspecial", "Numer", "Denom.p",
"sum.mlm.i", "sum.mix.i",
"sum.mlm.d", "sum.mix.d",
"ptrunc.p", "cdf.max.s"))[1]
if (!is.matrix(eta)) eta <- as.matrix(eta)
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
truncate <- as.vector( .truncate )
max.support <- as.vector( .max.support )
morework <- type.fitted != "mean" # For efficiency
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
pobs.mix <- pstr.mix <- pdip.mix <- 0 # 4 rowSums()
pobs.mlm <- pstr.mlm <- pdip.mlm <- 0 # matrix(0, NROW(eta), 1)
munb.p <- cbind(eta2theta(eta[, 1], .lmunb.p , .emunb.p ))
size.p <- cbind(eta2theta(eta[, 2], .lsize.p , .esize.p ))
ind.munb.z <- 1:2 # Points to munb.p and size.p only.
munb.a <- munb.i <- munb.d <-
munb.p # Needed; answer not corrupted
size.a <- size.i <- size.d <- size.p
tmp3.TF <- ( .tmp3.TF ) # Logical of length 14.
if (any(tmp3.TF[c(4, 7, 10)])) { # At least one munb.[aid]
ind.munb.z <- extra$indeta[c(1:2, 4:5, 7:8, 10:11), 'launch']
ind.munb.z <- c(na.omit(ind.munb.z)) # At least one value
munb.a <- if (!tmp3.TF[ 4]) munb.p else
eta2theta(eta[, extra$indeta[ 4, 1]], .lmunb.a , .emunb.a )
munb.i <- if (!tmp3.TF[ 7]) munb.p else
eta2theta(eta[, extra$indeta[ 7, 1]], .lmunb.i , .emunb.i )
munb.d <- if (!tmp3.TF[10]) munb.p else
eta2theta(eta[, extra$indeta[10, 1]], .lmunb.d , .emunb.d )
size.a <- if (!tmp3.TF[ 5]) size.p else
eta2theta(eta[, extra$indeta[ 5, 1]], .lsize.a , .esize.a )
size.i <- if (!tmp3.TF[ 8]) size.p else
eta2theta(eta[, extra$indeta[ 8, 1]], .lsize.i , .esize.i )
size.d <- if (!tmp3.TF[11]) size.p else
eta2theta(eta[, extra$indeta[11, 1]], .lsize.d , .esize.d )
} # la.mix + li.mix + ld.mix > 0
if (lall.len) { # An MLM was fitted
allprobs <-
multilogitlink(eta[, -ind.munb.z, drop = FALSE],
inverse = TRUE) # rowSums == 1
if (anyNA(allprobs))
warning("there are NAs here in slot linkinv")
if (min(allprobs) == 0 || max(allprobs) == 1)
warning("fitted probabilities numerically 0 or 1 occurred")
Nextone <- 0 # Might not be used actually
if (tmp3.TF[ 3])
pobs.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 6])
pstr.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 9])
pdip.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[12]) {
ind8 <- (Nextone + 1):(Nextone + la.mlm)
pobs.mlm <- allprobs[, ind8, drop = FALSE]
dimnames(pobs.mlm) <- list(rownames(eta),
as.character(a.mlm))
Nextone <- Nextone + la.mlm
}
if (tmp3.TF[13]) {
ind9 <- (Nextone + 1):(Nextone + li.mlm)
pstr.mlm <- allprobs[, ind9, drop = FALSE]
dimnames(pstr.mlm) <- list(rownames(eta),
as.character(i.mlm))
Nextone <- Nextone + li.mlm
}
if (tmp3.TF[14]) {
ind10 <- (Nextone + 1):(Nextone + ld.mlm)
pdip.mlm <- allprobs[, ind10, drop = FALSE]
dimnames(pdip.mlm) <- list(rownames(eta),
as.character(d.mlm))
Nextone <- Nextone + ld.mlm # Not needed
}
} # lall.len
M1 <- max(extra$indeta, na.rm = TRUE)
NOS <- NCOL(eta) / M1
Bits <- moments.gaitdcombo.nbinom(
munb.p = munb.p, size.p = size.p,
pobs.mix = pobs.mix, pobs.mlm = pobs.mlm,
pstr.mix = pstr.mix, pstr.mlm = pstr.mlm,
pdip.mix = pdip.mix, pdip.mlm = pdip.mlm,
a.mix = a.mix, i.mix = i.mix, d.mix = d.mix,
a.mlm = a.mlm, i.mlm = i.mlm, d.mlm = d.mlm,
munb.a = munb.a, munb.i = munb.i, munb.d = munb.d,
size.a = size.a, size.i = size.i, size.d = size.d,
truncate = truncate, max.support = max.support)
if (morework) {
Denom.p <- c(Bits[["cdf.max.s"]] - Bits[["SumT0.p"]] -
Bits[["SumA0.mix.p"]] - Bits[["SumA0.mlm.p"]])
if (any(Denom.p == 0)) {
smallval <- min(Denom.p[Denom.p > 0])
Denom.p[Denom.p == 0] <- 1e-09 # smallval
warning("0s found in variable 'Denom.p'. Trying to fix it.")
}
Numer <- c(1 - pobs.mix - pstr.mix + pdip.mix -
(if (la.mlm) rowSums(pobs.mlm) else 0) -
(if (li.mlm) rowSums(pstr.mlm) else 0) +
(if (ld.mlm) rowSums(pdip.mlm) else 0))
probns <- Numer * (1 -
(c(Bits[["SumI0.mix.p"]] + Bits[["SumI0.mlm.p"]]) +
c(Bits[["SumD0.mix.p"]] + Bits[["SumD0.mlm.p"]])) / Denom.p)
} # morework
if (!la.mlm && type.fitted %in% c("pobs.mlm")) {
warning("No altered MLM values; returning an NA")
return(NA)
}
if (!li.mlm && type.fitted %in% c("sum.mlm.i", "pstr.mlm")) {
warning("No inflated MLM values; returning an NA")
return(NA)
}
if (!ld.mlm && type.fitted %in% c("sum.mlm.d", "pdip.mlm")) {
warning("No deflated MLM values; returning an NA")
return(NA)
}
if (!la.mix && type.fitted %in% c("Pobs.mix")) {
warning("No altered mixture values; returning an NA")
return(NA)
}
if (!li.mix && type.fitted %in% c("sum.mix.i", "Pstr.mix")) {
warning("No inflated mixture values; returning an NA")
return(NA)
}
if (!ld.mix && type.fitted %in% c("sum.mix.d", "Pdip.mix")) {
warning("No deflated mixture values; returning an NA")
return(NA)
}
if (la.mix && morework) {
tmp13 <- # dnbinom() does not retain the matrix format??
dnbinom(x = matrix(a.mix, n.obs, la.mix, byrow = TRUE),
size = matrix(size.a, n.obs, la.mix),
mu = matrix(munb.a, n.obs, la.mix)) / (
c(Bits[["SumA0.mix.a"]]))
dim(tmp13) <- c(n.obs, la.mix)
dimnames(tmp13) <- list(rownames(eta), as.character(a.mix))
propn.mat.a <- tmp13
} # la.mix
if (li.mix && morework) {
tmp55 <- # dnbinom() does not retain the matrix format??
dnbinom(x = matrix(i.mix, n.obs, li.mix, byrow = TRUE),
size = matrix(size.i, n.obs, li.mix),
mu = matrix(munb.i, n.obs, li.mix)) / (
c(Bits[["SumI0.mix.i"]]))
dim(tmp55) <- c(n.obs, li.mix)
dimnames(tmp55) <- list(rownames(eta), as.character(i.mix))
propn.mat.i <- tmp55 # Correct dimension
} # li.mix
if (ld.mix && morework) {
tmp55 <- # dpois() does not retain the matrix format
dnbinom(x = matrix(d.mix, n.obs, ld.mix, byrow = TRUE),
size = matrix(size.d, n.obs, ld.mix),
mu = matrix(munb.d, n.obs, ld.mix)) / (
c(Bits[["SumD0.mix.d"]]))
dim(tmp55) <- c(n.obs, ld.mix)
dimnames(tmp55) <- list(rownames(eta), as.character(d.mix))
propn.mat.d <- tmp55 # Correct dimension
} # ld.mix
ans <- switch(type.fitted,
"mean" = Bits[["mean"]], # Unconditional mean
"munbs" = cbind(munb.p,
if (tmp3.TF[ 4]) munb.a else NULL,
if (tmp3.TF[ 7]) munb.i else NULL,
if (tmp3.TF[10]) munb.d else NULL),
"sizes" = cbind(size.p,
if (tmp3.TF[ 4]) size.a else NULL,
if (tmp3.TF[ 7]) size.i else NULL,
if (tmp3.TF[10]) size.d else NULL),
"pobs.mlm" = pobs.mlm, # aka omegamat, n x la.mlm
"pstr.mlm" = pstr.mlm, # aka phimat, n x li.mlm
"pdip.mlm" = pdip.mlm, # aka psimat, n x ld.mlm
"pobs.mix" = pobs.mix, # n-vector
"pstr.mix" = pstr.mix, # n-vector
"pdip.mix" = pdip.mix, # n-vector
"Pobs.mix" = c(pobs.mix) * propn.mat.a, # matrix
"Pstr.mix" = c(pstr.mix) * propn.mat.i,
"Pdip.mix" = c(pdip.mix) * propn.mat.d,
"nonspecial" = probns,
"Numer" = Numer,
"Denom.p" = Denom.p,
"sum.mlm.i" = pstr.mlm + Numer *
dnbinom(x = matrix(i.mlm, n.obs, li.mlm, byrow = TRUE),
size = matrix(size.p, n.obs, li.mlm),
mu = matrix(munb.p, n.obs, li.mlm)) / Denom.p,
"sum.mlm.d" = -pdip.mlm + Numer *
dnbinom(x = matrix(d.mlm, n.obs, ld.mlm, byrow = TRUE),
size = matrix(size.p, n.obs, ld.mlm),
mu = matrix(munb.p, n.obs, ld.mlm)) / Denom.p,
"sum.mix.i" = c(pstr.mix) * propn.mat.i + Numer *
dnbinom(x = matrix(i.mix, n.obs, li.mix, byrow = TRUE),
size = matrix(size.p, n.obs, li.mix),
mu = matrix(munb.p, n.obs, li.mix)) / Denom.p,
"sum.mix.d" = -c(pdip.mix) * propn.mat.d + Numer *
dnbinom(x = matrix(d.mix, n.obs, ld.mix, byrow = TRUE),
size = matrix(size.p, n.obs, ld.mix),
mu = matrix(munb.p, n.obs, ld.mix)) / Denom.p,
"ptrunc.p" = Bits[["SumT0.p"]] + 1 - Bits[["cdf.max.s"]],
"cdf.max.s" = Bits[["cdf.max.s"]]) # Pr(y <= max.support)
ynames.pobs.mlm <- as.character(a.mlm) # Works with NULLs
ynames.pstr.mlm <- as.character(i.mlm) # Works with NULLs
ynames.pdip.mlm <- as.character(d.mlm) # Works with NULLs
if (length(ans))
label.cols.y(ans, NOS = NOS, colnames.y =
switch(type.fitted,
"munbs" = c("munb.p", "munb.a", # Some colns NA
"munb.i", "munb.d")[(tmp3.TF[c(1, 4, 7, 10)])],
"sizes" = c("size.p", "size.a", # Some colns NA
"size.i", "size.d")[(tmp3.TF[c(1, 4, 7, 10)])],
"Pobs.mix" = as.character(a.mix),
"sum.mix.i" = , #
"Pstr.mix" = as.character(i.mix),
"sum.mix.d" = , #
"Pdip.mix" = as.character(d.mix),
"pobs.mlm" = ynames.pobs.mlm,
"sum.mlm.i" = , #
"pstr.mlm" = ynames.pstr.mlm,
"sum.mlm.d" = , #
"pdip.mlm" = ynames.pdip.mlm,
extra$colnames.y)) else ans
}, list(
.lmunb.p = lmunb.p, .emunb.p = emunb.p,
.lmunb.a = lmunb.a, .emunb.a = emunb.a,
.lmunb.i = lmunb.i, .emunb.i = emunb.i,
.lmunb.d = lmunb.d, .emunb.d = emunb.d,
.lsize.p = lsize.p, .esize.p = esize.p,
.lsize.a = lsize.a, .esize.a = esize.a,
.lsize.i = lsize.i, .esize.i = esize.i,
.lsize.d = lsize.d, .esize.d = esize.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.tmp3.TF = tmp3.TF,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support ))),
last = eval(substitute(expression({
pred.names <- c( .predictors.names ) # Save it
link.names <- as.vector( .predictors.names )
parameter.names <- names(pred.names)
predictors.names <- NULL
for (jay in seq(M))
predictors.names <- c(predictors.names,
namesof(parameter.names[jay], link.names[jay], tag = FALSE,
earg = list())) # This isnt perfect; info is lost
misc$predictors.names <- predictors.names # Useful for coef()
misc$link <- link.names #
names(misc$link) <- parameter.names #
misc$earg <- vector("list", M1)
names(misc$earg) <- names(misc$link)
misc$earg[[1]] <- ( .emunb.p ) # 1st 1 always there
misc$earg[[2]] <- ( .esize.p ) # 2nd 1 always there
iptr <- 1
if (tmp3.TF[ 3])
misc$earg[[(iptr <- iptr + 1)]] <- list() # multilogitlink
if (tmp3.TF[ 4])
misc$earg[[(iptr <- iptr + 1)]] <- ( .emunb.a )
if (tmp3.TF[ 6])
misc$earg[[(iptr <- iptr + 1)]] <- list() # See below
if (tmp3.TF[ 7])
misc$earg[[(iptr <- iptr + 1)]] <- ( .emunb.i )
if (tmp3.TF[ 9])
misc$earg[[(iptr <- iptr + 1)]] <- list() # See below
if (tmp3.TF[10])
misc$earg[[(iptr <- iptr + 1)]] <- ( .emunb.d )
if (tmp3.TF[12]) { # la.mlm
for (ii in seq(la.mlm)) {
misc$earg[[(iptr <- iptr + 1)]] <- list()
} # ii
} # la.mlm
if (tmp3.TF[13]) { # li.mlm
for (ii in seq(li.mlm)) {
misc$earg[[(iptr <- iptr + 1)]] <- list()
} # ii
} # li.mlm
if (tmp3.TF[14]) { # ld.mlm
for (ii in seq(ld.mlm)) {
misc$earg[[(iptr <- iptr + 1)]] <- list()
} # ii
} # ld.mlm
}), list(
.lmunb.p = lmunb.p, .emunb.p = emunb.p,
.lmunb.a = lmunb.a, .emunb.a = emunb.a,
.lmunb.i = lmunb.i, .emunb.i = emunb.i,
.lmunb.d = lmunb.d, .emunb.d = emunb.d,
.lsize.p = lsize.p, .esize.p = esize.p,
.lsize.a = lsize.a, .esize.a = esize.a,
.lsize.i = lsize.i, .esize.i = esize.i,
.lsize.d = lsize.d, .esize.d = esize.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.predictors.names = predictors.names,
.tmp3.TF = tmp3.TF, # .tmp3 = tmp3,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support ))),
loglikelihood = eval(substitute(
function(mu, y, w, residuals = FALSE, eta,
extra = NULL, summation = TRUE) {
if (!is.matrix(eta)) eta <- as.matrix(eta)
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
truncate <- as.vector( .truncate )
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
pobs.mix <- pstr.mix <- pdip.mix <- 0 # 4 rowSums()
pobs.mlm <- pstr.mlm <- pdip.mlm <- 0 # matrix(0, NROW(eta), 1)
munb.p <- cbind(eta2theta(eta[, 1], .lmunb.p , .emunb.p ))
size.p <- cbind(eta2theta(eta[, 2], .lsize.p , .esize.p ))
ind.munb.z <- 1:2 # Points to munb.p and size.p only.
munb.a <- munb.i <- munb.d <- munb.p
size.a <- size.i <- size.d <- size.p
if (any(tmp3.TF[c(4, 7, 10)])) { # At least one munb.[aid]
ind.munb.z <- extra$indeta[c(1:2, 4:5, 7:8, 10:11), 'launch']
ind.munb.z <- c(na.omit(ind.munb.z)) # At least one value
munb.a <- if (!tmp3.TF[ 4]) munb.p else
eta2theta(eta[, extra$indeta[ 4, 1]], .lmunb.a , .emunb.a )
munb.i <- if (!tmp3.TF[ 7]) munb.p else
eta2theta(eta[, extra$indeta[ 7, 1]], .lmunb.i , .emunb.i )
munb.d <- if (!tmp3.TF[10]) munb.p else
eta2theta(eta[, extra$indeta[10, 1]], .lmunb.d , .emunb.d )
size.a <- if (!tmp3.TF[ 5]) size.p else
eta2theta(eta[, extra$indeta[ 5, 1]], .lsize.a , .esize.a )
size.i <- if (!tmp3.TF[ 8]) size.p else
eta2theta(eta[, extra$indeta[ 8, 1]], .lsize.i , .esize.i )
size.d <- if (!tmp3.TF[11]) size.p else
eta2theta(eta[, extra$indeta[11, 1]], .lsize.d , .esize.d )
} # la.mix + li.mix + ld.mix > 0
if (lall.len) { # An MLM was fitted
allprobs <-
multilogitlink(eta[, -ind.munb.z, drop = FALSE],
refLevel = "(Last)", # Make sure
inverse = TRUE) # rowSums == 1
if (anyNA(allprobs))
warning("there are NAs here in slot linkinv")
if (min(allprobs) == 0 || max(allprobs) == 1)
warning("fitted probabilities numerically 0 or 1 occurred")
Nextone <- 0 # Might not be used actually; 0, not 1
if (tmp3.TF[ 3])
pobs.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 6])
pstr.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 9])
pdip.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[12]) {
ind8 <- (Nextone + 1):(Nextone + la.mlm)
pobs.mlm <- allprobs[, ind8, drop = FALSE]
dimnames(pobs.mlm) <- list(rownames(eta),
as.character(a.mlm))
Nextone <- Nextone + la.mlm
}
if (tmp3.TF[13]) {
ind9 <- (Nextone + 1):(Nextone + li.mlm)
pstr.mlm <- allprobs[, ind9, drop = FALSE]
dimnames(pstr.mlm) <- list(rownames(eta),
as.character(i.mlm))
Nextone <- Nextone + li.mlm
}
if (tmp3.TF[14]) {
ind10 <- (Nextone + 1):(Nextone + ld.mlm)
pdip.mlm <- allprobs[, ind10, drop = FALSE]
dimnames(pdip.mlm) <- list(rownames(eta),
as.character(d.mlm))
Nextone <- Nextone + ld.mlm # Not needed
}
} # lall.len
if (residuals) {
stop("loglikelihood residuals not implemented yet")
} else {
ll.elts <- c(w) *
dgaitdnbinom(y, munb.p = munb.p, size.p = size.p,
log = TRUE, # byrow.aid = F,
a.mix = a.mix, i.mix = i.mix, d.mix = d.mix,
a.mlm = a.mlm, i.mlm = i.mlm, d.mlm = d.mlm,
truncate = truncate,
max.support = as.vector( .max.support ),
munb.a = munb.a, munb.i = munb.i,
munb.d = munb.d,
size.a = size.a, size.i = size.i,
size.d = size.d,
pobs.mix = pobs.mix, pstr.mix = pstr.mix,
pdip.mix = pdip.mix,
pobs.mlm = pobs.mlm, pstr.mlm = pstr.mlm,
pdip.mlm = pdip.mlm)
if (summation) {
sum(ll.elts)
} else {
ll.elts
}
}
}, list(
.lmunb.p = lmunb.p, .emunb.p = emunb.p,
.lmunb.a = lmunb.a, .emunb.a = emunb.a,
.lmunb.i = lmunb.i, .emunb.i = emunb.i,
.lmunb.d = lmunb.d, .emunb.d = emunb.d,
.lsize.p = lsize.p, .esize.p = esize.p,
.lsize.a = lsize.a, .esize.a = esize.a,
.lsize.i = lsize.i, .esize.i = esize.i,
.lsize.d = lsize.d, .esize.d = esize.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support ))),
vfamily = c("gaitdnbinomial"),
validparams = eval(substitute(function(eta, y, extra = NULL) {
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
small. <- 1e-14
pobs.mix <- pstr.mix <- pdip.mix <- small. # 4 rowSums():
pobs.mlm <- pstr.mlm <- pdip.mlm <- matrix(small., NROW(eta), 1)
munb.a <- munb.i <- munb.d <- 1 # Needed
if (!is.matrix(eta)) eta <- as.matrix(eta)
munb.p <- cbind(eta2theta(eta[, 1], .lmunb.p , .emunb.p ))
size.p <- cbind(eta2theta(eta[, 2], .lsize.p , .esize.p ))
ind.munb.z <- 1:2 # Points to munb.p and size.p only.
if (any(tmp3.TF[c(4, 7, 10)])) { # At least one munb.[aid]
ind.munb.z <- extra$indeta[c(1:2, 4:5, 7:8, 10:11), 'launch']
ind.munb.z <- c(na.omit(ind.munb.z)) # At least one value
munb.a <- if (!tmp3.TF[ 4]) munb.p else
eta2theta(eta[, extra$indeta[ 4, 1]], .lmunb.a , .emunb.a )
munb.i <- if (!tmp3.TF[ 7]) munb.p else
eta2theta(eta[, extra$indeta[ 7, 1]], .lmunb.i , .emunb.i )
munb.d <- if (!tmp3.TF[10]) munb.p else
eta2theta(eta[, extra$indeta[10, 1]], .lmunb.d , .emunb.d )
size.a <- if (!tmp3.TF[ 5]) size.p else
eta2theta(eta[, extra$indeta[ 5, 1]], .lsize.a , .esize.a )
size.i <- if (!tmp3.TF[ 8]) size.p else
eta2theta(eta[, extra$indeta[ 8, 1]], .lsize.i , .esize.i )
size.d <- if (!tmp3.TF[11]) size.p else
eta2theta(eta[, extra$indeta[11, 1]], .lsize.d , .esize.d )
} # la.mix + li.mix + ld.mix > 0
if (lall.len) { # A MLM was fitted
allprobs <-
multilogitlink(eta[, -ind.munb.z, drop = FALSE],
inverse = TRUE) # rowSums == 1
Nextone <- 0 # Might not be used actually; 0, not 1
if (tmp3.TF[ 3])
pobs.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 6])
pstr.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 9])
pdip.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[12]) {
ind8 <- (Nextone + 1):(Nextone + la.mlm)
pobs.mlm <- allprobs[, ind8, drop = FALSE]
dimnames(pobs.mlm) <- list(rownames(eta),
as.character(a.mlm))
Nextone <- Nextone + la.mlm
}
if (tmp3.TF[13]) {
ind9 <- (Nextone + 1):(Nextone + li.mlm)
pstr.mlm <- allprobs[, ind9, drop = FALSE]
dimnames(pstr.mlm) <- list(rownames(eta),
as.character(i.mlm))
Nextone <- Nextone + li.mlm
}
if (tmp3.TF[14]) {
ind10 <- (Nextone + 1):(Nextone + ld.mlm)
pdip.mlm <- allprobs[, ind10, drop = FALSE]
dimnames(pdip.mlm) <- list(rownames(eta),
as.character(d.mlm))
Nextone <- Nextone + ld.mlm # Not needed
}
} # lall.len
okay.mlm <-
all(is.finite(pobs.mlm)) && all(0 < pobs.mlm) &&
all(is.finite(pstr.mlm)) && all(0 < pstr.mlm) &&
all(is.finite(pdip.mlm)) && all(0 < pdip.mlm)
okay.mix <-
all(is.finite(munb.p)) && all(0 < munb.p) &&
all(munb.p < .max.support ) &&
all(is.finite(munb.a)) && all(0 < munb.a) &&
all(is.finite(munb.i)) && all(0 < munb.i) &&
all(is.finite(munb.d)) && all(0 < munb.d) &&
all(is.finite(pobs.mix)) && all(0 < pobs.mix) &&
all(is.finite(pstr.mix)) && all(0 < pstr.mix) &&
all(is.finite(pdip.mix)) && all(0 < pdip.mix) &&
all(pobs.mix + pstr.mix + pdip.mix +
rowSums(pobs.mlm) + rowSums(pstr.mlm) +
rowSums(pdip.mlm) < 1) # Combined
okay.mlm && okay.mix
}, list(
.lmunb.p = lmunb.p, .emunb.p = emunb.p,
.lmunb.a = lmunb.a, .emunb.a = emunb.a,
.lmunb.i = lmunb.i, .emunb.i = emunb.i,
.lmunb.d = lmunb.d, .emunb.d = emunb.d,
.lsize.p = lsize.p, .esize.p = esize.p,
.lsize.a = lsize.a, .esize.a = esize.a,
.lsize.i = lsize.i, .esize.i = esize.i,
.lsize.d = lsize.d, .esize.d = esize.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support ))),
simslot = eval(substitute(
function(object, nsim) {
pwts <- if (length(pwts <- object@prior.weights) > 0)
pwts else weights(object, type = "prior")
if (any(pwts != 1))
warning("ignoring prior weights")
eta <- predict(object)
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
truncate <- as.vector( .truncate )
extra <- object@extra
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
pobs.mix <- pstr.mix <- pdip.mix <- 0 # 4 rowSums()
pobs.mlm <- pstr.mlm <- pdip.mlm <- 0 # matrix(0, NROW(eta), 1)
munb.p <- cbind(eta2theta(eta[, 1], .lmunb.p , .emunb.p ))
size.p <- cbind(eta2theta(eta[, 2], .lsize.p , .esize.p ))
ind.munb.z <- 1:2 # Points to munb.p and size.p only.
munb.a <- munb.i <- munb.d <- munb.p # Needed;
size.a <- size.i <- size.d <- size.p
tmp3.TF <- ( .tmp3.TF )
if (any(tmp3.TF[c(4, 7, 10)])) { # At least one munb.[aid]
ind.munb.z <- extra$indeta[c(1:2, 4:5, 7:8, 10:11), 'launch']
ind.munb.z <- c(na.omit(ind.munb.z)) # At least one value
munb.a <- if (!tmp3.TF[ 4]) munb.p else
eta2theta(eta[, extra$indeta[ 4, 1]], .lmunb.a , .emunb.a )
munb.i <- if (!tmp3.TF[ 7]) munb.p else
eta2theta(eta[, extra$indeta[ 7, 1]], .lmunb.i , .emunb.i )
munb.d <- if (!tmp3.TF[10]) munb.p else
eta2theta(eta[, extra$indeta[10, 1]], .lmunb.d , .emunb.d )
size.a <- if (!tmp3.TF[ 5]) size.p else
eta2theta(eta[, extra$indeta[ 5, 1]], .lsize.a , .esize.a )
size.i <- if (!tmp3.TF[ 8]) size.p else
eta2theta(eta[, extra$indeta[ 8, 1]], .lsize.i , .esize.i )
size.d <- if (!tmp3.TF[11]) size.p else
eta2theta(eta[, extra$indeta[11, 1]], .lsize.d , .esize.d )
} # la.mix + li.mix + ld.mix > 0
if (lall.len) { # A AMLM was fitted
allprobs <-
multilogitlink(eta[, -ind.munb.z, drop = FALSE],
inverse = TRUE) # rowSums == 1
Nextone <- 0 # Might not be used actually; 0, not 1
if (tmp3.TF[ 3])
pobs.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 6])
pstr.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 9])
pdip.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[12]) {
ind8 <- (Nextone + 1):(Nextone + la.mlm)
pobs.mlm <- allprobs[, ind8, drop = FALSE]
dimnames(pobs.mlm) <- list(rownames(eta),
as.character(a.mlm))
Nextone <- Nextone + la.mlm
}
if (tmp3.TF[13]) {
ind9 <- (Nextone + 1):(Nextone + li.mlm)
pstr.mlm <- allprobs[, ind9, drop = FALSE]
dimnames(pstr.mlm) <- list(rownames(eta),
as.character(i.mlm))
Nextone <- Nextone + li.mlm
}
if (tmp3.TF[14]) {
ind10 <- (Nextone + 1):(Nextone + ld.mlm)
pdip.mlm <- allprobs[, ind10, drop = FALSE]
dimnames(pdip.mlm) <- list(rownames(eta),
as.character(d.mlm))
Nextone <- Nextone + ld.mlm # Not needed
}
} # lall.len
rgaitdnbinom(nsim * length(munb.p),
munb.p = munb.p, size.p = size.p,
pobs.mlm = pobs.mlm, pstr.mlm = pstr.mlm,
pobs.mix = pobs.mix, pstr.mix = pstr.mix,
pdip.mix = pdip.mix, pdip.mlm = pdip.mlm,
munb.a = munb.a, munb.i = munb.i, munb.d = munb.d,
size.a = size.a, size.i = size.i, size.d = size.d,
a.mix = a.mix, i.mix = i.mix, d.mix = d.mix,
a.mlm = a.mlm, i.mlm = i.mlm, d.mlm = d.mlm,
truncate = .truncate , max.support = .max.support )
}, list(
.lmunb.p = lmunb.p, .emunb.p = emunb.p,
.lmunb.a = lmunb.a, .emunb.a = emunb.a,
.lmunb.i = lmunb.i, .emunb.i = emunb.i,
.lmunb.d = lmunb.d, .emunb.d = emunb.d,
.lsize.p = lsize.p, .esize.p = esize.p,
.lsize.a = lsize.a, .esize.a = esize.a,
.lsize.i = lsize.i, .esize.i = esize.i,
.lsize.d = lsize.d, .esize.d = esize.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.tmp3.TF = tmp3.TF,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.truncate = truncate, .max.support = max.support ))),
deriv = eval(substitute(expression({
tmp3.TF <- ( .tmp3.TF )
calA.p <- tmp3.TF[ 3]
calI.p <- tmp3.TF[ 6]
calD.p <- tmp3.TF[ 9]
calA.np <- tmp3.TF[12]
calI.np <- tmp3.TF[13]
calD.np <- tmp3.TF[14]
Denom1.a1 <- Denom1.i1 <- Denom1.d1 <-
Denom2.i1 <- Denom2.d1 <- 0 # Denom2.a1 is unneeded
if (!is.matrix(eta)) eta <- as.matrix(eta)
la.mix <- length((a.mix <- as.vector( .a.mix )))
li.mix <- length((i.mix <- as.vector( .i.mix )))
ld.mix <- length((d.mix <- as.vector( .d.mix )))
la.mlm <- length((a.mlm <- as.vector( .a.mlm )))
li.mlm <- length((i.mlm <- as.vector( .i.mlm )))
ld.mlm <- length((d.mlm <- as.vector( .d.mlm )))
truncate <- as.vector( .truncate )
max.support <- as.vector( .max.support )
lall.len <- la.mix + li.mix + ld.mix + la.mlm + li.mlm + ld.mlm
pobs.mix <- pstr.mix <- pdip.mix <- 0 # 4 rowSums()
pobs.mlm <- pstr.mlm <- pdip.mlm <- 0 # matrix(0, NROW(eta), 1)
munb.p <- cbind(eta2theta(eta[, 1], .lmunb.p , .emunb.p ))
size.p <- cbind(eta2theta(eta[, 2], .lsize.p , .esize.p ))
ind.munb.z <- 1:2 # Points to munb.p and size.p only.
munb.a <- munb.i <- munb.d <- munb.p # Needed;
size.a <- size.i <- size.d <- size.p
if (any(tmp3.TF[c(4, 7, 10)])) { # At least one munb.[aid]
ind.munb.z <- extra$indeta[c(1:2, 4:5, 7:8, 10:11), 'launch']
ind.munb.z <- c(na.omit(ind.munb.z)) # At least one value
munb.a <- if (!tmp3.TF[ 4]) munb.p else
eta2theta(eta[, extra$indeta[ 4, 1]], .lmunb.a , .emunb.a )
munb.i <- if (!tmp3.TF[ 7]) munb.p else
eta2theta(eta[, extra$indeta[ 7, 1]], .lmunb.i , .emunb.i )
munb.d <- if (!tmp3.TF[10]) munb.p else
eta2theta(eta[, extra$indeta[10, 1]], .lmunb.d , .emunb.d )
size.a <- if (!tmp3.TF[ 5]) size.p else
eta2theta(eta[, extra$indeta[ 5, 1]], .lsize.a , .esize.a )
size.i <- if (!tmp3.TF[ 8]) size.p else
eta2theta(eta[, extra$indeta[ 8, 1]], .lsize.i , .esize.i )
size.d <- if (!tmp3.TF[11]) size.p else
eta2theta(eta[, extra$indeta[11, 1]], .lsize.d , .esize.d )
} # la.mix + li.mix + ld.mix > 0
if (lall.len) { # A MLM was fitted.
allprobs <-
multilogitlink(eta[, -ind.munb.z, drop = FALSE],
refLevel = "(Last)", # Make sure
inverse = TRUE) # rowSums == 1
minprob.baseline <- min(allprobs[, ncol(allprobs)], na.rm = TRUE)
if (anyNA(allprobs))
warning("there are NAs here in slot linkinv")
if (min(allprobs) == 0 || max(allprobs) == 1) {
warning("fitted probabilities numerically 0 or 1 occurred")
} else
if (minprob.baseline < 0.10)
warning("Minimum baseline (reserve) probability close to 0")
if (extra$control.trace)
cat("Minimum baseline (reserve) probability = ",
format(minprob.baseline, digits = 3), "\n")
Nextone <- 0 # Might not be used actually; 0, not 1
if (tmp3.TF[ 3])
pobs.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 6])
pstr.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[ 9])
pdip.mix <- allprobs[, (Nextone <- Nextone + 1)]
if (tmp3.TF[12]) {
ind8 <- (Nextone + 1):(Nextone + la.mlm)
pobs.mlm <- allprobs[, ind8, drop = FALSE]
dimnames(pobs.mlm) <- list(rownames(eta),
as.character(a.mlm))
Nextone <- Nextone + la.mlm
}
if (tmp3.TF[13]) {
ind9 <- (Nextone + 1):(Nextone + li.mlm)
pstr.mlm <- allprobs[, ind9, drop = FALSE]
dimnames(pstr.mlm) <- list(rownames(eta),
as.character(i.mlm))
Nextone <- Nextone + li.mlm
}
if (tmp3.TF[14]) {
ind10 <- (Nextone + 1):(Nextone + ld.mlm)
pdip.mlm <- allprobs[, ind10, drop = FALSE]
dimnames(pdip.mlm) <- list(rownames(eta),
as.character(d.mlm))
Nextone <- Nextone + ld.mlm # Not needed
}
} # lall.len
ltruncat <- length(truncate)
M1 <- max(extra$indeta, na.rm = TRUE)
NOS <- ncol(eta) / M1 # extra$NOS
if (NOS != 1) stop("can only handle 1 response")
is.a.mixed <- if (tmp3.TF[ 3])
rowSums(extra$skip.mix.a) > 0 else rep(FALSE, n)
is.i.mixed <- if (tmp3.TF[ 6])
rowSums(extra$skip.mix.i) > 0 else rep(FALSE, n)
is.d.mixed <- if (tmp3.TF[ 9])
rowSums(extra$skip.mix.d) > 0 else rep(FALSE, n)
is.a.mlmed <- if (tmp3.TF[12])
rowSums(extra$skip.mlm.a) > 0 else rep(FALSE, n)
is.i.mlmed <- if (tmp3.TF[13])
rowSums(extra$skip.mlm.i) > 0 else rep(FALSE, n)
is.d.mlmed <- if (tmp3.TF[14])
rowSums(extra$skip.mlm.d) > 0 else rep(FALSE, n)
is.ns <- !is.a.mlmed & !is.i.mlmed & !is.d.mlmed &
!is.a.mixed & !is.i.mixed & !is.d.mixed # & !is.truncd
dl.dmunb.p <- y / munb.p - (1 + y / size.p) / (1 + munb.p / size.p)
dl.dmunb.p[!is.ns] <- 0 # For is.a.mixed & is.a.mlmed
dl.dsize.p <- digamma(y + size.p) - digamma(size.p) +
log1p(-munb.p / (size.p + munb.p)) -
(y - munb.p) / (size.p + munb.p)
dl.dsize.p[!is.ns] <- 0
prob.mlm.a <- if (la.mlm) rowSums(pobs.mlm) else 0 # scalar okay
prob.mlm.i <- if (li.mlm) rowSums(pstr.mlm) else 0 # scalar okay
prob.mlm.d <- if (ld.mlm) rowSums(pdip.mlm) else 0 # scalar okay
nb.munb.der1 <- function(y, munb, size)
dnbinom(y, size = size, mu = munb) *
(y / munb - 1) / (1 + munb / size)
nb.munb.der2 <- function(y, munb, size)
dnbinom(y, size = size, mu = munb) * (
(y + size) / (munb + size)^2 - y / munb^2 +
((y / munb - 1) / (1 + munb / size))^2)
nb.size.der1 <- function(y, munb, size)
dnbinom(y, size = size, mu = munb) *
(digamma(y + size) - digamma(size) +
log1p(-munb / (munb + size)) - (y - munb) / (size + munb))
nb.size.der2 <- function(y, munb, size)
dnbinom(y, size = size, mu = munb) * (
trigamma(y + size) - trigamma(size) +
munb / (size * (size + munb)) +
(y - munb) / (size + munb)^2 +
(digamma(y + size) - digamma(size) +
log1p(-munb / (munb + size)) - (y - munb) / (size + munb))^2)
nb.musz.der2 <- function(y, munb, size)
dnbinom(y, size = size, mu = munb) *
(y - munb) / (size + munb)^2 +
nb.munb.der1(y, munb, size) *
nb.size.der1(y, munb, size) / dnbinom(y, size = size, mu = munb)
sumD.mix.1a.p1 <- sumD.mix.2a.p1 <-
sumD.mix.1a.p2 <- sumD.mix.2a.p2 <-
sumD.mix.2a.p4 <- matrix(0, n, NOS)
if (la.mix > 0) { # \calA_p
DA.mix.0mat.a <- # Matches naming convention further below
DA.mix.1mat.a1 <- DA.mix.1mat.a2 <- matrix(0, n, la.mix)
for (jay in seq(la.mix)) {
aval <- a.mix[jay]
sumD.mix.1a.p1 <- sumD.mix.1a.p1 +
nb.munb.der1(aval, munb.p, size.p)
sumD.mix.2a.p1 <- sumD.mix.2a.p1 +
nb.munb.der2(aval, munb.p, size.p)
sumD.mix.1a.p2 <- sumD.mix.1a.p2 +
nb.size.der1(aval, munb.p, size.p)
sumD.mix.2a.p2 <- sumD.mix.2a.p2 +
nb.size.der2(aval, munb.p, size.p)
sumD.mix.2a.p4 <- sumD.mix.2a.p4 +
nb.musz.der2(aval, munb.p, size.p)
pmf.a <- dnbinom(aval, size = size.a, mu = munb.a)
DA.mix.0mat.a [, jay] <- pmf.a
DA.mix.1mat.a1[, jay] <- nb.munb.der1(aval, munb.a, size.a)
DA.mix.1mat.a2[, jay] <- nb.size.der1(aval, munb.a, size.a)
}
Denom1.a1 <- rowSums(DA.mix.1mat.a1) # aka sumD.mix.1a.a
Denom1.a2 <- rowSums(DA.mix.1mat.a2)
} # la.mix > 0
if (li.mix) {
DI.mix.0mat.i <- # wrt inflated distribution
DI.mix.1mat.i1 <- DI.mix.2mat.i1 <-
DI.mix.1mat.i2 <- DI.mix.2mat.i2 <-
DI.mix.2mat.i4 <- matrix(0, n, li.mix)
DP.mix.0mat.i <- # wrt parent distribution
DP.mix.1mat.i1 <- DP.mix.2mat.i1 <-
DP.mix.1mat.i2 <- DP.mix.2mat.i2 <-
DP.mix.2mat.i4 <- matrix(0, n, li.mix)
for (jay in seq(li.mix)) {
ival <- i.mix[jay]
pmf.i <- dnbinom(ival, size = size.i, mu = munb.i)
DI.mix.0mat.i [, jay] <- pmf.i
DI.mix.1mat.i1[, jay] <- nb.munb.der1(ival, munb.i, size.i)
DI.mix.2mat.i1[, jay] <- nb.munb.der2(ival, munb.i, size.i)
DI.mix.1mat.i2[, jay] <- nb.size.der1(ival, munb.i, size.i)
DI.mix.2mat.i2[, jay] <- nb.size.der2(ival, munb.i, size.i)
DI.mix.2mat.i4[, jay] <- nb.musz.der2(ival, munb.i, size.i)
pmf.p <- dnbinom(ival, size = size.p, mu = munb.p)
DP.mix.0mat.i [, jay] <- pmf.p
DP.mix.1mat.i1[, jay] <- nb.munb.der1(ival, munb.p, size.p)
DP.mix.2mat.i1[, jay] <- nb.munb.der2(ival, munb.p, size.p)
DP.mix.1mat.i2[, jay] <- nb.size.der1(ival, munb.p, size.p)
DP.mix.2mat.i2[, jay] <- nb.size.der2(ival, munb.p, size.p)
DP.mix.2mat.i4[, jay] <- nb.musz.der2(ival, munb.p, size.p)
} # jay
Denom1.i1 <- rowSums(DI.mix.1mat.i1)
Denom2.i1 <- rowSums(DI.mix.2mat.i1)
Denom1.i2 <- rowSums(DI.mix.1mat.i2)
Denom2.i2 <- rowSums(DI.mix.2mat.i2)
Denom2.i4 <- rowSums(DI.mix.2mat.i4)
} # li.mix
if (ld.mix) {
DD.mix.0mat.d <- # wrt deflated distribution
DD.mix.1mat.d1 <- DD.mix.2mat.d1 <-
DD.mix.1mat.d2 <- DD.mix.2mat.d2 <-
DD.mix.2mat.d4 <- matrix(0, n, ld.mix)
DP.mix.0mat.d <- # wrt parent distribution
DP.mix.1mat.d1 <- DP.mix.2mat.d1 <-
DP.mix.1mat.d2 <- DP.mix.2mat.d2 <-
DP.mix.2mat.d4 <- matrix(0, n, ld.mix)
for (jay in seq(ld.mix)) {
dval <- d.mix[jay]
pmf.d <- dnbinom(dval, size = size.d, mu = munb.d)
DD.mix.0mat.d [, jay] <- pmf.d
DD.mix.1mat.d1[, jay] <- nb.munb.der1(dval, munb.d, size.d)
DD.mix.2mat.d1[, jay] <- nb.munb.der2(dval, munb.d, size.d)
DD.mix.1mat.d2[, jay] <- nb.size.der1(dval, munb.d, size.d)
DD.mix.2mat.d2[, jay] <- nb.size.der2(dval, munb.d, size.d)
DD.mix.2mat.d4[, jay] <- nb.musz.der2(dval, munb.d, size.d)
pmf.p <- dnbinom(dval, size = size.p, mu = munb.p)
DP.mix.0mat.d [, jay] <- pmf.p
DP.mix.1mat.d1[, jay] <- nb.munb.der1(dval, munb.p, size.p)
DP.mix.2mat.d1[, jay] <- nb.munb.der2(dval, munb.p, size.p)
DP.mix.1mat.d2[, jay] <- nb.size.der1(dval, munb.p, size.p)
DP.mix.2mat.d2[, jay] <- nb.size.der2(dval, munb.p, size.p)
DP.mix.2mat.d4[, jay] <- nb.musz.der2(dval, munb.p, size.p)
} # jay
Denom1.d1 <- rowSums(DD.mix.1mat.d1)
Denom2.d1 <- rowSums(DD.mix.2mat.d1)
Denom1.d2 <- rowSums(DD.mix.1mat.d2)
Denom2.d2 <- rowSums(DD.mix.2mat.d2)
Denom2.d4 <- rowSums(DD.mix.2mat.d4)
} # ld.mix
Bits <- moments.gaitdcombo.nbinom(
munb.p = munb.p, size.p = size.p,
pobs.mix = pobs.mix, pobs.mlm = pobs.mlm,
pstr.mix = pstr.mix, pstr.mlm = pstr.mlm,
pdip.mix = pdip.mix, pdip.mlm = pdip.mlm,
a.mix = a.mix, i.mix = i.mix, d.mix = d.mix,
a.mlm = a.mlm, i.mlm = i.mlm, d.mlm = d.mlm,
munb.a = munb.a, munb.i = munb.i, munb.d = munb.d,
size.a = size.a, size.i = size.i, size.d = size.d,
truncate = truncate, max.support = max.support)
sumD.mlm.1a.p1 <- sumD.mlm.2a.p1 <-
sumD.mlm.1a.p2 <- sumD.mlm.2a.p2 <-
sumD.mlm.2a.p4 <- matrix(0, n, NOS)
if (la.mlm)
for (aval in a.mlm) {
sumD.mlm.1a.p1 <- sumD.mlm.1a.p1 +
nb.munb.der1(aval, munb.p, size.p)
sumD.mlm.2a.p1 <- sumD.mlm.2a.p1 +
nb.munb.der2(aval, munb.p, size.p)
sumD.mlm.1a.p2 <- sumD.mlm.1a.p2 +
nb.size.der1(aval, munb.p, size.p)
sumD.mlm.2a.p2 <- sumD.mlm.2a.p2 +
nb.size.der2(aval, munb.p, size.p)
sumD.mlm.2a.p4 <- sumD.mlm.2a.p4 +
nb.musz.der2(aval, munb.p, size.p)
}
Denom0.p <- c(Bits[["cdf.max.s"]] - Bits[["SumT0.p"]] -
Bits[["SumA0.mix.p"]] - Bits[["SumA0.mlm.p"]])
Numer <- 1 - pobs.mix - pstr.mix - prob.mlm.a - prob.mlm.i +
pdip.mix + prob.mlm.d
Denom0.a <- c(Bits[["SumA0.mix.a"]]) # Not .p
Denom0.i <- c(Bits[["SumI0.mix.i"]])
Denom0.d <- c(Bits[["SumD0.mix.d"]])
Dp.mlm.0mat.i <- # wrt parent distribution
Dp.mlm.1mat.i1 <- Dp.mlm.2mat.i1 <-
Dp.mlm.1mat.i2 <- Dp.mlm.2mat.i2 <-
Dp.mlm.2mat.i4 <- matrix(0, n, NOS)
if (li.mlm > 0) {
Dp.mlm.0mat.i <- # wrt parent distribution
Dp.mlm.1mat.i1 <- Dp.mlm.2mat.i1 <-
Dp.mlm.1mat.i2 <- Dp.mlm.2mat.i2 <-
Dp.mlm.2mat.i4 <- matrix(0, n, li.mlm)
for (jay in seq(li.mlm)) {
ival <- i.mlm[jay]
pmf.p <- dnbinom(ival, size = size.p, mu = munb.p)
Dp.mlm.0mat.i [, jay] <- pmf.p
Dp.mlm.1mat.i1[, jay] <- nb.munb.der1(ival, munb.p, size.p)
Dp.mlm.2mat.i1[, jay] <- nb.munb.der2(ival, munb.p, size.p)
Dp.mlm.1mat.i2[, jay] <- nb.size.der1(ival, munb.p, size.p)
Dp.mlm.2mat.i2[, jay] <- nb.size.der2(ival, munb.p, size.p)
Dp.mlm.2mat.i4[, jay] <- nb.musz.der2(ival, munb.p, size.p)
} # jay
} # li.mlm
Dp.mlm.0mat.d <- # wrt parent distribution
Dp.mlm.1mat.d1 <- Dp.mlm.2mat.d1 <-
Dp.mlm.1mat.d2 <- Dp.mlm.2mat.d2 <-
Dp.mlm.2mat.d4 <- matrix(0, n, NOS)
if (ld.mlm > 0) {
Dp.mlm.0mat.d <- # wrt parent distribution
Dp.mlm.1mat.d1 <- Dp.mlm.2mat.d1 <-
Dp.mlm.1mat.d2 <- Dp.mlm.2mat.d2 <-
Dp.mlm.2mat.d4 <- matrix(0, n, ld.mlm)
for (jay in seq(ld.mlm)) {
dval <- d.mlm[jay]
pmf.p <- dnbinom(dval, size = size.p, mu = munb.p)
Dp.mlm.0mat.d [, jay] <- pmf.p
Dp.mlm.1mat.d1[, jay] <- nb.munb.der1(dval, munb.p, size.p)
Dp.mlm.2mat.d1[, jay] <- nb.munb.der2(dval, munb.p, size.p)
Dp.mlm.1mat.d2[, jay] <- nb.size.der1(dval, munb.p, size.p)
Dp.mlm.2mat.d2[, jay] <- nb.size.der2(dval, munb.p, size.p)
Dp.mlm.2mat.d4[, jay] <- nb.musz.der2(dval, munb.p, size.p)
} # jay
} # ld.mlm
sumD.1t.p1 <- sumD.2t.p1 <-
sumD.1t.a1 <- sumD.2t.a1 <-
sumD.1t.i1 <- sumD.2t.i1 <-
sumD.1t.d1 <- sumD.2t.d1 <- matrix(0, n, NOS)
sumD.1t.p2 <- sumD.2t.p2 <- sumD.2t.p4 <-
sumD.1t.a2 <- sumD.2t.a2 <-
sumD.1t.i2 <- sumD.2t.i2 <-
sumD.1t.d2 <- sumD.2t.d2 <- matrix(0, n, NOS)
if (ltruncat)
for (tval in truncate) {
sumD.1t.p1 <- sumD.1t.p1 + nb.munb.der1(tval, munb.p, size.p)
sumD.2t.p1 <- sumD.2t.p1 + nb.munb.der2(tval, munb.p, size.p)
sumD.1t.a1 <- sumD.1t.a1 + nb.munb.der1(tval, munb.a, size.a)
sumD.2t.a1 <- sumD.2t.a1 + nb.munb.der2(tval, munb.a, size.a)
sumD.1t.i1 <- sumD.1t.i1 + nb.munb.der1(tval, munb.i, size.i)
sumD.2t.i1 <- sumD.2t.i1 + nb.munb.der2(tval, munb.i, size.i)
sumD.1t.d1 <- sumD.1t.d1 + nb.munb.der1(tval, munb.d, size.d)
sumD.2t.d1 <- sumD.2t.d1 + nb.munb.der2(tval, munb.d, size.d)
sumD.1t.p2 <- sumD.1t.p2 + nb.size.der1(tval, munb.p, size.p)
sumD.2t.p2 <- sumD.2t.p2 + nb.size.der2(tval, munb.p, size.p)
sumD.1t.a2 <- sumD.1t.a2 + nb.size.der1(tval, munb.a, size.a)
sumD.2t.a2 <- sumD.2t.a2 + nb.size.der2(tval, munb.a, size.a)
sumD.1t.i2 <- sumD.1t.i2 + nb.size.der1(tval, munb.i, size.i)
sumD.2t.i2 <- sumD.2t.i2 + nb.size.der2(tval, munb.i, size.i)
sumD.1t.d2 <- sumD.1t.d2 + nb.size.der1(tval, munb.d, size.d)
sumD.2t.d2 <- sumD.2t.d2 + nb.size.der2(tval, munb.d, size.d)
sumD.2t.p4 <- sumD.2t.p4 + nb.musz.der2(tval, munb.p, size.p)
}
if (is.finite(max.support)) {
stop("upper tail derivs are unavailable for finite 'max.support'")
} # is.finite(max.support)
Denom1.p1 <- c(-sumD.1t.p1 - sumD.mlm.1a.p1 - sumD.mix.1a.p1)
Denom2.p1 <- c(-sumD.2t.p1 - sumD.mlm.2a.p1 - sumD.mix.2a.p1)
Denom1.p2 <- c(-sumD.1t.p2 - sumD.mlm.1a.p2 - sumD.mix.1a.p2)
Denom2.p2 <- c(-sumD.2t.p2 - sumD.mlm.2a.p2 - sumD.mix.2a.p2)
Denom2.p4 <- c(-sumD.2t.p4 - sumD.mlm.2a.p4 - sumD.mix.2a.p4)
d0B.PI.mlm <- Dp.mlm.0mat.i / Denom0.p
d1B.PI.mlm1 <- Dp.mlm.1mat.i1 / Denom0.p - # Most general
Dp.mlm.0mat.i * Denom1.p1 / Denom0.p^2
d1B.PI.mlm2 <- Dp.mlm.1mat.i2 / Denom0.p - # Most general
Dp.mlm.0mat.i * Denom1.p2 / Denom0.p^2
d2B.PI.mlm1 <- Dp.mlm.2mat.i1 / Denom0.p -
2 * Dp.mlm.1mat.i1 * Denom1.p1 / Denom0.p^2 -
Dp.mlm.0mat.i * Denom2.p1 / Denom0.p^2 +
2 * Dp.mlm.0mat.i * (Denom1.p1^2) / Denom0.p^3
d2B.PI.mlm2 <- Dp.mlm.2mat.i2 / Denom0.p -
2 * Dp.mlm.1mat.i2 * Denom1.p2 / Denom0.p^2 -
Dp.mlm.0mat.i * Denom2.p2 / Denom0.p^2 +
2 * Dp.mlm.0mat.i * (Denom1.p2^2) / Denom0.p^3
d2B.PI.mlm4 <- Dp.mlm.2mat.i4 / Denom0.p -
Dp.mlm.1mat.i1 * Denom1.p2 / Denom0.p^2 -
Dp.mlm.1mat.i2 * Denom1.p1 / Denom0.p^2 -
Dp.mlm.0mat.i * Denom2.p4 / Denom0.p^2 +
2 * Dp.mlm.0mat.i * Denom1.p1 * Denom1.p2 / Denom0.p^3
d0B.PD.mlm <- Dp.mlm.0mat.d / Denom0.p
d1B.PD.mlm1 <- Dp.mlm.1mat.d1 / Denom0.p - # This is most general
Dp.mlm.0mat.d * Denom1.p1 / Denom0.p^2
d1B.PD.mlm2 <- Dp.mlm.1mat.d2 / Denom0.p - # This is most general
Dp.mlm.0mat.d * Denom1.p2 / Denom0.p^2
d2B.PD.mlm1 <- Dp.mlm.2mat.d1 / Denom0.p -
2 * Dp.mlm.1mat.d1 * Denom1.p1 / Denom0.p^2 -
Dp.mlm.0mat.d * Denom2.p1 / Denom0.p^2 +
2 * Dp.mlm.0mat.d * (Denom1.p1^2) / Denom0.p^3
d2B.PD.mlm2 <- Dp.mlm.2mat.d2 / Denom0.p -
2 * Dp.mlm.1mat.d2 * Denom1.p2 / Denom0.p^2 -
Dp.mlm.0mat.d * Denom2.p2 / Denom0.p^2 +
2 * Dp.mlm.0mat.d * (Denom1.p2^2) / Denom0.p^3
d2B.PD.mlm4 <- Dp.mlm.2mat.d4 / Denom0.p -
Dp.mlm.1mat.d1 * Denom1.p2 / Denom0.p^2 -
Dp.mlm.1mat.d2 * Denom1.p1 / Denom0.p^2 -
Dp.mlm.0mat.d * Denom2.p4 / Denom0.p^2 +
2 * Dp.mlm.0mat.d * Denom1.p1 *
Denom1.p2 / Denom0.p^3
DELTA.i.mlm <- if (li.mlm > 0) {
Numer * d0B.PI.mlm + pstr.mlm # n x li.mlm.
} else {
matrix(0, n, 1) # If li.mlm == 0, for rowSums().
}
DELTA.d.mlm <- if (ld.mlm > 0) {
Numer * d0B.PD.mlm - pdip.mlm # n x ld.mlm.
} else {
matrix(0, n, 1) # If ld.mlm == 0, for rowSums().
}
if (li.mix > 0) {
d0A.i <- DI.mix.0mat.i / Denom0.i
d0B.PI.mix <- DP.mix.0mat.i / Denom0.p
DELTA.i.mix <- Numer * d0B.PI.mix + pstr.mix * d0A.i
d1A.i1 <- (DI.mix.1mat.i1 - DI.mix.0mat.i *
Denom1.i1 / Denom0.i) / Denom0.i
d2A.i1 <- (DI.mix.2mat.i1 - (2 * DI.mix.1mat.i1 * Denom1.i1 +
DI.mix.0mat.i * Denom2.i1) / Denom0.i +
2 * DI.mix.0mat.i * (Denom1.i1 / Denom0.i)^2) / Denom0.i
d1A.i2 <- (DI.mix.1mat.i2 - DI.mix.0mat.i *
Denom1.i2 / Denom0.i) / Denom0.i
d2A.i2 <- (DI.mix.2mat.i2 - (2 * DI.mix.1mat.i2 * Denom1.i2 +
DI.mix.0mat.i * Denom2.i2) / Denom0.i +
2 * DI.mix.0mat.i * (Denom1.i2 / Denom0.i)^2) / Denom0.i
d2A.i4 <- DI.mix.2mat.i4 / Denom0.i -
DI.mix.1mat.i1 * Denom1.i2 / Denom0.i^2 -
DI.mix.1mat.i2 * Denom1.i1 / Denom0.i^2 -
DI.mix.0mat.i * Denom2.i4 / Denom0.i^2 +
2 * DI.mix.0mat.i * Denom1.i1 *
Denom1.i2 / Denom0.i^3
d1B.PI.mix1 <- DP.mix.1mat.i1 / Denom0.p -
DP.mix.0mat.i * Denom1.p1 / Denom0.p^2
d1B.PI.mix2 <- DP.mix.1mat.i2 / Denom0.p -
DP.mix.0mat.i * Denom1.p2 / Denom0.p^2
d2B.PI.mix1 <- DP.mix.2mat.i1 / Denom0.p -
2 * DP.mix.1mat.i1 * Denom1.p1 / Denom0.p^2 -
DP.mix.0mat.i * Denom2.p1 / Denom0.p^2 +
2 * DP.mix.0mat.i * (Denom1.p1^2) / Denom0.p^3
d2B.PI.mix2 <- DP.mix.2mat.i2 / Denom0.p -
2 * DP.mix.1mat.i2 * Denom1.p2 / Denom0.p^2 -
DP.mix.0mat.i * Denom2.p2 / Denom0.p^2 +
2 * DP.mix.0mat.i * (Denom1.p2^2) / Denom0.p^3
d2B.PI.mix4 <- DP.mix.2mat.i4 / Denom0.p -
DP.mix.1mat.i1 * Denom1.p2 / Denom0.p^2 -
DP.mix.1mat.i2 * Denom1.p1 / Denom0.p^2 -
DP.mix.0mat.i * Denom2.p4 / Denom0.p^2 +
2 * DP.mix.0mat.i * Denom1.p1 *
Denom1.p2 / Denom0.p^3
} # li.mix > 0
if (ld.mix > 0) {
d0A.d <- DD.mix.0mat.d / Denom0.d
d0B.PD.mix <- DP.mix.0mat.d / Denom0.p
DELTA.d.mix <- Numer * d0B.PD.mix - pdip.mix * d0A.d
d1A.d1 <- (DD.mix.1mat.d1 - DD.mix.0mat.d *
Denom1.d1 / Denom0.d) / Denom0.d
d2A.d1 <- (DD.mix.2mat.d1 - (2 * DD.mix.1mat.d1 * Denom1.d1 +
DD.mix.0mat.d * Denom2.d1) / Denom0.d +
2 * DD.mix.0mat.d * (Denom1.d1 / Denom0.d)^2) / Denom0.d
d1A.d2 <- (DD.mix.1mat.d2 - DD.mix.0mat.d *
Denom1.d2 / Denom0.d) / Denom0.d
d2A.d2 <- (DD.mix.2mat.d2 - (2 * DD.mix.1mat.d2 * Denom1.d2 +
DD.mix.0mat.d * Denom2.d2) / Denom0.d +
2 * DD.mix.0mat.d * (Denom1.d2 / Denom0.d)^2) / Denom0.d
d2A.d4 <- DD.mix.2mat.d4 / Denom0.d -
DD.mix.1mat.d1 * Denom1.d2 / Denom0.d^2 -
DD.mix.1mat.d2 * Denom1.d1 / Denom0.d^2 -
DD.mix.0mat.d * Denom2.d4 / Denom0.d^2 +
2 * DD.mix.0mat.d * Denom1.d1 *
Denom1.d2 / Denom0.d^3
d1B.PD.mix1 <- DP.mix.1mat.d1 / Denom0.p -
DP.mix.0mat.d * Denom1.p1 / Denom0.p^2
d2B.PD.mix1 <- DP.mix.2mat.d1 / Denom0.p -
2 * DP.mix.1mat.d1 * Denom1.p1 / Denom0.p^2 -
DP.mix.0mat.d * Denom2.p1 / Denom0.p^2 +
2 * DP.mix.0mat.d * (Denom1.p1^2) / Denom0.p^3
d1B.PD.mix2 <- DP.mix.1mat.d2 / Denom0.p -
DP.mix.0mat.d * Denom1.p2 / Denom0.p^2
d2B.PD.mix2 <- DP.mix.2mat.d2 / Denom0.p -
2 * DP.mix.1mat.d2 * Denom1.p2 / Denom0.p^2 -
DP.mix.0mat.d * Denom2.p2 / Denom0.p^2 +
2 * DP.mix.0mat.d * (Denom1.p2^2) / Denom0.p^3
d2B.PD.mix4 <- DP.mix.2mat.d4 / Denom0.p -
DP.mix.1mat.d1 * Denom1.p2 / Denom0.p^2 -
DP.mix.1mat.d2 * Denom1.p1 / Denom0.p^2 -
DP.mix.0mat.d * Denom2.p4 / Denom0.p^2 +
2 * DP.mix.0mat.d * Denom1.p1 *
Denom1.p2 / Denom0.p^3
} # ld.mix > 0
if (la.mix) {
d0A.a <- DA.mix.0mat.a / Denom0.a
d1A.a1 <- DA.mix.1mat.a1 / Denom0.a -
DA.mix.0mat.a * Denom1.a1 / Denom0.a^2
d1A.a2 <- DA.mix.1mat.a2 / Denom0.a -
DA.mix.0mat.a * Denom1.a2 / Denom0.a^2
} # la.mix
dl.dmunb.a <- dl.dmunb.i <- dl.dmunb.d <- numeric(n)
dl.dsize.a <- dl.dsize.i <- dl.dsize.d <- numeric(n)
dl.dpstr.mix <- (-1) / Numer # \notin A, I, T, D
dl.dpstr.mix[is.a.mixed] <- 0
dl.dpstr.mix[is.a.mlmed] <- 0
dl.dpdip.mix <- (+1) / Numer # \notin A, I, T, D
dl.dpdip.mix[is.a.mixed] <- 0
dl.dpdip.mix[is.a.mlmed] <- 0
dl.dpobs.mix <- numeric(n) # 0 for \calA_{np}
dl.dpobs.mix[is.ns] <- (-1) / Numer[is.ns]
dl.dpobs.mlm <-
dl.dpstr.mlm <- matrix(0, n, 1) # May be unneeded
dl.dpdip.mlm <- matrix(0, n, max(1, ld.mlm)) # Initzed if used.
dl.dpdip.mlm[is.ns, ] <- 1 / Numer[is.ns]
if (tmp3.TF[12] && la.mlm) { # aka \calA_{np}
dl.dpobs.mlm <- matrix(-1 / Numer, n, la.mlm) # \notin calS
dl.dpobs.mlm[!is.ns, ] <- 0 # For a.mix only really
for (jay in seq(la.mlm)) {
aval <- a.mlm[jay]
is.alt.j.mlm <- extra$skip.mlm.a[, jay] # Logical vector
tmp7a <- 1 / pobs.mlm[is.alt.j.mlm, jay]
dl.dpobs.mlm[is.alt.j.mlm, jay] <- tmp7a
} # jay
} # la.mlm
dl.dmunb.p[is.ns] <- dl.dmunb.p[is.ns] -
(Denom1.p1 / Denom0.p)[is.ns]
dl.dsize.p[is.ns] <- dl.dsize.p[is.ns] -
(Denom1.p2 / Denom0.p)[is.ns]
if (tmp3.TF[13] && li.mlm > 0) { # aka \calI_{np}
dl.dpstr.mlm <- matrix(-1 / Numer, n, li.mlm)
dl.dpstr.mlm[!is.ns, ] <- 0 # For a.mlm and a.mix
for (jay in seq(li.mlm)) {
is.inf.j.mlm <- extra$skip.mlm.i[, jay] # Logical vector
tmp7..m <- Numer * d1B.PI.mlm1[, jay] / DELTA.i.mlm[, jay]
tmp7..s <- Numer * d1B.PI.mlm2[, jay] / DELTA.i.mlm[, jay]
dl.dmunb.p[is.inf.j.mlm] <- tmp7..m[is.inf.j.mlm]
dl.dsize.p[is.inf.j.mlm] <- tmp7..s[is.inf.j.mlm]
tmp9i <- d0B.PI.mlm[, jay] / DELTA.i.mlm[, jay]
n.tmp <- -tmp9i[is.inf.j.mlm]
p.tmp <- +tmp9i[is.inf.j.mlm]
if (tmp3.TF[12] && la.mlm) dl.dpobs.mlm[is.inf.j.mlm, ] <- n.tmp
if (tmp3.TF[ 3] && la.mix) dl.dpobs.mix[is.inf.j.mlm ] <- n.tmp
if (tmp3.TF[ 6] && li.mix) dl.dpstr.mix[is.inf.j.mlm ] <- n.tmp
if (tmp3.TF[14] && ld.mlm) dl.dpdip.mlm[is.inf.j.mlm, ] <- p.tmp
if (tmp3.TF[ 9] && ld.mix) dl.dpdip.mix[is.inf.j.mlm ] <- p.tmp
tmp8 <- (1 - d0B.PI.mlm[, jay]) / DELTA.i.mlm[, jay]
dl.dpstr.mlm[is.inf.j.mlm, ] <- n.tmp # tmp9[is.inf.j.mlm]
dl.dpstr.mlm[is.inf.j.mlm, jay] <- tmp8[is.inf.j.mlm]
} # jay
} # li.mlm > 0
if (tmp3.TF[14] && ld.mlm > 0) { # aka \calD_{np}
for (jay in seq(ld.mlm)) {
is.def.j.mlm <- extra$skip.mlm.d[, jay] # Logical vector
tmp7..m <- Numer * d1B.PD.mlm1[, jay] / DELTA.d.mlm[, jay]
tmp7..s <- Numer * d1B.PD.mlm2[, jay] / DELTA.d.mlm[, jay]
dl.dmunb.p[is.def.j.mlm] <- tmp7..m[is.def.j.mlm] # 20211020
dl.dsize.p[is.def.j.mlm] <- tmp7..s[is.def.j.mlm]
tmp9d <- d0B.PD.mlm[, jay] / DELTA.d.mlm[, jay]
p.tmp <- +tmp9d[is.def.j.mlm]
n.tmp <- -tmp9d[is.def.j.mlm]
if (tmp3.TF[13] && li.mlm) dl.dpstr.mlm[is.def.j.mlm, ] <- n.tmp
if (tmp3.TF[ 6] && li.mix) dl.dpstr.mix[is.def.j.mlm ] <- n.tmp
if (tmp3.TF[12] && la.mlm) dl.dpobs.mlm[is.def.j.mlm, ] <- n.tmp
if (tmp3.TF[ 3] && la.mix) dl.dpobs.mix[is.def.j.mlm ] <- n.tmp
if (tmp3.TF[ 9] && ld.mix) dl.dpdip.mix[is.def.j.mlm ] <- p.tmp
dl.dpdip.mlm[is.def.j.mlm, ] <- p.tmp
dl.dpdip.mlm[is.def.j.mlm, jay] <-
dl.dpdip.mlm[is.def.j.mlm, jay] -
1 / DELTA.d.mlm[is.def.j.mlm, jay]
} # jay
} # ld.mlm > 0
if (tmp3.TF[ 3] && la.mix) { # aka \calA_{p}
dl.dpobs.mix[is.a.mixed] <- 1 / pobs.mix[is.a.mixed]
if (tmp3.TF[ 4] && la.mix > 1)
for (jay in seq(la.mix)) {
is.alt.j.mix <- extra$skip.mix.a[, jay] # Logical vector
tmp2..m <- d1A.a1[, jay] / d0A.a[, jay]
tmp2..s <- d1A.a2[, jay] / d0A.a[, jay]
dl.dmunb.a[is.alt.j.mix] <- tmp2..m[is.alt.j.mix] # ccc.
dl.dsize.a[is.alt.j.mix] <- tmp2..s[is.alt.j.mix]
} # jay
} # la.mix
if (tmp3.TF[ 6] && li.mix > 0) { # aka \calI_{p}
for (jay in seq(li.mix)) {
ival <- i.mix[jay]
is.inf.j.mix <- extra$skip.mix.i[, jay] # Logical vector
tmp7..m <- Numer * d1B.PI.mix1[, jay] / DELTA.i.mix[, jay]
tmp7..s <- Numer * d1B.PI.mix2[, jay] / DELTA.i.mix[, jay]
dl.dmunb.p[is.inf.j.mix] <- tmp7..m[is.inf.j.mix]
dl.dsize.p[is.inf.j.mix] <- tmp7..s[is.inf.j.mix]
tmp8 <- (d0A.i[, jay] - d0B.PI.mix[, jay]) / DELTA.i.mix[, jay]
dl.dpstr.mix[is.inf.j.mix] <- tmp8[is.inf.j.mix]
if (li.mix > 1) {
tmp2..m <- pstr.mix * d1A.i1[, jay] / DELTA.i.mix[, jay]
tmp2..s <- pstr.mix * d1A.i2[, jay] / DELTA.i.mix[, jay]
dl.dmunb.i[is.inf.j.mix] <- tmp2..m[is.inf.j.mix]
dl.dsize.i[is.inf.j.mix] <- tmp2..s[is.inf.j.mix]
}
tmp9i <- d0B.PI.mix[, jay] / DELTA.i.mix[, jay]
n.tmp <- -tmp9i[is.inf.j.mix]
p.tmp <- +tmp9i[is.inf.j.mix]
if (tmp3.TF[ 3] && la.mix) dl.dpobs.mix[is.inf.j.mix ] <- n.tmp
if (tmp3.TF[12] && la.mlm) dl.dpobs.mlm[is.inf.j.mix, ] <- n.tmp
if (tmp3.TF[13] && li.mlm) dl.dpstr.mlm[is.inf.j.mix, ] <- n.tmp
if (tmp3.TF[14] && ld.mlm) dl.dpdip.mlm[is.inf.j.mix, ] <- p.tmp
if (tmp3.TF[ 9] && ld.mix) dl.dpdip.mix[is.inf.j.mix ] <- p.tmp
} # jay
} # li.mix > 0
if (tmp3.TF[ 9] && ld.mix > 0) { # aka \calD_{p}
for (jay in seq(ld.mix)) {
dval <- d.mix[jay]
is.def.j.mix <- extra$skip.mix.d[, jay] # Logical vector
tmp7..m <- Numer * d1B.PD.mix1[, jay] / DELTA.d.mix[, jay]
tmp7..s <- Numer * d1B.PD.mix2[, jay] / DELTA.d.mix[, jay]
dl.dmunb.p[is.def.j.mix] <- tmp7..m[is.def.j.mix]
dl.dsize.p[is.def.j.mix] <- tmp7..s[is.def.j.mix]
tmp8 <- (d0B.PD.mix[, jay] - d0A.d[, jay]) / DELTA.d.mix[, jay]
dl.dpdip.mix[is.def.j.mix] <- tmp8[is.def.j.mix]
if (ld.mix > 1) {
if (any(is.na(d1A.d1)))
stop("NAs found in d1A.d1")
tmp2..m <- (-pdip.mix) * d1A.d1[, jay] / DELTA.d.mix[, jay]
tmp2..s <- (-pdip.mix) * d1A.d2[, jay] / DELTA.d.mix[, jay]
dl.dmunb.d[is.def.j.mix] <- tmp2..m[is.def.j.mix]
dl.dsize.d[is.def.j.mix] <- tmp2..s[is.def.j.mix]
}
tmp9d <- d0B.PD.mix[, jay] / DELTA.d.mix[, jay]
n.tmp <- -tmp9d[is.def.j.mix]
p.tmp <- +tmp9d[is.def.j.mix]
if (tmp3.TF[13] && li.mlm) dl.dpstr.mlm[is.def.j.mix, ] <- n.tmp
if (tmp3.TF[ 6] && li.mix) dl.dpstr.mix[is.def.j.mix ] <- n.tmp
if (tmp3.TF[12] && la.mlm) dl.dpobs.mlm[is.def.j.mix, ] <- n.tmp
if (tmp3.TF[ 3] && la.mix) dl.dpobs.mix[is.def.j.mix ] <- n.tmp
if (tmp3.TF[14] && ld.mlm) dl.dpdip.mlm[is.def.j.mix, ] <- p.tmp
} # jay
} # ld.mix > 0
new.ansd <- matrix(0, n, M) # Same dimension as eta
tmp3.TF <- !is.na(rowSums(extra$indeta))
if (lall.len) { # An MLM fitted
all6.dldp <- cbind(if (tmp3.TF[ 3]) dl.dpobs.mix else NULL,
if (tmp3.TF[ 6]) dl.dpstr.mix else NULL,
if (tmp3.TF[ 9]) dl.dpdip.mix else NULL,
if (tmp3.TF[12]) dl.dpobs.mlm else NULL,
if (tmp3.TF[13]) dl.dpstr.mlm else NULL,
if (tmp3.TF[14]) dl.dpdip.mlm else NULL)
rSs.tmp <- rowSums(allprobs[, -ncol(allprobs), drop = FALSE] *
all6.dldp)
new.ansd[, -ind.munb.z] <- allprobs[, -ncol(allprobs)] *
(all6.dldp - rSs.tmp)
} # lall.len
dmunb.p.deta <- dtheta.deta(munb.p, .lmunb.p , .emunb.p )
dsize.p.deta <- dtheta.deta(size.p, .lsize.p , .esize.p )
if (tmp3.TF[ 4]) {
dmunb.a.deta <- dtheta.deta(munb.a, .lmunb.a , .emunb.a )
dsize.a.deta <- dtheta.deta(size.a, .lsize.a , .esize.a )
}
if (tmp3.TF[ 7]) {
dmunb.i.deta <- dtheta.deta(munb.i, .lmunb.i , .emunb.i )
dsize.i.deta <- dtheta.deta(size.i, .lsize.i , .esize.i )
}
if (tmp3.TF[10]) {
dmunb.d.deta <- dtheta.deta(munb.d, .lmunb.d , .emunb.d )
dsize.d.deta <- dtheta.deta(size.d, .lsize.d , .esize.d )
}
new.ansd[, 1] <- dl.dmunb.p * dmunb.p.deta
new.ansd[, 2] <- dl.dsize.p * dsize.p.deta
if (tmp3.TF[ 4]) {
new.ansd[, extra$indeta[ 4, 1]] <- dl.dmunb.a * dmunb.a.deta
new.ansd[, extra$indeta[ 5, 1]] <- dl.dsize.a * dsize.a.deta
}
if (tmp3.TF[ 7]) {
new.ansd[, extra$indeta[ 7, 1]] <- dl.dmunb.i * dmunb.i.deta
new.ansd[, extra$indeta[ 8, 1]] <- dl.dsize.i * dsize.i.deta
}
if (tmp3.TF[10]) {
new.ansd[, extra$indeta[10, 1]] <- dl.dmunb.d * dmunb.d.deta
new.ansd[, extra$indeta[11, 1]] <- dl.dsize.d * dsize.d.deta
}
onecoln.indeta <- extra$indeta[1:11, ] # One coln params only
onecoln.indeta <- na.omit(onecoln.indeta) # Only those present
allcnames <- c(rownames(onecoln.indeta),
as.character(c(a.mlm, i.mlm, d.mlm)))
colnames(new.ansd) <- allcnames
if (any(is.na(new.ansd)))
stop("look here87")
c(w) * new.ansd
}), list(
.lmunb.p = lmunb.p, .emunb.p = emunb.p,
.lmunb.a = lmunb.a, .emunb.a = emunb.a,
.lmunb.i = lmunb.i, .emunb.i = emunb.i,
.lmunb.d = lmunb.d, .emunb.d = emunb.d,
.lsize.p = lsize.p, .esize.p = esize.p,
.lsize.a = lsize.a, .esize.a = esize.a,
.lsize.i = lsize.i, .esize.i = esize.i,
.lsize.d = lsize.d, .esize.d = esize.d,
.lpstr.mix = lpstr.mix, .lpobs.mix = lpobs.mix,
.lpdip.mix = lpdip.mix,
.epstr.mix = epstr.mix, .epobs.mix = epobs.mix,
.epdip.mix = epdip.mix,
.a.mix = a.mix, .i.mix = i.mix, .d.mix = d.mix,
.a.mlm = a.mlm, .i.mlm = i.mlm, .d.mlm = d.mlm,
.tmp3.TF = tmp3.TF, # .tmp3 = tmp3,
.truncate = truncate, .max.support = max.support ))),
weight = eval(substitute(expression({ # gaitdnbinomial
wz <- matrix(0, n, M * (M + 1) / 2) # The complete size
cond.EY.p <-
c(munb.p - Bits[["SumT1.p"]] -
Bits[["SumI1.mlm.p"]] - Bits[["SumI1.mix.p"]] -
Bits[["SumD1.mlm.p"]] - Bits[["SumD1.mix.p"]] - # 20211109
Bits[["SumA1.mlm.p"]] - Bits[["SumA1.mix.p"]]) / c(
Denom0.p -
Bits[["SumD0.mix.p"]] - Bits[["SumD0.mlm.p"]] - # 20211109
Bits[["SumI0.mix.p"]] - Bits[["SumI0.mlm.p"]])
probns <- Numer * (1 -
(c(Bits[["SumI0.mix.p"]] + Bits[["SumI0.mlm.p"]]) +
c(Bits[["SumD0.mix.p"]] + Bits[["SumD0.mlm.p"]])) / Denom0.p)
if (min(probns) < 0 || 1 < max(probns))
stop("variable 'probns' for P(nonspecial) is out of range")
zero0n <- numeric(n)
ned2l.dpobs.mix.munb.p <- zero0n # mB overwritten below [4279]
ned2l.dpobs.mix.munb.a <- zero0n # Fini; (3, 4) element
ned2l.dpobs.mix.munb.i <- zero0n # mB overwritten below
ned2l.dpobs.mix.munb.d <- zero0n # mB overwritten below
ned2l.dpstr.mix.munb.p <- zero0n # Optional (1, 6) element
ned2l.dpstr.mix.munb.a <- zero0n # Final; nothing to do
ned2l.dpstr.mix.munb.i <- zero0n # mB overwritten below
ned2l.dpstr.mix.munb.d <- zero0n # mB overwritten below
ned2l.dpdip.mix.munb.p <- zero0n # Optional (1, 9) element
ned2l.dpdip.mix.munb.i <- zero0n # Optional (7, 9) element
ned2l.dpdip.mix.munb.d <- zero0n # Optional (9, 10) element
ned2l.dpobs.mix.size.p <- zero0n # mB overwritten below [4279]
ned2l.dpobs.mix.size.a <- zero0n # Fini; (3, 5) element
ned2l.dpobs.mix.size.i <- zero0n # mB overwritten below
ned2l.dpobs.mix.size.d <- zero0n # mB overwritten below
ned2l.dpstr.mix.size.p <- zero0n # Optional (2, 6) element
ned2l.dpstr.mix.size.i <- zero0n # mB overwritten below
ned2l.dpstr.mix.size.d <- zero0n # mB overwritten below
ned2l.dpdip.mix.size.p <- zero0n # Optional (2, 9) element
ned2l.dpdip.mix.size.i <- zero0n # Optional (8, 9) element
ned2l.dpdip.mix.size.d <- zero0n # Optional (9, 11) element
ned2l.dpobs.mlm.size.i <- zero0n # Optional (8, 12) element
ned2l.dpobs.mlm.size.d <- zero0n # Optional (11, 12) element
posn.pobs.mix <- as.vector(extra$indeta[ 3, 'launch'])
posn.munb.a <- as.vector(extra$indeta[ 4, 'launch'])
posn.size.a <- as.vector(extra$indeta[ 5, 'launch'])
posn.pstr.mix <- as.vector(extra$indeta[ 6, 'launch'])
posn.munb.i <- as.vector(extra$indeta[ 7, 'launch'])
posn.size.i <- as.vector(extra$indeta[ 8, 'launch'])
posn.pdip.mix <- as.vector(extra$indeta[ 9, 'launch'])
posn.munb.d <- as.vector(extra$indeta[10, 'launch'])
posn.size.d <- as.vector(extra$indeta[11, 'launch'])
posn.pobs.mlm <- as.vector(extra$indeta[12, 'launch'])
posn.pstr.mlm <- as.vector(extra$indeta[13, 'launch'])
posn.pdip.mlm <- as.vector(extra$indeta[14, 'launch'])
ned2l.dpdip.mix2 <- # Elt (9, 9)
ned2l.dpstr.mix2 <- # Elt (6, 6). Unchanged by deflation.
ned2l.dpobs.mlm.pstr.mix <- # Elts (6, >=12). (((09)))
ned2l.dpobs.mix.pstr.mix <- +probns / Numer^2 # ccc Elt (3, 6)
if (all(c(la.mix, li.mlm) > 0)) # (((08)))
ned2l.dpobs.mix.pstr.mlm <- matrix( probns / Numer^2, n, li.mlm)
if (all(c(li.mix, li.mlm) > 0)) # (((10)))
ned2l.dpstr.mix.pstr.mlm <- matrix( probns / Numer^2, n, li.mlm)
if (all(c(ld.mix, ld.mlm) > 0)) # (((21)))
ned2l.dpdip.mix.pdip.mlm <- matrix( probns / Numer^2, n, ld.mlm)
ned2l.dpobs.mlm.pdip.mix <- # Elts (9, >=12). (((19)))
ned2l.dpstr.mix.pdip.mix <- # Elt (6, 9)
ned2l.dpobs.mix.pdip.mix <- -probns / Numer^2 # ccc Elt (3, 9)
if (all(c(la.mix, ld.mlm) > 0)) # (((17)))
ned2l.dpobs.mix.pdip.mlm <- matrix(-probns / Numer^2, n, ld.mlm)
if (all(c(li.mix, ld.mlm) > 0)) # (((18)))
ned2l.dpstr.mix.pdip.mlm <- matrix(-probns / Numer^2, n, ld.mlm)
if (all(c(ld.mix, li.mlm) > 0)) # (((20)))
ned2l.dpdip.mix.pstr.mlm <- matrix(-probns / Numer^2, n, li.mlm)
ned2l.dmunb.p2 <- probns * (
cond.EY.p / munb.p^2 -
(cond.EY.p + size.p) / (munb.p + size.p)^2 + # ddd
Denom2.p1 / Denom0.p - (Denom1.p1 / Denom0.p)^2) +
(if (tmp3.TF[ 6] && li.mix) Numer *
rowSums(Numer *
(d1B.PI.mix1^2) / DELTA.i.mix - d2B.PI.mix1) else 0) +
(if (tmp3.TF[13] && li.mlm) Numer *
rowSums(Numer *
(d1B.PI.mlm1^2) / DELTA.i.mlm - d2B.PI.mlm1) else 0) +
(if (tmp3.TF[ 9] && ld.mix) Numer *
rowSums(Numer *
(d1B.PD.mix1^2) / DELTA.d.mix - d2B.PD.mix1) else 0) +
(if (tmp3.TF[14] && ld.mlm) Numer * # nnn.
rowSums(Numer *
(d1B.PD.mlm1^2) / DELTA.d.mlm - d2B.PD.mlm1) else 0)
wz[, iam(1, 1, M)] <- ned2l.dmunb.p2 * dmunb.p.deta^2
diff.trig.nbd <- numeric(n) # Storage
ind2 <- rep_len(FALSE, n) # Used for SFS
max.chunk.MB <- ( .max.chunk.MB )
eff.p <- sort(c( .cutoff.prob , 1 - .cutoff.prob ))
Q.mins <- 0
Q.maxs <- round(qnbinom(p = eff.p[2], mu = munb.p,
size = size.p) * 1.1) + 30
eps.trig <- ( .eps.trig )
Q.MAXS <- if ( .lsize.p == "loglink")
pmax(10, ceiling(size.p / sqrt(eps.trig))) else Inf
Q.maxs <- pmin(Q.maxs, Q.MAXS)
ind1 <- if (max.chunk.MB > 0)
(Q.maxs - Q.mins < max.support) else
stop("argument 'max.chunk.MB' > 0 is needed")
if ((NN <- sum(ind1)) > 0) {
Object.Size <- NN * 8 * max(Q.maxs - Q.mins) / (2^20)
n.chunks <- if (intercept.only) 1 else
max(1, ceiling( Object.Size / max.chunk.MB))
chunk.rows <- ceiling(NN / n.chunks)
ind2 <- ind1 # Save this
wind2 <- which(ind1)
upr.ptr <- 0
lwr.ptr <- upr.ptr + 1
while (lwr.ptr <= NN) {
upr.ptr <- min(upr.ptr + chunk.rows, NN)
sind2 <- wind2[lwr.ptr:upr.ptr]
diff.trig.nbd[sind2] <-
EIM.NB.specialp(mu = munb.p, size = size.p,
y.max = max(Q.maxs[sind2]),
cutoff.prob = .cutoff.prob ,
extra.bit = FALSE, # extra.bit omitted
intercept.only = intercept.only)
lwr.ptr <- upr.ptr + 1
} # while
cond.diff.trig.nbd <- diff.trig.nbd
specialvals <- c(truncate, a.mlm, a.mix, i.mlm, i.mix,
d.mlm, d.mix) # max.support??
for (sval in specialvals) {
cond.diff.trig.nbd <- cond.diff.trig.nbd -
(trigamma(size.p) - trigamma(sval + size.p)) *
dnbinom(sval, size = size.p, mu = munb.p)
} # for sval
cond.diff.trig.nbd <- cond.diff.trig.nbd / c(
Denom0.p -
Bits[["SumD0.mix.p"]] - Bits[["SumD0.mlm.p"]] - # 20211109
Bits[["SumI0.mix.p"]] - Bits[["SumI0.mlm.p"]])
} # if ((NN <- sum(ind1)) > 0)
ned2l.dsize.p2 <- probns * (cond.diff.trig.nbd +
(-munb.p) / (size.p * (size.p + munb.p)) -
(cond.EY.p - munb.p) / (munb.p + size.p)^2 +
Denom2.p2 / Denom0.p - (Denom1.p2 / Denom0.p)^2) +
(if (tmp3.TF[ 6] && li.mix) Numer *
rowSums(Numer *
(d1B.PI.mix2^2) / DELTA.i.mix - d2B.PI.mix2) else 0) +
(if (tmp3.TF[13] && li.mlm) Numer *
rowSums(Numer *
(d1B.PI.mlm2^2) / DELTA.i.mlm - d2B.PI.mlm2) else 0) +
(if (tmp3.TF[ 9] && ld.mix) Numer *
rowSums(Numer *
(d1B.PD.mix2^2) / DELTA.d.mix - d2B.PD.mix2) else 0) +
(if (tmp3.TF[14] && ld.mlm) Numer * # nnn.
rowSums(Numer *
(d1B.PD.mlm2^2) / DELTA.d.mlm - d2B.PD.mlm2) else 0)
wz[, iam(2, 2, M)] <- ned2l.dsize.p2 * dsize.p.deta^2
ned2l.dmusz.p2 <- probns * (
(munb.p - cond.EY.p) / (munb.p + size.p)^2 +
Denom2.p4 / Denom0.p - Denom1.p1 * Denom1.p2 / Denom0.p^2) +
(if (tmp3.TF[ 6] && li.mix) Numer *
rowSums(Numer * d1B.PI.mix1 * d1B.PI.mix2 / DELTA.i.mix -
d2B.PI.mix4) else 0) +
(if (tmp3.TF[13] && li.mlm) Numer *
rowSums(Numer * d1B.PI.mlm1 * d1B.PI.mlm2 / DELTA.i.mlm -
d2B.PI.mlm4) else 0) +
(if (tmp3.TF[ 9] && ld.mix) Numer *
rowSums(Numer * d1B.PD.mix1 * d1B.PD.mix2 / DELTA.d.mix -
d2B.PD.mix4) else 0) +
(if (tmp3.TF[14] && ld.mlm) Numer * # nnn.
rowSums(Numer * d1B.PD.mlm1 * d1B.PD.mlm2 / DELTA.d.mlm -
d2B.PD.mlm4) else 0)
wz[, iam(1, 2, M)] <- ned2l.dmusz.p2 * dmunb.p.deta * dsize.p.deta
ned2l.dpobs.mix2 <- 1 / pobs.mix + probns / Numer^2
if (tmp3.TF[ 6] && li.mix > 0) {
ned2l.dpobs.mix2 <- # More just below, ccc
ned2l.dpobs.mix2 + rowSums(d0B.PI.mix^2 / DELTA.i.mix)
}
if (tmp3.TF[13] && li.mlm > 0) {
ned2l.dpobs.mix2 <- # ccc.
ned2l.dpobs.mix2 + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
}
if (tmp3.TF[ 9] && ld.mix > 0) {
ned2l.dpobs.mix2 <- # nnn
ned2l.dpobs.mix2 + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
}
if (tmp3.TF[14] && ld.mlm > 0) {
ned2l.dpobs.mix2 <- # nnn
ned2l.dpobs.mix2 + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
}
if (tmp3.TF[ 3] && la.mix > 0)
wz[, iam(3, 3, M)] <- ned2l.dpobs.mix2 # Link done later
if (tmp3.TF[ 4] && la.mix > 1) {
ned2l.dmunb.a2 <- pobs.mix * (
rowSums((DA.mix.1mat.a1^2) / DA.mix.0mat.a) / Denom0.a -
(Denom1.a1 / Denom0.a)^2) # ccc.
wz[, iam(4, 4, M)] <- ned2l.dmunb.a2 * dmunb.a.deta^2
ned2l.dsize.a2 <- pobs.mix * (
rowSums((DA.mix.1mat.a2^2) / DA.mix.0mat.a) / Denom0.a -
(Denom1.a2 / Denom0.a)^2) # ddd.
wz[, iam(5, 5, M)] <- ned2l.dsize.a2 * dsize.a.deta^2
ned2l.dmusz.a2 <- pobs.mix * (
rowSums(DA.mix.1mat.a1 * DA.mix.1mat.a2 / DA.mix.0mat.a) / (
Denom0.a) -
Denom1.a1 * Denom1.a2 / Denom0.a^2) # ddd.
wz[, iam(4, 5, M)] <- ned2l.dmusz.a2 * dmunb.a.deta * dsize.a.deta
} # tmp3.TF[ 4] && la.mix > 1
if (tmp3.TF[ 6] && li.mix > 0) {
ned2l.dpstr.mix2 <-
ned2l.dpstr.mix2 +
rowSums((d0A.i - d0B.PI.mix)^2 / DELTA.i.mix)
if (tmp3.TF[ 3] && la.mix > 0)
ned2l.dpobs.mix.munb.p <-
ned2l.dpobs.mix.munb.p +
rowSums(d1B.PI.mix1 * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (tmp3.TF[ 3] && la.mix > 0)
ned2l.dpobs.mix.size.p <-
ned2l.dpobs.mix.size.p +
rowSums(d1B.PI.mix2 * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
ned2l.dpstr.mix.munb.p <-
ned2l.dpstr.mix.munb.p + rowSums(
d1B.PI.mix1 * (1 + Numer * (d0A.i - d0B.PI.mix) / DELTA.i.mix))
ned2l.dpstr.mix.size.p <-
ned2l.dpstr.mix.size.p + rowSums(
d1B.PI.mix2 * (1 + Numer * (d0A.i - d0B.PI.mix) / DELTA.i.mix))
if (tmp3.TF[ 9])
ned2l.dpdip.mix.munb.p <-
ned2l.dpdip.mix.munb.p - rowSums(
d1B.PI.mix1 * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (tmp3.TF[ 9])
ned2l.dpdip.mix.size.p <-
ned2l.dpdip.mix.size.p - rowSums(
d1B.PI.mix2 * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (all(tmp3.TF[c(3, 6)]))
ned2l.dpobs.mix.pstr.mix <- # ccc
ned2l.dpobs.mix.pstr.mix +
rowSums(-d0B.PI.mix * (d0A.i - d0B.PI.mix) / DELTA.i.mix)
if (all(tmp3.TF[c(6, 9)]))
ned2l.dpstr.mix.pdip.mix <-
ned2l.dpstr.mix.pdip.mix + rowSums(
d0B.PI.mix * (d0A.i - d0B.PI.mix) / DELTA.i.mix)
if (!is.na(posn.pdip.mix)) {
ned2l.dpdip.mix2 <-
ned2l.dpdip.mix2 + rowSums(d0B.PI.mix^2 / DELTA.i.mix)
}
} # (tmp3.TF[ 6] && li.mix > 0)
if (all(tmp3.TF[c(3, 6, 13)])) { # was la.mix > 0 & DELTA.i.mix
ned2l.dpobs.mix.pstr.mix <- # ccc
ned2l.dpobs.mix.pstr.mix + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
}
if (all(tmp3.TF[c(3, 6, 9)])) { # == ld.mix > 0 & DELTA.d.mix
ned2l.dpobs.mix.pstr.mix <- # nnn
ned2l.dpobs.mix.pstr.mix + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
}
if (all(tmp3.TF[c(3, 6, 14)])) { # == ld.mlm > 0 & DELTA.d.mlm
ned2l.dpobs.mix.pstr.mix <- # nnn.
ned2l.dpobs.mix.pstr.mix + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
}
if (!is.na(posn.pobs.mix) && !is.na(posn.pstr.mix))
wz[, iam(posn.pobs.mix, posn.pstr.mix, M)] <-
ned2l.dpobs.mix.pstr.mix # Link done later
if (all(tmp3.TF[c(3, 9)]))
ned2l.dpobs.mix.pdip.mix <- # nnn
ned2l.dpobs.mix.pdip.mix +
rowSums( d0B.PD.mix * (d0A.d - d0B.PD.mix) / DELTA.d.mix)
if (all(tmp3.TF[c(3, 9, 13)])) { # == li.mlm > 0 & DELTA.i.mix
ned2l.dpobs.mix.pdip.mix <- # nnn
ned2l.dpobs.mix.pdip.mix - rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
}
if (all(tmp3.TF[c(3, 9, 6)])) { # == li.mix > 0 & DELTA.i.mix
ned2l.dpobs.mix.pdip.mix <- # nnn
ned2l.dpobs.mix.pdip.mix - rowSums(d0B.PI.mix^2 / DELTA.i.mix)
}
if (all(tmp3.TF[c(3, 9, 14)])) { # == ld.mlm > 0 & DELTA.d.mlm
ned2l.dpobs.mix.pdip.mix <- # nnn.
ned2l.dpobs.mix.pdip.mix - rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
}
if (!is.na(posn.pobs.mix) && !is.na(posn.pdip.mix))
wz[, iam(posn.pobs.mix, posn.pdip.mix, M)] <-
ned2l.dpobs.mix.pdip.mix # Link done later
if (tmp3.TF[ 7] && li.mix > 1) { # \calI_{p}, includes \theta_i.
ned2l.dmunb.p.munb.i <- pstr.mix * Numer *
rowSums(d1A.i1 * d1B.PI.mix1 / DELTA.i.mix) # ccc.
wz[, iam(1, posn.munb.i, M)] <- ned2l.dmunb.p.munb.i *
dmunb.p.deta * dmunb.i.deta # All links done here
ned2l.dmunb.p.size.i <- pstr.mix * Numer *
rowSums(d1A.i2 * d1B.PI.mix1 / DELTA.i.mix)
wz[, iam(1, posn.size.i, M)] <- ned2l.dmunb.p.size.i *
dmunb.p.deta * dsize.i.deta # All links done here
ned2l.dsize.p.munb.i <- pstr.mix * Numer *
rowSums(d1A.i1 * d1B.PI.mix2 / DELTA.i.mix)
wz[, iam(2, posn.munb.i, M)] <- ned2l.dsize.p.munb.i *
dsize.p.deta * dmunb.i.deta # All links done here
ned2l.dsize.p.size.i <- pstr.mix * Numer *
rowSums(d1A.i2 * d1B.PI.mix2 / DELTA.i.mix)
wz[, iam(2, posn.size.i, M)] <- ned2l.dsize.p.size.i *
dsize.p.deta * dsize.i.deta # All links done here
ned2l.dmunb.i2 <- pstr.mix *
rowSums(pstr.mix * (d1A.i1^2) / DELTA.i.mix - d2A.i1) # ccc.
wz[, iam(posn.munb.i, posn.munb.i, M)] <-
ned2l.dmunb.i2 * dmunb.i.deta^2
ned2l.dsize.i2 <- pstr.mix *
rowSums(pstr.mix * (d1A.i2^2) / DELTA.i.mix - d2A.i2) # ddd.
wz[, iam(posn.size.i, posn.size.i, M)] <-
ned2l.dsize.i2 * dsize.i.deta^2
ned2l.dmusz.i2 <- pstr.mix *
rowSums(pstr.mix * d1A.i1 * d1A.i2 / DELTA.i.mix - d2A.i4)
wz[, iam(posn.munb.i, posn.size.i, M)] <-
ned2l.dmusz.i2 * dmunb.i.deta * dsize.i.deta
if (tmp3.TF[ 3]) { # tmp3.TF[ 6] is TRUE, given tmp3.TF[ 7]
ned2l.dpobs.mix.munb.i <-
rowSums(-pstr.mix * d1A.i1 * d0B.PI.mix / DELTA.i.mix) # ccc.
wz[, iam(posn.pobs.mix, posn.munb.i, M)] <-
ned2l.dpobs.mix.munb.i # * dmunb.i.deta done later
}
if (tmp3.TF[ 3]) { # tmp3.TF[ 6] is TRUE, given tmp3.TF[ 7]
ned2l.dpobs.mix.size.i <-
rowSums(-pstr.mix * d1A.i2 * d0B.PI.mix / DELTA.i.mix) # ddd.
wz[, iam(posn.pobs.mix, posn.size.i, M)] <-
ned2l.dpobs.mix.size.i # * dsize.i.deta done later
}
if (tmp3.TF[ 6]) {
ned2l.dpstr.mix.munb.i <- rowSums( # ccc.
d1A.i1 * (pstr.mix * (d0A.i - d0B.PI.mix) / DELTA.i.mix - 1))
wz[, iam(posn.pstr.mix, posn.munb.i, M)] <-
ned2l.dpstr.mix.munb.i # * dmunb.i.deta done later
}
if (tmp3.TF[ 6]) {
ned2l.dpstr.mix.size.i <- rowSums( # ddd.
d1A.i2 * (pstr.mix * (d0A.i - d0B.PI.mix) / DELTA.i.mix - 1))
wz[, iam(posn.pstr.mix, posn.size.i, M)] <-
ned2l.dpstr.mix.size.i # * dsize.i.deta done later
}
if (all(tmp3.TF[c(7, 9)])) {
ned2l.dpdip.mix.munb.i <- rowSums(
(-pstr.mix) * d0B.PI.mix * d1A.i1 / DELTA.i.mix)
wz[, iam(posn.pdip.mix, posn.munb.i, M)] <-
ned2l.dpdip.mix.munb.i # link done later
}
if (all(tmp3.TF[c(7, 9)])) {
ned2l.dpdip.mix.size.i <- rowSums(
(-pstr.mix) * d0B.PI.mix * d1A.i2 / DELTA.i.mix)
wz[, iam(posn.pdip.mix, posn.size.i, M)] <-
ned2l.dpdip.mix.size.i # link done later
}
if (tmp3.TF[12]) {
ned2l.dpobs.mlm.munb.i <- rowSums(
-pstr.mix * d0B.PI.mix * d1A.i1 / DELTA.i.mix) # ccc.
for (uuu in seq(la.mlm))
wz[, iam(posn.pobs.mlm - 1 + uuu, posn.munb.i, M)] <-
ned2l.dpobs.mlm.munb.i # * dmunb.i.deta done later
}
if (tmp3.TF[12]) {
ned2l.dpobs.mlm.size.i <- rowSums(
-pstr.mix * d0B.PI.mix * d1A.i2 / DELTA.i.mix) # ddd.
for (uuu in seq(la.mlm))
wz[, iam(posn.pobs.mlm - 1 + uuu, posn.size.i, M)] <-
ned2l.dpobs.mlm.size.i # * dsize.i.deta done later
}
} # (tmp3.TF[ 7] && li.mix > 1)
if (tmp3.TF[ 9] && ld.mix > 0) { # \calD_{p}, maybe w. \theta_d
if (tmp3.TF[ 3] && la.mix > 0)
ned2l.dpobs.mix.munb.p <-
ned2l.dpobs.mix.munb.p +
rowSums(d1B.PD.mix1 * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
if (tmp3.TF[ 3] && la.mix > 0)
ned2l.dpobs.mix.size.p <-
ned2l.dpobs.mix.size.p +
rowSums(d1B.PD.mix2 * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
ned2l.dpstr.mix.munb.p <-
ned2l.dpstr.mix.munb.p + rowSums(
d1B.PD.mix1 * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
ned2l.dpstr.mix.size.p <-
ned2l.dpstr.mix.size.p + rowSums(
d1B.PD.mix2 * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
ned2l.dpdip.mix.munb.p <-
ned2l.dpdip.mix.munb.p - rowSums(
d1B.PD.mix1 * (1 + Numer * (d0A.d - d0B.PD.mix) / DELTA.d.mix))
ned2l.dpdip.mix.size.p <-
ned2l.dpdip.mix.size.p - rowSums(
d1B.PD.mix2 * (1 + Numer * (d0A.d - d0B.PD.mix) / DELTA.d.mix))
if (!is.na(posn.pstr.mix)) {
ned2l.dpstr.mix2 <-
ned2l.dpstr.mix2 + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
}
if (all(tmp3.TF[c(6, 9)]))
ned2l.dpstr.mix.pdip.mix <-
ned2l.dpstr.mix.pdip.mix + rowSums(
d0B.PD.mix * (d0A.d - d0B.PD.mix) / DELTA.d.mix)
ned2l.dpdip.mix2 <-
ned2l.dpdip.mix2 +
rowSums((d0A.d - d0B.PD.mix)^2 / DELTA.d.mix)
} # (tmp3.TF[ 9] && ld.mix > 0)
if (tmp3.TF[10] && ld.mix > 1) { # \calD_{p}, includes \theta_d
ned2l.dmunb.p.munb.d <- (-pdip.mix) * Numer *
rowSums(d1A.d1 * d1B.PD.mix1 / DELTA.d.mix) # nnn.
wz[, iam(1, posn.munb.d, M)] <- ned2l.dmunb.p.munb.d *
dmunb.p.deta * dmunb.d.deta # All links done here
ned2l.dmunb.p.size.d <- (-pdip.mix) * Numer *
rowSums(d1A.d2 * d1B.PD.mix1 / DELTA.d.mix)
wz[, iam(1, posn.size.d, M)] <- ned2l.dmunb.p.size.d *
dmunb.p.deta * dsize.d.deta # All links done here
ned2l.dsize.p.munb.d <- (-pdip.mix) * Numer *
rowSums(d1A.d1 * d1B.PD.mix2 / DELTA.d.mix) # ddd.
wz[, iam(2, posn.munb.d, M)] <- ned2l.dsize.p.munb.d *
dsize.p.deta * dmunb.d.deta # All links done here
ned2l.dsize.p.size.d <- (-pdip.mix) * Numer *
rowSums(d1A.d2 * d1B.PD.mix2 / DELTA.d.mix)
wz[, iam(2, posn.size.d, M)] <- ned2l.dsize.p.size.d *
dsize.p.deta * dsize.d.deta # All links done here
if (tmp3.TF[ 3]) { # tmp3.TF[ 9] is TRUE, given tmp3.TF[10]
ned2l.dpobs.mix.munb.d <-
rowSums(pdip.mix * d1A.d1 * d0B.PD.mix / DELTA.d.mix) # nnn.
wz[, iam(posn.pobs.mix, posn.munb.d, M)] <-
ned2l.dpobs.mix.munb.d # link done later
}
if (tmp3.TF[ 3]) { # tmp3.TF[ 9] is TRUE, given tmp3.TF[10]
ned2l.dpobs.mix.size.d <-
rowSums(pdip.mix * d1A.d2 * d0B.PD.mix / DELTA.d.mix) # ddd.
wz[, iam(posn.pobs.mix, posn.size.d, M)] <-
ned2l.dpobs.mix.size.d # link done later
}
if (tmp3.TF[ 6]) {
ned2l.dpstr.mix.munb.d <- rowSums(
pdip.mix * d1A.d1 * d0B.PD.mix / DELTA.d.mix)
wz[, iam(posn.pstr.mix, posn.munb.d, M)] <-
ned2l.dpstr.mix.munb.d # * dmunb.i.deta done later
}
if (tmp3.TF[ 6]) {
ned2l.dpstr.mix.size.d <- rowSums(
pdip.mix * d1A.d2 * d0B.PD.mix / DELTA.d.mix)
wz[, iam(posn.pstr.mix, posn.size.d, M)] <-
ned2l.dpstr.mix.size.d # * dsize.i.deta done later
}
ned2l.dpdip.mix.munb.d <- rowSums(
d1A.d1 * (1 + pdip.mix * (d0A.d - d0B.PD.mix) / DELTA.d.mix))
wz[, iam(posn.pdip.mix, posn.munb.d, M)] <-
ned2l.dpdip.mix.munb.d # * dmunb.d.deta done later
ned2l.dpdip.mix.size.d <- rowSums(
d1A.d2 * (1 + pdip.mix * (d0A.d - d0B.PD.mix) / DELTA.d.mix))
wz[, iam(posn.pdip.mix, posn.size.d, M)] <-
ned2l.dpdip.mix.size.d # * dsize.d.deta done later
ned2l.dmunb.d2 <- pdip.mix *
rowSums(pdip.mix * (d1A.d1^2) / DELTA.d.mix + d2A.d1) # nnn.
wz[, iam(posn.munb.d, posn.munb.d, M)] <-
ned2l.dmunb.d2 * dmunb.d.deta^2
ned2l.dsize.d2 <- pdip.mix *
rowSums(pdip.mix * (d1A.d2^2) / DELTA.d.mix + d2A.d2) # ddd.
wz[, iam(posn.size.d, posn.size.d, M)] <-
ned2l.dsize.d2 * dsize.d.deta^2
ned2l.dmusz.d2 <- pdip.mix *
rowSums(pdip.mix * d1A.d1 * d1A.d2 / DELTA.d.mix + d2A.d4)
wz[, iam(posn.munb.d, posn.size.d, M)] <-
ned2l.dmusz.d2 * dmunb.d.deta * dsize.d.deta
if (tmp3.TF[12]) {
ned2l.dpobs.mlm.munb.d <- rowSums(
pdip.mix * d0B.PD.mix * d1A.d1 / DELTA.d.mix) # ddd.
for (uuu in seq(la.mlm))
wz[, iam(posn.pobs.mlm - 1 + uuu, posn.munb.d, M)] <-
ned2l.dpobs.mlm.munb.d # * dmunb.d.deta done later
}
if (tmp3.TF[12]) {
ned2l.dpobs.mlm.size.d <- rowSums(
pdip.mix * d0B.PD.mix * d1A.d2 / DELTA.d.mix) # ddd.
for (uuu in seq(la.mlm))
wz[, iam(posn.pobs.mlm - 1 + uuu, posn.size.d, M)] <-
ned2l.dpobs.mlm.size.d # * dsize.d.deta done later
}
} # (tmp3.TF[10] && ld.mix > 1)
if (tmp3.TF[13] && li.mlm > 0) { # \calI_{np}, includes \phi_s.
if (la.mix && tmp3.TF[ 3])
ned2l.dpobs.mix.munb.p <- # ccc
ned2l.dpobs.mix.munb.p +
rowSums(d1B.PI.mlm1 * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
if (la.mix && tmp3.TF[ 3])
ned2l.dpobs.mix.size.p <- # ddd
ned2l.dpobs.mix.size.p +
rowSums(d1B.PI.mlm2 * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
ned2l.dpstr.mix.munb.p <- # ccc.
ned2l.dpstr.mix.munb.p + rowSums(
d1B.PI.mlm1 * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
ned2l.dpstr.mix.size.p <- # ddd
ned2l.dpstr.mix.size.p + rowSums(
d1B.PI.mlm2 * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
if (tmp3.TF[ 9])
ned2l.dpdip.mix.munb.p <-
ned2l.dpdip.mix.munb.p - rowSums(
d1B.PI.mlm1 * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
if (tmp3.TF[ 9])
ned2l.dpdip.mix.size.p <-
ned2l.dpdip.mix.size.p - rowSums(
d1B.PI.mlm2 * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
if (!is.na(posn.pstr.mix)) {
ned2l.dpstr.mix2 <-
ned2l.dpstr.mix2 + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
}
if (all(tmp3.TF[c(4, 6)]))
ned2l.dpstr.mix.pdip.mix <-
ned2l.dpstr.mix.pdip.mix - rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
if (!is.na(posn.pdip.mix)) {
ned2l.dpdip.mix2 <-
ned2l.dpdip.mix2 + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
}
} # tmp3.TF[13] && li.mlm > 0
if (tmp3.TF[14] && ld.mlm > 0) { # \calD_{np}, includes \psi_s.
if (la.mix && tmp3.TF[ 3])
ned2l.dpobs.mix.munb.p <- # nnn.
ned2l.dpobs.mix.munb.p +
rowSums(d1B.PD.mlm1 * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
if (la.mix && tmp3.TF[ 3])
ned2l.dpobs.mix.size.p <- # ddd.
ned2l.dpobs.mix.size.p +
rowSums(d1B.PD.mlm2 * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
ned2l.dpstr.mix.munb.p <- # nnn.
ned2l.dpstr.mix.munb.p + rowSums(
d1B.PD.mlm1 * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
ned2l.dpstr.mix.size.p <- # ddd.
ned2l.dpstr.mix.size.p + rowSums(
d1B.PD.mlm2 * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
if (tmp3.TF[ 9])
ned2l.dpdip.mix.munb.p <-
ned2l.dpdip.mix.munb.p - rowSums(
d1B.PD.mlm1 * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
if (tmp3.TF[ 9])
ned2l.dpdip.mix.size.p <-
ned2l.dpdip.mix.size.p - rowSums(
d1B.PD.mlm2 * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
if (!is.na(posn.pstr.mix)) {
ned2l.dpstr.mix2 <-
ned2l.dpstr.mix2 + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
}
if (all(tmp3.TF[c(6, 9)]))
ned2l.dpstr.mix.pdip.mix <-
ned2l.dpstr.mix.pdip.mix - rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
if (!is.na(posn.pdip.mix)) {
ned2l.dpdip.mix2 <-
ned2l.dpdip.mix2 + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
}
} # tmp3.TF[14] && ld.mlm > 0
if (!is.na(posn.pobs.mix)) # Optional (1, 3) element:
wz[, iam(1, posn.pobs.mix, M)] <-
ned2l.dpobs.mix.munb.p # One link done later
if (!is.na(posn.pobs.mix)) # Optional (2, 3) element:
wz[, iam(2, posn.pobs.mix, M)] <-
ned2l.dpobs.mix.size.p # One link done later
if (!is.na(posn.pstr.mix)) # Optional (1, 6) element
wz[, iam(1, posn.pstr.mix, M)] <-
ned2l.dpstr.mix.munb.p # One link done later
if (!is.na(posn.pstr.mix)) # Optional (2, 6) element
wz[, iam(2, posn.pstr.mix, M)] <-
ned2l.dpstr.mix.size.p # One link done later
if (!is.na(posn.pdip.mix)) # Optional (1, 9) element
wz[, iam(1, posn.pdip.mix, M)] <-
ned2l.dpdip.mix.munb.p # One link done later
if (!is.na(posn.pdip.mix)) # Optional (2, 9) element
wz[, iam(2, posn.pdip.mix, M)] <-
ned2l.dpdip.mix.size.p # One link done later
if (!is.na(posn.pstr.mix) &&
!is.na(posn.pdip.mix)) # Optional (6, 9) element
wz[, iam(posn.pstr.mix, posn.pdip.mix, M)] <-
ned2l.dpstr.mix.pdip.mix # Links done later
if (!is.na(posn.pstr.mix)) # Optional (6, 6) element
wz[, iam(posn.pstr.mix, # Link done later
posn.pstr.mix, M)] <- ned2l.dpstr.mix2
if (!is.na(posn.pdip.mix)) # Optional (9, 9) element
wz[, iam(posn.pdip.mix, # Link done later
posn.pdip.mix, M)] <- ned2l.dpdip.mix2
if (tmp3.TF[12] && la.mlm) { # \calA_{np}, includes \omega_s
ofset <- posn.pobs.mlm - 1 # 11 for GAITD combo
for (uuu in seq(la.mlm)) { # Diagonal elts only
wz[, iam(ofset + uuu,
ofset + uuu, M)] <- 1 / pobs.mlm[, uuu]
} # uuu
tmp8a <- probns / Numer^2
if (tmp3.TF[ 6] && li.mix)
tmp8a <- tmp8a + rowSums((d0B.PI.mix^2) / DELTA.i.mix)
if (tmp3.TF[13] && li.mlm)
tmp8a <- tmp8a + rowSums((d0B.PI.mlm^2) / DELTA.i.mlm)
if (tmp3.TF[ 9] && ld.mix)
tmp8a <- tmp8a + rowSums((d0B.PD.mix^2) / DELTA.d.mix)
if (tmp3.TF[14] && ld.mlm)
tmp8a <- tmp8a + rowSums((d0B.PD.mlm^2) / DELTA.d.mlm)
for (uuu in seq(la.mlm)) # All elts
for (vvv in uuu:la.mlm)
wz[, iam(ofset + uuu, ofset + vvv, M)] <-
wz[, iam(ofset + uuu, ofset + vvv, M)] + tmp8a # All elts
} # la.mlm
if (tmp3.TF[12] && la.mlm) {
init0.i.val <- init0.d.val <- 0
if (tmp3.TF[13] && li.mlm) init0.i.val <-
rowSums(d1B.PI.mlm1 * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
if (tmp3.TF[14] && ld.mlm) init0.d.val <-
rowSums(d1B.PD.mlm1 * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
ned2l.dpobs.mlm.munb.p <- init0.i.val + init0.d.val # Vector
if (tmp3.TF[ 6] && li.mix)
ned2l.dpobs.mlm.munb.p <-
ned2l.dpobs.mlm.munb.p + rowSums(
d1B.PI.mix1 * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (tmp3.TF[ 9] && ld.mix)
ned2l.dpobs.mlm.munb.p <-
ned2l.dpobs.mlm.munb.p + rowSums( # nnn
d1B.PD.mix1 * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
ofset <- posn.pobs.mlm - 1 # 11 for combo
for (vvv in seq(la.mlm)) # ccc.
wz[, iam(1, ofset + vvv, M)] <- ned2l.dpobs.mlm.munb.p
init0.i.val <- init0.d.val <- 0
if (tmp3.TF[13] && li.mlm) init0.i.val <-
rowSums(d1B.PI.mlm2 * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
if (tmp3.TF[14] && ld.mlm) init0.d.val <-
rowSums(d1B.PD.mlm2 * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
ned2l.dpobs.mlm.size.p <- init0.i.val + init0.d.val # Vector
if (tmp3.TF[ 6] && li.mix)
ned2l.dpobs.mlm.size.p <-
ned2l.dpobs.mlm.size.p + rowSums(
d1B.PI.mix2 * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (tmp3.TF[ 9] && ld.mix)
ned2l.dpobs.mlm.size.p <-
ned2l.dpobs.mlm.size.p + rowSums( # ddd
d1B.PD.mix2 * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
ofset <- posn.pobs.mlm - 1 # 11 for combo
for (vvv in seq(la.mlm)) # ccc.
wz[, iam(2, ofset + vvv, M)] <- ned2l.dpobs.mlm.size.p
} # la.mlm > 0
if (tmp3.TF[13] && li.mlm > 0) { # \calI_{np}, includes \phi_s
init0.val <- probns / Numer^2
if (li.mix)
init0.val <- init0.val + rowSums((d0B.PI.mix^2) / DELTA.i.mix)
if (ld.mix) # nnn
init0.val <- init0.val + rowSums((d0B.PD.mix^2) / DELTA.d.mix)
if (ld.mlm) # nnn
init0.val <- init0.val + rowSums((d0B.PD.mlm^2) / DELTA.d.mlm)
ned2l.dpstr.mlm2 <-
matrix(init0.val, n, li.mlm * (li.mlm + 1) / 2)
for (uuu in seq(li.mlm))
for (sss in seq(li.mlm))
ned2l.dpstr.mlm2[, iam(uuu, uuu, li.mlm)] <-
ned2l.dpstr.mlm2[, iam(uuu, uuu, li.mlm)] +
((sss == uuu) - d0B.PI.mlm[, sss])^2 / DELTA.i.mlm[, sss]
if (li.mlm > 1) {
for (uuu in seq(li.mlm - 1))
for (vvv in (uuu + 1):li.mlm)
for (sss in seq(li.mlm))
ned2l.dpstr.mlm2[, iam(uuu, vvv, li.mlm)] <-
ned2l.dpstr.mlm2[, iam(uuu, vvv, li.mlm)] +
((sss == uuu) - d0B.PI.mlm[, sss]) *
((sss == vvv) - d0B.PI.mlm[, sss]) / DELTA.i.mlm[, sss]
} # if (li.mlm > 1)
ofset <- posn.pstr.mlm - 1
for (uuu in seq(li.mlm))
for (vvv in uuu:li.mlm)
wz[, iam(ofset + uuu, ofset + vvv, M)] <-
ned2l.dpstr.mlm2[, iam(uuu, vvv, li.mlm)]
} # li.mlm > 0
if (tmp3.TF[14] && ld.mlm > 0) { # \calD_{np}, includes \psi_s
init0.val <- probns / Numer^2
if (ld.mix)
init0.val <- init0.val + rowSums((d0B.PD.mix^2) / DELTA.d.mix)
if (li.mix)
init0.val <- init0.val + rowSums((d0B.PI.mix^2) / DELTA.i.mix)
if (li.mlm)
init0.val <- init0.val + rowSums((d0B.PI.mlm^2) / DELTA.i.mlm)
ned2l.dpdip.mlm2 <-
matrix(init0.val, n, ld.mlm * (ld.mlm + 1) / 2)
for (uuu in seq(ld.mlm))
for (sss in seq(ld.mlm))
ned2l.dpdip.mlm2[, iam(uuu, uuu, ld.mlm)] <-
ned2l.dpdip.mlm2[, iam(uuu, uuu, ld.mlm)] +
(d0B.PD.mlm[, sss] - (sss == uuu))^2 / DELTA.d.mlm[, sss]
if (ld.mlm > 1) {
for (uuu in seq(ld.mlm - 1))
for (vvv in (uuu + 1):ld.mlm)
for (sss in seq(ld.mlm))
ned2l.dpdip.mlm2[, iam(uuu, vvv, ld.mlm)] <-
ned2l.dpdip.mlm2[, iam(uuu, vvv, ld.mlm)] +
(d0B.PD.mlm[, sss] - (sss == uuu)) *
(d0B.PD.mlm[, sss] - (sss == vvv)) / DELTA.d.mlm[, sss]
} # if (ld.mlm > 1)
ofset <- posn.pdip.mlm - 1
for (uuu in seq(ld.mlm))
for (vvv in uuu:ld.mlm)
wz[, iam(ofset + uuu, ofset + vvv, M)] <-
ned2l.dpdip.mlm2[, iam(uuu, vvv, ld.mlm)]
} # ld.mlm > 0
if (tmp3.TF[13] && li.mlm > 0) {
ned2l.dpstr.mlm.theta1.p <- matrix(0, n, li.mlm)
for (vvv in seq(li.mlm))
for (sss in seq(li.mlm))
ned2l.dpstr.mlm.theta1.p[, vvv] <-
ned2l.dpstr.mlm.theta1.p[, vvv] +
d1B.PI.mlm1[, sss] * (1 + Numer *
(max(0, sss == vvv) - d0B.PI.mlm[, sss]) / (
DELTA.i.mlm[, sss]))
if (li.mix && tmp3.TF[ 6])
ned2l.dpstr.mlm.theta1.p <-
ned2l.dpstr.mlm.theta1.p +
rowSums(d1B.PI.mix1 * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (ld.mix && tmp3.TF[ 9])
ned2l.dpstr.mlm.theta1.p <- # nnn
ned2l.dpstr.mlm.theta1.p +
rowSums(d1B.PD.mix1 * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
if (ld.mlm && tmp3.TF[14])
ned2l.dpstr.mlm.theta1.p <- # nnn.
ned2l.dpstr.mlm.theta1.p +
rowSums(d1B.PD.mlm1 * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
ofset <- posn.pstr.mlm - 1
for (vvv in seq(li.mlm)) # ccc.
wz[, iam(1, ofset + vvv, M)] <- ned2l.dpstr.mlm.theta1.p[, vvv]
ned2l.dpstr.mlm.theta2.p <- matrix(0, n, li.mlm)
for (vvv in seq(li.mlm))
for (sss in seq(li.mlm))
ned2l.dpstr.mlm.theta2.p[, vvv] <-
ned2l.dpstr.mlm.theta2.p[, vvv] +
d1B.PI.mlm2[, sss] * (1 + Numer *
(max(0, sss == vvv) - d0B.PI.mlm[, sss]) / (
DELTA.i.mlm[, sss]))
if (li.mix && tmp3.TF[ 6])
ned2l.dpstr.mlm.theta2.p <-
ned2l.dpstr.mlm.theta2.p +
rowSums(d1B.PI.mix2 * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (ld.mix && tmp3.TF[ 9])
ned2l.dpstr.mlm.theta2.p <- # nnn
ned2l.dpstr.mlm.theta2.p +
rowSums(d1B.PD.mix2 * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
if (ld.mlm && tmp3.TF[14])
ned2l.dpstr.mlm.theta2.p <- # nnn.
ned2l.dpstr.mlm.theta2.p +
rowSums(d1B.PD.mlm2 * (1 - Numer * d0B.PD.mlm / DELTA.d.mlm))
ofset <- posn.pstr.mlm - 1
for (vvv in seq(li.mlm)) # ccc.
wz[, iam(2, ofset + vvv, M)] <- ned2l.dpstr.mlm.theta2.p[, vvv]
} # li.mlm > 0
if (tmp3.TF[14] && ld.mlm > 0) {
ned2l.dpdip.mlm.theta1.p <- matrix(0, n, ld.mlm)
for (vvv in seq(ld.mlm))
for (sss in seq(ld.mlm))
ned2l.dpdip.mlm.theta1.p[, vvv] <-
ned2l.dpdip.mlm.theta1.p[, vvv] - # Minus
d1B.PD.mlm1[, sss] * (1 + Numer *
(max(0, sss == vvv) - d0B.PD.mlm[, sss]) / (
DELTA.d.mlm[, sss]))
if (ld.mix && tmp3.TF[ 9])
ned2l.dpdip.mlm.theta1.p <-
ned2l.dpdip.mlm.theta1.p - # Minus
rowSums(d1B.PD.mix1 * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
if (li.mix && tmp3.TF[ 6])
ned2l.dpdip.mlm.theta1.p <-
ned2l.dpdip.mlm.theta1.p - # Minus
rowSums(d1B.PI.mix1 * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (li.mlm && tmp3.TF[13])
ned2l.dpdip.mlm.theta1.p <- # nnn.
ned2l.dpdip.mlm.theta1.p - # Minus
rowSums(d1B.PI.mlm1 * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
ofset <- posn.pdip.mlm - 1
for (vvv in seq(ld.mlm)) # nnn.
wz[, iam(1, ofset + vvv, M)] <- ned2l.dpdip.mlm.theta1.p[, vvv]
ned2l.dpdip.mlm.theta2.p <- matrix(0, n, ld.mlm)
for (vvv in seq(ld.mlm))
for (sss in seq(ld.mlm))
ned2l.dpdip.mlm.theta2.p[, vvv] <-
ned2l.dpdip.mlm.theta2.p[, vvv] - # Minus
d1B.PD.mlm2[, sss] * (1 + Numer *
(max(0, sss == vvv) - d0B.PD.mlm[, sss]) / (
DELTA.d.mlm[, sss]))
if (ld.mix && tmp3.TF[ 9])
ned2l.dpdip.mlm.theta2.p <-
ned2l.dpdip.mlm.theta2.p - # Minus
rowSums(d1B.PD.mix2 * (1 - Numer * d0B.PD.mix / DELTA.d.mix))
if (li.mix && tmp3.TF[ 6])
ned2l.dpdip.mlm.theta2.p <-
ned2l.dpdip.mlm.theta2.p - # Minus
rowSums(d1B.PI.mix2 * (1 - Numer * d0B.PI.mix / DELTA.i.mix))
if (li.mlm && tmp3.TF[13])
ned2l.dpdip.mlm.theta2.p <- # ddd.
ned2l.dpdip.mlm.theta2.p - # Minus
rowSums(d1B.PI.mlm2 * (1 - Numer * d0B.PI.mlm / DELTA.i.mlm))
ofset <- posn.pdip.mlm - 1
for (vvv in seq(ld.mlm)) # ddd.
wz[, iam(2, ofset + vvv, M)] <- ned2l.dpdip.mlm.theta2.p[, vvv]
} # ld.mlm > 0
if (li.mlm && li.mix > 1) {
ned2l.dpstr.mlm.theta1.i <- # Not a matrix, just a vector
rowSums(-pstr.mix * d0B.PI.mix * d1A.i1 / DELTA.i.mix)
for (vvv in seq(li.mlm))
wz[, iam(posn.munb.i, posn.pstr.mlm - 1 + vvv, M)] <-
ned2l.dpstr.mlm.theta1.i # ccc.
ned2l.dpstr.mlm.theta2.i <- # Not a matrix, just a vector
rowSums(-pstr.mix * d0B.PI.mix * d1A.i2 / DELTA.i.mix)
for (vvv in seq(li.mlm))
wz[, iam(posn.size.i, posn.pstr.mlm - 1 + vvv, M)] <-
ned2l.dpstr.mlm.theta2.i # ddd.
} # li.mlm && li.mix > 1
if (ld.mlm && ld.mix > 1) {
ned2l.dpdip.mlm.theta1.d <- # Not a matrix, just a vector
rowSums(pdip.mix * d0B.PD.mix * d1A.d1 / DELTA.d.mix)
for (vvv in seq(ld.mlm))
wz[, iam(posn.munb.d, posn.pdip.mlm - 1 + vvv, M)] <-
ned2l.dpdip.mlm.theta1.d # nnn.
ned2l.dpdip.mlm.theta2.d <- # Not a matrix, just a vector
rowSums(pdip.mix * d0B.PD.mix * d1A.d2 / DELTA.d.mix)
for (vvv in seq(ld.mlm))
wz[, iam(posn.size.d, posn.pdip.mlm - 1 + vvv, M)] <-
ned2l.dpdip.mlm.theta2.d # ddd.
} # ld.mlm && ld.mix > 1
if (ld.mlm && li.mix > 1) {
ned2l.dpdip.mlm.theta1.i <- # Not a matrix, just a vector
rowSums(-pstr.mix * d0B.PI.mix * d1A.i1 / DELTA.i.mix)
for (vvv in seq(ld.mlm))
wz[, iam(posn.munb.i, posn.pdip.mlm - 1 + vvv, M)] <-
ned2l.dpdip.mlm.theta1.i # nnn.
ned2l.dpdip.mlm.theta2.i <- # Not a matrix, just a vector
rowSums(-pstr.mix * d0B.PI.mix * d1A.i2 / DELTA.i.mix)
for (vvv in seq(ld.mlm))
wz[, iam(posn.size.i, posn.pdip.mlm - 1 + vvv, M)] <-
ned2l.dpdip.mlm.theta2.i # nnn.
} # ld.mlm && li.mix > 1
if (li.mlm && ld.mix > 1) {
ned2l.dpstr.mlm.theta1.d <- # Not a matrix, just a vector
rowSums(pdip.mix * d0B.PD.mix * d1A.d1 / DELTA.d.mix)
for (vvv in seq(li.mlm))
wz[, iam(posn.munb.d, posn.pstr.mlm - 1 + vvv, M)] <-
ned2l.dpstr.mlm.theta1.d # nnn.
ned2l.dpstr.mlm.theta2.d <- # Not a matrix, just a vector
rowSums(pdip.mix * d0B.PD.mix * d1A.d2 / DELTA.d.mix)
for (vvv in seq(li.mlm))
wz[, iam(posn.size.d, posn.pstr.mlm - 1 + vvv, M)] <-
ned2l.dpstr.mlm.theta2.d # nnn.
} # li.mlm && ld.mix > 1
if (all(c(la.mlm, li.mlm) > 0)) {
ned2l.dpobs.mlm.pstr.mlm <-
array(probns / Numer^2, c(n, la.mlm, li.mlm))
for (uuu in seq(la.mlm))
for (vvv in seq(li.mlm))
for (sss in seq(li.mlm))
ned2l.dpobs.mlm.pstr.mlm[, uuu, vvv] <-
ned2l.dpobs.mlm.pstr.mlm[, uuu, vvv] - d0B.PI.mlm[, sss] *
((sss == vvv) - d0B.PI.mlm[, sss]) / DELTA.i.mlm[, sss]
if (tmp3.TF[ 6] && li.mix)
ned2l.dpobs.mlm.pstr.mlm <-
ned2l.dpobs.mlm.pstr.mlm + rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (tmp3.TF[ 9] && ld.mix)
ned2l.dpobs.mlm.pstr.mlm <- # nnn
ned2l.dpobs.mlm.pstr.mlm + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
if (tmp3.TF[14] && ld.mlm)
ned2l.dpobs.mlm.pstr.mlm <- # nnn
ned2l.dpobs.mlm.pstr.mlm + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
ofset.pobs <- posn.pobs.mlm - 1
ofset.pstr <- posn.pstr.mlm - 1
for (uuu in seq(la.mlm))
for (vvv in seq(li.mlm))
wz[, iam(ofset.pobs + uuu, ofset.pstr + vvv, M)] <-
ned2l.dpobs.mlm.pstr.mlm[, uuu, vvv]
} # all(c(la.mlm, li.mlm) > 0)
if (all(c(li.mlm, ld.mlm) > 0)) {
ned2l.dpstr.mlm.pdip.mlm <-
array(-probns / Numer^2, c(n, li.mlm, ld.mlm))
for (uuu in seq(li.mlm))
for (vvv in seq(ld.mlm))
for (sss in seq(li.mlm))
ned2l.dpstr.mlm.pdip.mlm[, uuu, vvv] <-
ned2l.dpstr.mlm.pdip.mlm[, uuu, vvv] + d0B.PI.mlm[, sss] *
((sss == uuu) - d0B.PI.mlm[, sss]) / DELTA.i.mlm[, sss]
for (uuu in seq(li.mlm))
for (vvv in seq(ld.mlm))
for (sss in seq(ld.mlm))
ned2l.dpstr.mlm.pdip.mlm[, uuu, vvv] <-
ned2l.dpstr.mlm.pdip.mlm[, uuu, vvv] + d0B.PD.mlm[, sss] *
((sss == vvv) - d0B.PD.mlm[, sss]) / DELTA.d.mlm[, sss]
if (tmp3.TF[ 6] && li.mix)
ned2l.dpstr.mlm.pdip.mlm <-
ned2l.dpstr.mlm.pdip.mlm - rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (tmp3.TF[ 9] && ld.mix)
ned2l.dpstr.mlm.pdip.mlm <- # ddd.
ned2l.dpstr.mlm.pdip.mlm - rowSums(d0B.PD.mix^2 / DELTA.d.mix)
ofset.pstr <- posn.pstr.mlm - 1
ofset.pdip <- posn.pdip.mlm - 1
for (uuu in seq(li.mlm))
for (vvv in seq(ld.mlm))
wz[, iam(ofset.pstr + uuu, ofset.pdip + vvv, M)] <-
ned2l.dpstr.mlm.pdip.mlm[, uuu, vvv]
} # all(c(li.mlm, ld.mlm) > 0)
if (all(c(la.mlm, ld.mlm) > 0)) {
ned2l.dpobs.mlm.pdip.mlm <-
array(-probns / Numer^2, c(n, la.mlm, ld.mlm))
for (uuu in seq(la.mlm))
for (vvv in seq(ld.mlm))
for (sss in seq(ld.mlm))
ned2l.dpobs.mlm.pdip.mlm[, uuu, vvv] <-
ned2l.dpobs.mlm.pdip.mlm[, uuu, vvv] + d0B.PD.mlm[, sss] *
((sss == vvv) - d0B.PD.mlm[, sss]) / DELTA.d.mlm[, sss]
if (tmp3.TF[ 6] && li.mix)
ned2l.dpobs.mlm.pdip.mlm <-
ned2l.dpobs.mlm.pdip.mlm - rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (tmp3.TF[13] && li.mlm)
ned2l.dpobs.mlm.pdip.mlm <-
ned2l.dpobs.mlm.pdip.mlm - rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
if (tmp3.TF[ 9] && ld.mix)
ned2l.dpobs.mlm.pdip.mlm <-
ned2l.dpobs.mlm.pdip.mlm - rowSums(d0B.PD.mix^2 / DELTA.d.mix)
ofset.pobs <- posn.pobs.mlm - 1
ofset.pdip <- posn.pdip.mlm - 1
for (uuu in seq(la.mlm))
for (vvv in seq(ld.mlm))
wz[, iam(ofset.pobs + uuu, ofset.pdip + vvv, M)] <-
ned2l.dpobs.mlm.pdip.mlm[, uuu, vvv]
} # all(c(la.mlm, li.mlm) > 0)
if (all(c(la.mix, la.mlm) > 0)) {
ned2l.dpobs.mix.pobs.mlm <- probns / Numer^2 # Initialize
if (li.mix) # tmp3.TF[ 6]
ned2l.dpobs.mix.pobs.mlm <-
ned2l.dpobs.mix.pobs.mlm + rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (li.mlm) # tmp3.TF[10]
ned2l.dpobs.mix.pobs.mlm <-
ned2l.dpobs.mix.pobs.mlm + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
if (ld.mix) # tmp3.TF[ 9] nnn
ned2l.dpobs.mix.pobs.mlm <-
ned2l.dpobs.mix.pobs.mlm + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
if (ld.mlm) # tmp3.TF[14] nnn
ned2l.dpobs.mix.pobs.mlm <-
ned2l.dpobs.mix.pobs.mlm + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
for (uuu in seq(la.mlm)) # ccc.
wz[, iam(posn.pobs.mix, posn.pobs.mlm - 1 + uuu, M)] <-
ned2l.dpobs.mix.pobs.mlm # Link done later
}
if (all(c(la.mix, li.mlm) > 0)) { # all(tmp3.TF[c(3, 13)])
if (li.mix) # tmp3.TF[ 6]
ned2l.dpobs.mix.pstr.mlm <-
ned2l.dpobs.mix.pstr.mlm + rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (ld.mix) # tmp3.TF[ 9]
ned2l.dpobs.mix.pstr.mlm <- # nnn
ned2l.dpobs.mix.pstr.mlm + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
if (ld.mlm) # tmp3.TF[14]
ned2l.dpobs.mix.pstr.mlm <- # nnn; + is correct, not -
ned2l.dpobs.mix.pstr.mlm + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
for (uuu in seq(li.mlm))
for (sss in seq(li.mlm))
ned2l.dpobs.mix.pstr.mlm[, uuu] <-
ned2l.dpobs.mix.pstr.mlm[, uuu] -
((sss == uuu) - d0B.PI.mlm[, sss]) *
d0B.PI.mlm[, sss] / DELTA.i.mlm[, sss]
for (uuu in seq(li.mlm)) # ccc.
wz[, iam(posn.pobs.mix,
posn.pstr.mlm - 1 + uuu, M)] <-
ned2l.dpobs.mix.pstr.mlm[, uuu] # Link done later
} # all(c(la.mix, li.mlm) > 0)
if (all(c(la.mix, ld.mlm) > 0)) { # all(tmp3.TF[c(3, 14)])
if (li.mix) # tmp3.TF[ 6]
ned2l.dpobs.mix.pdip.mlm <-
ned2l.dpobs.mix.pdip.mlm - rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (li.mlm) # tmp3.TF[13]
ned2l.dpobs.mix.pdip.mlm <-
ned2l.dpobs.mix.pdip.mlm - rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
if (ld.mix) # tmp3.TF[ 9]
ned2l.dpobs.mix.pdip.mlm <-
ned2l.dpobs.mix.pdip.mlm - rowSums(d0B.PD.mix^2 / DELTA.d.mix)
for (uuu in seq(ld.mlm))
for (sss in seq(ld.mlm))
ned2l.dpobs.mix.pdip.mlm[, uuu] <-
ned2l.dpobs.mix.pdip.mlm[, uuu] +
((sss == uuu) - d0B.PD.mlm[, sss]) *
d0B.PD.mlm[, sss] / DELTA.d.mlm[, sss]
for (uuu in seq(ld.mlm)) # nnn.
wz[, iam(posn.pobs.mix,
posn.pdip.mlm - 1 + uuu, M)] <-
ned2l.dpobs.mix.pdip.mlm[, uuu] # Link done later
} # all(c(la.mix, ld.mlm) > 0)
if (all(c(li.mix, la.mlm) > 0)) { # all(tmp3.TF[c(6, 12)])
if (li.mlm) # tmp3.TF[13]
ned2l.dpobs.mlm.pstr.mix <-
ned2l.dpobs.mlm.pstr.mix + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
if (ld.mix) # tmp3.TF[ 9]
ned2l.dpobs.mlm.pstr.mix <- # nnn
ned2l.dpobs.mlm.pstr.mix + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
if (ld.mlm) # tmp3.TF[14]
ned2l.dpobs.mlm.pstr.mix <- # nnn
ned2l.dpobs.mlm.pstr.mix + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
ned2l.dpobs.mlm.pstr.mix <- # tmp3.TF[ 6] && li.mix
ned2l.dpobs.mlm.pstr.mix -
rowSums((d0A.i - d0B.PI.mix) * d0B.PI.mix / DELTA.i.mix)
for (uuu in seq(la.mlm)) # ccc.
wz[, iam(posn.pstr.mix,
posn.pobs.mlm - 1 + uuu, M)] <-
ned2l.dpobs.mlm.pstr.mix # Link done later
} # all(c(li.mix, la.mlm) > 0
if (all(c(ld.mix, la.mlm) > 0)) { # all(tmp3.TF[c(9, 12)])
if (ld.mlm) # tmp3.TF[14]
ned2l.dpobs.mlm.pdip.mix <-
ned2l.dpobs.mlm.pdip.mix - rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
if (li.mix) # tmp3.TF[ 6]
ned2l.dpobs.mlm.pdip.mix <-
ned2l.dpobs.mlm.pdip.mix - rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (li.mlm) # tmp3.TF[13]
ned2l.dpobs.mlm.pdip.mix <-
ned2l.dpobs.mlm.pdip.mix - rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
ned2l.dpobs.mlm.pdip.mix <- # all(tmp3.TF[c(9, 12)])
ned2l.dpobs.mlm.pdip.mix +
rowSums((d0A.d - d0B.PD.mix) * d0B.PD.mix / DELTA.d.mix)
for (uuu in seq(la.mlm)) # nnn.
wz[, iam(posn.pdip.mix,
posn.pobs.mlm - 1 + uuu, M)] <-
ned2l.dpobs.mlm.pdip.mix # Link done later
} # all(c(ld.mix, la.mlm) > 0
if (all(c(li.mix, li.mlm) > 0)) { # all(tmp3.TF[c(6, 13)])
for (uuu in seq(li.mlm)) # tmp3.TF[13]
for (sss in seq(li.mlm))
ned2l.dpstr.mix.pstr.mlm[, uuu] <-
ned2l.dpstr.mix.pstr.mlm[, uuu] -
((sss == uuu) - d0B.PI.mlm[, sss]) *
d0B.PI.mlm[, sss] / DELTA.i.mlm[, sss]
ned2l.dpstr.mix.pstr.mlm <-
ned2l.dpstr.mix.pstr.mlm -
rowSums((d0A.i - d0B.PI.mix) * d0B.PI.mix / DELTA.i.mix)
if (ld.mix) # tmp3.TF[ 9]
ned2l.dpstr.mix.pstr.mlm <- # nnn
ned2l.dpstr.mix.pstr.mlm + rowSums(d0B.PD.mix^2 / DELTA.d.mix)
if (ld.mlm) # tmp3.TF[14]
ned2l.dpstr.mix.pstr.mlm <- # nnn
ned2l.dpstr.mix.pstr.mlm + rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
for (uuu in seq(li.mlm)) # Copy it. ccc.
wz[, iam(posn.pstr.mix,
posn.pstr.mlm - 1 + uuu, M)] <-
ned2l.dpstr.mix.pstr.mlm[, uuu] # Link done later
} # all(c(li.mix, li.mlm) > 0
if (all(c(ld.mix, ld.mlm) > 0)) { # all(tmp3.TF[c(9, 14)])
for (uuu in seq(ld.mlm)) # tmp3.TF[13]
for (sss in seq(ld.mlm))
ned2l.dpdip.mix.pdip.mlm[, uuu] <-
ned2l.dpdip.mix.pdip.mlm[, uuu] -
((sss == uuu) - d0B.PD.mlm[, sss]) *
d0B.PD.mlm[, sss] / DELTA.d.mlm[, sss]
if (ld.mix) # tmp3.TF[ 9]
ned2l.dpdip.mix.pdip.mlm <-
ned2l.dpdip.mix.pdip.mlm -
rowSums((d0A.d - d0B.PD.mix) * d0B.PD.mix / DELTA.d.mix)
if (li.mix) # tmp3.TF[ 6]
ned2l.dpdip.mix.pdip.mlm <-
ned2l.dpdip.mix.pdip.mlm + rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (li.mlm) # tmp3.TF[13]
ned2l.dpdip.mix.pdip.mlm <-
ned2l.dpdip.mix.pdip.mlm + rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
for (uuu in seq(ld.mlm)) # Copy it. ccc.
wz[, iam(posn.pdip.mix,
posn.pdip.mlm - 1 + uuu, M)] <-
ned2l.dpdip.mix.pdip.mlm[, uuu] # Link done later
} # all(c(ld.mix, ld.mlm) > 0
if (all(c(ld.mix, li.mlm) > 0)) { # all(tmp3.TF[c(9, 13)])
for (uuu in seq(li.mlm)) # tmp3.TF[13]
for (sss in seq(li.mlm))
ned2l.dpdip.mix.pstr.mlm[, uuu] <-
ned2l.dpdip.mix.pstr.mlm[, uuu] +
((sss == uuu) - d0B.PI.mlm[, sss]) *
d0B.PI.mlm[, sss] / DELTA.i.mlm[, sss]
if (ld.mix) # tmp3.TF[ 9]
ned2l.dpdip.mix.pstr.mlm <-
ned2l.dpdip.mix.pstr.mlm +
rowSums((d0A.d - d0B.PD.mix) * d0B.PD.mix / DELTA.d.mix)
if (li.mix) # tmp3.TF[ 6]
ned2l.dpdip.mix.pstr.mlm <-
ned2l.dpdip.mix.pstr.mlm - rowSums(d0B.PI.mix^2 / DELTA.i.mix)
if (ld.mlm) # tmp3.TF[14]
ned2l.dpdip.mix.pstr.mlm <-
ned2l.dpdip.mix.pstr.mlm - rowSums(d0B.PD.mlm^2 / DELTA.d.mlm)
for (uuu in seq(li.mlm)) # Copy it. ccc.
wz[, iam(posn.pdip.mix,
posn.pstr.mlm - 1 + uuu, M)] <-
ned2l.dpdip.mix.pstr.mlm[, uuu] # Link done later
} # all(c(ld.mix, li.mlm) > 0
if (all(c(li.mix, ld.mlm) > 0)) { # all(tmp3.TF[c(6, 14)])
for (uuu in seq(ld.mlm)) # tmp3.TF[14]
for (sss in seq(ld.mlm))
ned2l.dpstr.mix.pdip.mlm[, uuu] <-
ned2l.dpstr.mix.pdip.mlm[, uuu] +
((sss == uuu) - d0B.PD.mlm[, sss]) *
d0B.PD.mlm[, sss] / DELTA.d.mlm[, sss]
if (li.mix) # tmp3.TF[ 6]
ned2l.dpstr.mix.pdip.mlm <-
ned2l.dpstr.mix.pdip.mlm +
rowSums((d0A.i - d0B.PI.mix) * d0B.PI.mix / DELTA.i.mix)
if (ld.mix) # tmp3.TF[ 9]
ned2l.dpstr.mix.pdip.mlm <-
ned2l.dpstr.mix.pdip.mlm - rowSums(d0B.PD.mix^2 / DELTA.d.mix)
if (li.mlm) # tmp3.TF[13]
ned2l.dpstr.mix.pdip.mlm <- # ddd.
ned2l.dpstr.mix.pdip.mlm - rowSums(d0B.PI.mlm^2 / DELTA.i.mlm)
for (uuu in seq(ld.mlm)) # Copy it. ddd.
wz[, iam(posn.pstr.mix,
posn.pdip.mlm - 1 + uuu, M)] <-
ned2l.dpstr.mix.pdip.mlm[, uuu] # Link done later
} # all(c(li.mix, ld.mlm) > 0)
if (lall.len) {
wz.6 <- matrix(0, n, M * (M + 1) / 2) # Or == 0 * wz
ind.rc <- setdiff(1:M, ind.munb.z) # Contiguous rows and
lind.rc <- length(ind.rc) # cols of the DAMLM
# Copy in the thetas values: the looping is overkill.
for (uuu in ind.munb.z)
for (sss in seq(M))
wz.6[, iam(uuu, sss, M)] <- wz[, iam(uuu, sss, M)]
speed.up <- intercept.only && (
length(offset) == 1 || all(offset[1] == offset))
IND.mlm <- iam(NA, NA, lind.rc, both = TRUE, diag = TRUE)
n.use <- if (speed.up) 2 else n # For sandwich.mlm
if (!length(extra$ind.wz.match)) {
Imat <- matrix(NA, lind.rc, lind.rc)
for (jay in seq(lind.rc)) {
iptr <- jay
for (kay in (ind.rc[jay]):M) {
if (!any(kay %in% ind.munb.z)) {
Imat[jay, iptr] <-
which(extra$index.M$row == ind.rc[jay] &
extra$index.M$col == kay)
iptr <- iptr + 1
} # if
} # kay
} # jay
ind.wz.match <- Imat[cbind(IND.mlm$row.ind,
IND.mlm$col.ind)]
extra$ind.wz.match <- ind.wz.match # Assign it once
} # !length(extra$ind.wz.match)
filling <- if (speed.up)
wz[1:n.use, extra$ind.wz.match, drop = FALSE] else
wz[, extra$ind.wz.match, drop = FALSE]
M.mlm <- lind.rc
if (is.null(extra$iamlist)) {
extra$iamlist <- iamlist <-
iam(NA, NA, M = M.mlm, both = TRUE)
if (M.mlm > 1) { # Offdiagonal elts
extra$iamlist.nod <- iamlist.nod <-
iam(NA, NA, M.mlm, both = TRUE, diag = FALSE)
}
} # is.null(extra$iamlist)
iamlist <- extra$iamlist
iamlist.nod <- extra$iamlist.nod
MM12.mlm <- M.mlm * (M.mlm + 1) / 2
Qf3 <- rowSums(filling[, 1:M.mlm, drop = FALSE] * # Diag elts
(allprobs[1:n.use, 1:M.mlm, drop = FALSE])^2)
if (M.mlm > 1) # Offdiagonal elts
Qf3 <- Qf3 + 2 * rowSums(allprobs[1:n.use, iamlist.nod$row] *
filling[, -(1:M.mlm), drop = FALSE] * # n-vector
allprobs[1:n.use, iamlist.nod$col])
Qf3 <- matrix(Qf3, n.use, MM12.mlm)
Qf2rowsums <- matrix(0, n.use, M.mlm) # rowsums stored columnwise
for (want in seq(M.mlm)) { # Want the equivalent of rowSums(Qf2a)
iamvec <- iam(want, 1:M.mlm, M = M.mlm) # Diagonals included
Qf2rowsums[, want] <- rowSums(filling[, iamvec, drop = FALSE] *
allprobs[1:n.use, 1:M.mlm])
} # want
Qf2a <- Qf2rowsums[, iamlist$row]
Qf2b <- Qf2rowsums[, iamlist$col]
Qform <- filling - Qf2a - Qf2b + Qf3 # n x MM12.mlm
Qform <- Qform *
allprobs[1:n.use, iamlist$row, drop = FALSE] *
allprobs[1:n.use, iamlist$col, drop = FALSE]
wz.6[, extra$ind.wz.match] <- if (speed.up)
matrix(Qform[1, ], n, ncol(Qform), byrow = TRUE) else c(Qform)
dstar.deta <- cbind(dmunb.p.deta, dsize.p.deta,
if (tmp3.TF[ 4]) dmunb.a.deta else NULL,
if (tmp3.TF[ 5]) dsize.a.deta else NULL,
if (tmp3.TF[ 7]) dmunb.i.deta else NULL,
if (tmp3.TF[ 8]) dsize.i.deta else NULL,
if (tmp3.TF[10]) dmunb.d.deta else NULL,
if (tmp3.TF[11]) dsize.d.deta else NULL)
iptr <- 0
if (length(ind.munb.z))
for (uuu in ind.munb.z) { # Could delete 3 for munb.a (orthog)
iptr <- iptr + 1
for (ttt in seq(lind.rc)) {
wz.6[, iam(uuu, ind.rc[ttt], M)] <- 0 # Initialize
for (sss in seq(lind.rc)) {
wz.6[, iam(uuu, ind.rc[ttt], M)] <-
wz.6[, iam(uuu, ind.rc[ttt], M)] +
allprobs[, sss] * (max(0, sss == ttt) -
allprobs[, ttt]) *
wz[, iam(uuu, ind.rc[sss], M)] * dstar.deta[, iptr]
} # sss
} # ttt
} # uuu
wz <- wz.6 # Completed
} # lall.len
if (lall.len) { # A MLM was fitted
mytiny <- (allprobs < sqrt(.Machine$double.eps)) |
(allprobs > 1.0 - sqrt(.Machine$double.eps))
atiny <- rowSums(mytiny) > 0
if (any(atiny)) {
ind.diags <- setdiff(1:M, ind.munb.z) # Exclude thetas
wz[atiny, ind.diags] <- .Machine$double.eps +
wz[atiny, ind.diags] * (1 + .Machine$double.eps^0.5)
}
} # lall.len
c(w) * wz
}), list( .truncate = truncate, .lsize.p = lsize.p ,
.cutoff.prob = cutoff.prob,
.nbd.max.support = nbd.max.support,
.max.chunk.MB = max.chunk.MB,
.eps.trig = eps.trig,
.nsimEIM = nsimEIM ))))
} # gaitdnbinomial
KLDvglm <-
function(object, ...) {
infos.list <- object@family@infos()
min.support.pmf.p <- infos.list$Support[1]
specvals <- specials(object)
Inside <- sapply(specvals, is.null)
if (length(Inside) == 7 && all(Inside))
stop("'object' has no special values. ",
"Is it a GAITD regression object?")
if (length(Inside) == 8 && all(Inside[1:7]) &&
infos.list$max.support == infos.list$Support[2])
stop("'object' has no special values. ",
"Is it really a GAITD regression object?")
use.max.support <- if (is.numeric(infos.list$max.support))
infos.list$max.support else Inf
if (!is.numeric(MM1 <- infos.list$MM1))
MM1 <- 1 # Default really
if (MM1 > 2)
stop("Can only handle 1- or 2-parameter distributions")
etamat <- predict(object) # n x M
eta.p <- etamat[, 1:MM1, drop = FALSE] # n x MM1
theta.p1 <- as.vector(eta2theta(eta.p[, 1], linkfun(object)[1]))
theta.p2 <- if (MM1 == 2)
as.vector(eta2theta(eta.p[, 2], linkfun(object)[2])) else NULL
theta.p <- cbind(theta.p1, theta.p2)
colnames(theta.p) <- paste0(infos.list$baseparams.argnames, ".p")
if (!is.logical(intercept.only <- object@misc$intercept.only))
stop("cannot determine whether 'object' is intercept-only")
if (!intercept.only)
stop("argument 'object' is not intercept-only")
pobs.mix <- if (length(specvals$a.mix))
fitted(object, type.fitted = "pobs.mix") else cbind(0, 0)
pobs.mlm <- if (length(specvals$a.mlm))
fitted(object, type.fitted = "pobs.mlm") else cbind(0, 0)
pstr.mix <- if (length(specvals$i.mix))
fitted(object, type.fitted = "pstr.mix") else cbind(0, 0)
pstr.mlm <- if (length(specvals$i.mlm))
fitted(object, type.fitted = "pstr.mlm") else cbind(0, 0)
pdip.mix <- if (length(specvals$d.mix))
fitted(object, type.fitted = "pdip.mix") else cbind(0, 0)
pdip.mlm <- if (length(specvals$d.mlm))
fitted(object, type.fitted = "pdip.mlm") else cbind(0, 0)
indeta <- object@extra$indeta
if (MM1 == 1) {
theta.a <- if (any(is.na(indeta[ 3, ]))) theta.p else
as.vector(eta2theta(etamat[, (indeta[ 3, 1])],
linkfun(object)[(indeta[ 3, 1])]))
theta.i <- if (any(is.na(indeta[ 5, ]))) theta.p else
as.vector(eta2theta(etamat[, (indeta[ 5, 1])],
linkfun(object)[(indeta[ 5, 1])]))
theta.d <- if (any(is.na(indeta[ 7, ]))) theta.p else
as.vector(eta2theta(etamat[, (indeta[ 7, 1])],
linkfun(object)[(indeta[ 7, 1])]))
theta.a <- cbind(theta.a)
theta.i <- cbind(theta.i)
theta.d <- cbind(theta.d)
} else {
theta.a <- if (any(is.na(indeta[ 4, ]))) theta.p else
cbind(eta2theta(etamat[, (indeta[ 4, 1])],
linkfun(object)[(indeta[ 4, 1])]),
eta2theta(etamat[, (indeta[ 5, 1])],
linkfun(object)[(indeta[ 5, 1])]))
colnames(theta.a) <- paste0(infos.list$baseparams.argnames, ".a")
theta.i <- if (any(is.na(indeta[ 7, ]))) theta.p else
cbind(eta2theta(etamat[, (indeta[ 7, 1])],
linkfun(object)[(indeta[ 7, 1])]),
eta2theta(etamat[, (indeta[ 8, 1])],
linkfun(object)[(indeta[ 8, 1])]))
colnames(theta.i) <- paste0(infos.list$baseparams.argnames, ".i")
theta.d <- if (any(is.na(indeta[10, ]))) theta.p else
cbind(eta2theta(etamat[, (indeta[10, 1])],
linkfun(object)[(indeta[10, 1])]),
eta2theta(etamat[, (indeta[11, 1])],
linkfun(object)[(indeta[11, 1])]))
colnames(theta.d) <- paste0(infos.list$baseparams.argnames, ".d")
}
flip.args <- object@family@infos()$flip.args
if (is.null(flip.args)) flip.args <- FALSE
# zz for checking, delete:
xlim.vec <- c(min.support.pmf.p,
min(use.max.support,
max(c(depvar(object))))) # IMPORTANT
moreinfo <-
dgaitdplot(theta.p[1, ], # Reverse ordering may be needed.
fam = infos.list$parent.name[2],
a.mix = specvals$a.mix, i.mix = specvals$i.mix,
d.mix = specvals$d.mix,
a.mlm = specvals$a.mlm, i.mlm = specvals$i.mlm,
d.mlm = specvals$d.mlm,
truncate = specvals$truncate,
theta.a = theta.a[1, ], # Reverse ordering may be needed.
theta.i = theta.i[1, ],
theta.d = theta.d[1, ],
max.support = use.max.support,
pobs.mix = pobs.mix[1, ],
pobs.mlm = pobs.mlm[1, ],
pstr.mix = pstr.mix[1, ],
pstr.mlm = pstr.mlm[1, ],
pdip.mix = pdip.mix[1, ], # 1-coln matrix
pdip.mlm = pdip.mlm[1, ],
byrow.aid = TRUE, # Important really here 20201008
baseparams.argnames = infos.list$baseparams.argnames,
nparams = object@family@infos()$MM1, # Unnecessary?
flip.args = ifelse(is.logical(flip.args), flip.args, FALSE),
xlim = xlim.vec, plot.it = FALSE, # Both IMPORTANT
new.plot = FALSE,
...)
pmf.p.hat <- moreinfo$unsc.parent # This has labels (names() works)
pmf.z.hat <- moreinfo$pmf.z
probns <- c(fitted(object, type.fitted = "nonspecial"))[1]
Numer <- c(fitted(object, type.fitted = "Numer"))[1]
Denom.p <- c(fitted(object, type.fitted = "Denom.p"))[1]
Delta <- Numer / Denom.p
klsum <- Delta * log(Delta) * probns
if (length(specvals$a.mlm)) {
pmf.p.mlm.a <- pmf.p.hat[as.character(specvals$a.mlm)]
ind.mlm.a <- match(specvals$a.mlm, moreinfo$x)
pobs.mlm <- pmf.z.hat[ind.mlm.a] # pmf.z.mlm.a <-
klsum <- klsum + sum(pobs.mlm * log(pobs.mlm / pmf.p.mlm.a))
}
if (length(specvals$i.mlm)) {
pstr.mlm <- (fitted(object, type.fitted = "pstr.mlm"))[1, ]
pmf.p.mlm.i <- pmf.p.hat[as.character(specvals$i.mlm)]
ind.mlm.i <- match(specvals$i.mlm, moreinfo$x)
sum.mlm.i <- pmf.z.hat[ind.mlm.i]
klsum <- klsum + sum(sum.mlm.i * log(sum.mlm.i / pmf.p.mlm.i))
}
if (length(specvals$d.mlm)) { # zz decreases klsum ??
pmf.p.mlm.d <- pmf.p.hat[as.character(specvals$d.mlm)]
ind.mlm.d <- match(specvals$d.mlm, moreinfo$x)
sum.mlm.d <- pmf.z.hat[ind.mlm.d]
klsum <- klsum + sum(sum.mlm.d * log(sum.mlm.d / pmf.p.mlm.d))
}
if (length(specvals$a.mix)) {
pmf.p.mix.a <- pmf.p.hat[as.character(specvals$a.mix)]
ind.mix.a <- match(specvals$a.mix, moreinfo$x)
Pobs.mix <- pmf.z.hat[ind.mix.a]
klsum <- klsum + sum(Pobs.mix * log(Pobs.mix / pmf.p.mix.a))
}
if (length(specvals$i.mix)) {
pmf.p.mix.i <- pmf.p.hat[as.character(specvals$i.mix)]
ind.mix.i <- match(specvals$i.mix, moreinfo$x)
sum.mix.i <- pmf.z.hat[ind.mix.i]
klsum <- klsum + sum(sum.mix.i * log(sum.mix.i / pmf.p.mix.i))
}
if (length(specvals$d.mix)) { # zz decreases klsum ??
pmf.p.mix.d <- pmf.p.hat[as.character(specvals$d.mix)]
ind.mix.d <- match(specvals$d.mix, moreinfo$x)
sum.mix.d <- pmf.z.hat[ind.mix.d]
klsum <- klsum + sum(sum.mix.d * log(sum.mix.d / pmf.p.mix.d))
}
klsum
} # KLDvglm
setGeneric("KLD", function(object, ...)
standardGeneric("KLD"),
package = "VGAM")
setMethod("KLD", "vglm",
function(object, ...) {
KLDvglm(object, ...)
})
Pheapseep <-
function(object, ...) {
infos.list <- object@family@infos()
min.support.pmf.p <- infos.list$Support[1]
specvals <- specials(object)
Inside <- sapply(specvals, is.null)
if (length(Inside) == 7 && all(Inside))
stop("'object' has no special values. ",
"Is it a GAITD regression object?")
if (length(Inside) == 8 && all(Inside[1:7]) &&
infos.list$max.support == infos.list$Support[2])
stop("'object' has no special values. ",
"Is it really a GAITD regression object?")
use.max.support <- if (is.numeric(infos.list$max.support))
infos.list$max.support else Inf
if (!is.numeric(MM1 <- infos.list$MM1))
MM1 <- 1 # Default really
if (MM1 > 2)
stop("Can only handle 1- or 2-parameter distributions")
etamat <- predict(object) # n x M
eta.p <- etamat[, 1:MM1, drop = FALSE] # n x MM1
theta.p1 <- as.vector(eta2theta(eta.p[, 1], linkfun(object)[1]))
theta.p2 <- if (MM1 == 2)
as.vector(eta2theta(eta.p[, 2], linkfun(object)[2])) else NULL
theta.p <- cbind(theta.p1, theta.p2)
colnames(theta.p) <- paste0(infos.list$baseparams.argnames, ".p")
if (!is.logical(intercept.only <- object@misc$intercept.only))
stop("cannot determine whether 'object' is intercept-only")
if (!intercept.only)
stop("argument 'object' is not intercept-only")
pobs.mix <- if (length(specvals$a.mix))
fitted(object, type.fitted = "pobs.mix") else cbind(0, 0)
pobs.mlm <- if (length(specvals$a.mlm))
fitted(object, type.fitted = "pobs.mlm") else cbind(0, 0)
pstr.mix <- if (length(specvals$i.mix))
fitted(object, type.fitted = "pstr.mix") else cbind(0, 0)
pstr.mlm <- if (length(specvals$i.mlm))
fitted(object, type.fitted = "pstr.mlm") else cbind(0, 0)
pdip.mix <- if (length(specvals$d.mix))
fitted(object, type.fitted = "pdip.mix") else cbind(0, 0)
pdip.mlm <- if (length(specvals$d.mlm))
fitted(object, type.fitted = "pdip.mlm") else cbind(0, 0)
indeta <- object@extra$indeta
if (MM1 == 1) {
theta.a <- if (any(is.na(indeta[ 3, ]))) theta.p else
as.vector(eta2theta(etamat[, (indeta[ 3, 1])],
linkfun(object)[(indeta[ 3, 1])]))
theta.i <- if (any(is.na(indeta[ 5, ]))) theta.p else
as.vector(eta2theta(etamat[, (indeta[ 5, 1])],
linkfun(object)[(indeta[ 5, 1])]))
theta.d <- if (any(is.na(indeta[ 7, ]))) theta.p else
as.vector(eta2theta(etamat[, (indeta[ 7, 1])],
linkfun(object)[(indeta[ 7, 1])]))
theta.a <- cbind(theta.a)
theta.i <- cbind(theta.i)
theta.d <- cbind(theta.d)
} else {
theta.a <- if (any(is.na(indeta[ 4, ]))) theta.p else
cbind(eta2theta(etamat[, (indeta[ 4, 1])],
linkfun(object)[(indeta[ 4, 1])]),
eta2theta(etamat[, (indeta[ 5, 1])],
linkfun(object)[(indeta[ 5, 1])]))
colnames(theta.a) <- paste0(infos.list$baseparams.argnames, ".a")
theta.i <- if (any(is.na(indeta[ 7, ]))) theta.p else
cbind(eta2theta(etamat[, (indeta[ 7, 1])],
linkfun(object)[(indeta[ 7, 1])]),
eta2theta(etamat[, (indeta[ 8, 1])],
linkfun(object)[(indeta[ 8, 1])]))
colnames(theta.i) <- paste0(infos.list$baseparams.argnames, ".i")
theta.d <- if (any(is.na(indeta[10, ]))) theta.p else
cbind(eta2theta(etamat[, (indeta[10, 1])],
linkfun(object)[(indeta[10, 1])]),
eta2theta(etamat[, (indeta[11, 1])],
linkfun(object)[(indeta[11, 1])]))
colnames(theta.d) <- paste0(infos.list$baseparams.argnames, ".d")
}
flip.args <- object@family@infos()$flip.args
if (is.null(flip.args)) flip.args <- FALSE
# zz for checking, delete:
xlim.vec <- c(min.support.pmf.p,
min(use.max.support,
max(c(depvar(object))))) # IMPORTANT
moreinfo <-
dgaitdplot(theta.p[1, ], # Reverse ordering may be needed.
fam = infos.list$parent.name[2],
a.mix = specvals$a.mix, i.mix = specvals$i.mix,
d.mix = specvals$d.mix,
a.mlm = specvals$a.mlm, i.mlm = specvals$i.mlm,
d.mlm = specvals$d.mlm,
truncate = specvals$truncate,
theta.a = theta.a[1, ], # Reverse ordering may be needed.
theta.i = theta.i[1, ],
theta.d = theta.d[1, ],
max.support = use.max.support,
pobs.mix = pobs.mix[1, ],
pobs.mlm = pobs.mlm[1, ],
pstr.mix = pstr.mix[1, ],
pstr.mlm = pstr.mlm[1, ],
pdip.mix = pdip.mix[1, ], # 1-coln matrix
pdip.mlm = pdip.mlm[1, ],
byrow.aid = TRUE, # Important really here 20201008
baseparams.argnames = infos.list$baseparams.argnames,
nparams = object@family@infos()$MM1, # Unnecessary?
flip.args = ifelse(is.logical(flip.args), flip.args, FALSE),
xlim = xlim.vec, plot.it = FALSE, # Both IMPORTANT
new.plot = FALSE,
...)
pmf.p.hat <- moreinfo$unsc.parent # This has labels (names() works)
pmf.z.hat <- moreinfo$pmf.z
probns <- c(fitted(object, type.fitted = "nonspecial"))[1]
Numer <- c(fitted(object, type.fitted = "Numer"))[1]
Denom.p <- c(fitted(object, type.fitted = "Denom.p"))[1]
Delta <- Numer / Denom.p
pheapseepsum.a <- pheapseepsum.i <- pheapseepsum.d <- 0
if (length(specvals$a.mlm)) {
pmf.p.mlm.a <- pmf.p.hat[as.character(specvals$a.mlm)]
ind.mlm.a <- match(specvals$a.mlm, moreinfo$x)
pobs.mlm <- pmf.z.hat[ind.mlm.a] # pmf.z.mlm.a <-
pheapseepsum.a <- pheapseepsum.a +
sum(abs(pobs.mlm - Delta * pmf.p.mlm.a))
}
if (length(specvals$i.mlm)) {
pstr.mlm <-(fitted(object, type.fitted = "pstr.mlm"))[1, ]
pheapseepsum.i <- pheapseepsum.i + sum(pstr.mlm)
}
if (length(specvals$d.mlm)) { # zz decreases pheapseepsum ??
pdip.mlm <- c(fitted(object, type.fitted = "pdip.mlm"))[1]
pheapseepsum.d <- pheapseepsum.d + sum(pdip.mlm)
}
if (length(specvals$a.mix)) {
Pobs.mix2 <-(fitted(object, type.fitted = "Pobs.mix"))[1, ]
pmf.p.mix.a <- pmf.p.hat[as.character(specvals$a.mix)]
ind.mix.a <- match(specvals$a.mix, moreinfo$x)
Pobs.mix <- pmf.z.hat[ind.mix.a]
pheapseepsum.a <- pheapseepsum.a +
sum(abs(Pobs.mix - Delta * pmf.p.mix.a))
}
if (length(specvals$i.mix)) {
pstr.mix <- c(fitted(object, type.fitted = "pstr.mix"))[1]
pheapseepsum.i <- pheapseepsum.i + pstr.mix
}
if (length(specvals$d.mix)) { # zz decreases pheapseepsum ??
pdip.mix <- c(fitted(object, type.fitted = "pdip.mix"))[1]
pheapseepsum.d <- pheapseepsum.d + pdip.mix
}
pheapseepsum.a + max(pheapseepsum.i, pheapseepsum.d)
} # Pheapseep
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.