Nothing
# Project: DescTools
# Chapter: Statistical functions and confidence intervals
#
# Purpose: Tools for descriptive statistics, the missing link...
# Univariat, pairwise bivariate, groupwise und multivariate
#
# Author: Andri Signorell
# Version: 0.99.x
#
# some aliases
# internal function, no use to export it.. (?)
.NormWeights <- function(x, weights, na.rm=FALSE, zero.rm=FALSE, normwt=FALSE) {
# Idea Henrik Bengtsson
# we remove values with zero (and negative) weight.
# This would:
# 1) take care of the case when all weights are zero,
# 2) it will most likely speed up the sorting.
if (na.rm){
keep <- !is.na(x) & !is.na(weights)
if(zero.rm)
# remove values with zero weights
keep <- keep & (weights > 0)
x <- x[keep]
weights <- weights[keep]
}
if(any(is.na(x)) | (!is.null(weights) & any(is.na(weights))))
return(NA_real_)
n <- length(x)
if (length(weights) != n)
stop("length of 'weights' must equal the number of rows in 'x'")
# x and weights have length=0
if(length(x)==0)
return(list(x = x, weights = x, wsum = NaN))
if (any(weights< 0) || (s <- sum(weights)) == 0)
stop("weights must be non-negative and not all zero")
# we could normalize the weights to sum up to 1
if (normwt)
weights <- weights * n/s
return(list(x=x, weights=as.double(weights), wsum=s))
}
MAD <- function(x, weights = NULL, center = Median, constant = 1.4826, na.rm = FALSE,
low = FALSE, high = FALSE) {
if (is.function(center)) {
fct <- center
center <- "fct"
if(is.null(weights))
center <- gettextf("%s(x)", center)
else
center <- gettextf("%s(x, weights=weights)", center)
center <- eval(parse(text = center))
}
if(!is.null(weights)) {
z <- .NormWeights(x, weights, na.rm=na.rm, zero.rm=TRUE)
res <- constant * Median(abs(z$x - center), weights = z$weights)
} else {
# fall back to mad(), if there are no weights
res <- mad(x, center = center, constant = constant, na.rm = na.rm, low=low, high=high)
}
return(res)
}
MADCI <- function(x, y = NULL, two.samp.diff = TRUE, gld.est = "TM",
conf.level = 0.95, sides = c("two.sided","left","right"),
na.rm = FALSE, ...) {
if (na.rm) x <- na.omit(x)
sides <- match.arg(sides, choices = c("two.sided","left","right"),
several.ok = FALSE)
if(sides!="two.sided")
conf.level <- 1 - 2*(1-conf.level)
asv.mad <- function(x, method = "TM"){
lambda <- fit.fkml(x, method = method)$lambda
m <- median(x)
mad.x <- mad(x)
fFinv <- dgl(c(m - mad.x, m + mad.x, m), lambda1 = lambda)
FFinv <- pgl(c(m - mad.x, m + mad.x), lambda1 = lambda)
A <- fFinv[1] + fFinv[2]
C <- fFinv[1] - fFinv[2]
B <- C^2 + 4*C*fFinv[3]*(1 - FFinv[2] - FFinv[1])
(1/(4 * A^2))*(1 + B/fFinv[3]^2)
}
alpha <- 1 - conf.level
z <- qnorm(1 - alpha/2)
est <- mad.x <- mad(x)
n.x <- length(x)
asv.x <- asv.mad(x, method = gld.est)
if(is.null(y)){
ci <- mad.x + c(-z, z) * sqrt(asv.x / n.x)
} else{
y <- y[!is.na(y)]
mad.y <- mad(y)
n.y <- length(y)
asv.y <- asv.mad(y, method = gld.est)
if(two.samp.diff){
est <- mad.x - mad.y
ci <- est + c(-z, z)*sqrt(asv.x/n.x + asv.y/n.y)
} else{
est <- (mad.x/mad.y)^2
log.est <- log(est)
var.est <- 4 * est * ((1/mad.y^2)*asv.x/n.x + (est/mad.y^2)*asv.y/n.y)
Var.log.est <- (1 / est^2) * var.est
ci <- exp(log.est + c(-z, z) * sqrt(Var.log.est))
}
}
res <- c(est, ci)
names(res) <- c("mad","lwr.ci","upr.ci")
if(sides=="left")
res[3] <- Inf
else if(sides=="right")
res[2] <- -Inf
return( res )
}
# from stats
SD <- function (x, weights = NULL, na.rm = FALSE, ...)
sqrt(Var(if (is.vector(x) || is.factor(x)) x else as.double(x),
weights=weights, na.rm = na.rm, ...))
Var <- function (x, ...)
UseMethod("Var")
Var.default <- function (x, weights = NULL, na.rm = FALSE, method = c("unbiased", "ML"), ...) {
if(is.null(weights)) {
res <- var(x=x, na.rm=na.rm)
} else {
z <- .NormWeights(x, weights, na.rm=na.rm, zero.rm=TRUE)
if (match.arg(method) == "ML")
return(as.numeric(stats::cov.wt(cbind(z$x), z$weights, method = "ML")$cov))
xbar <- sum(z$weights * x) / z$wsum
res <- sum(z$weights * ((z$x - xbar)^2))/(z$wsum - 1)
}
return(res)
}
Var.Freq <- function(x, breaks, ...) {
n <- sum(x$freq)
mu <- sum(head(MoveAvg(breaks, order=2, align="left"), -1) * x$perc)
s2 <- (sum(head(MoveAvg(breaks, order=2, align="left"), -1)^2 * x$freq) - n*mu^2) / (n-1)
return(s2)
}
Cov <- cov
Cor <- cor
SDN <- function(x, na.rm = FALSE){
sd(x, na.rm=na.rm) * sqrt(((n <- sum(!is.na(x)))-1) /n)
}
VarN <- function(x, na.rm = FALSE){
var(x, na.rm=na.rm) * ((n <- sum(!is.na(x)))-1) /n
}
EX <- function(x, p) sum(x * p)
VarX <- function(x, p) sum((x - EX(x, p))^2 * p)
# multiple gsub
Mgsub <- function(pattern, replacement, x, ...) {
if (length(pattern)!=length(replacement)) {
stop("pattern and replacement do not have the same length.")
}
result <- x
for (i in 1:length(pattern)) {
result <- gsub(pattern[i], replacement[i], result, ...)
}
result
}
# Length(x)
# Table(x)
# Log(x)
# Abs(x)
#
# "abs", "sign", "sqrt", "ceiling", "floor", "trunc", "cummax", "cummin", "cumprod", "cumsum",
# "log", "log10", "log2", "log1p", "acos", "acosh", "asin", "asinh", "atan", "atanh",
# "exp", "expm1", "cos", "cosh", "cospi", "sin", "sinh", "sinpi", "tan", "tanh",
# "tanpi", "gamma", "lgamma", "digamma", "trigamma"
Median <- function(x, ...)
UseMethod("Median")
Median.default <- function(x, weights = NULL, na.rm = FALSE, ...) {
if(is.null(weights))
median(x=x, na.rm=na.rm)
else
Quantile(x, weights, probs=0.5, na.rm=na.rm, names=FALSE)
}
# ordered interface for the median
Median.factor <- function(x, na.rm = FALSE, ...) {
# Answered by Hong Ooi on 2011-10-28T00:37:08-04:00
# http://www.rqna.net/qna/nuiukm-idiomatic-method-of-finding-the-median-of-an-ordinal-in-r.html
# return NA, if x is not ordered
# clearme: why not median.ordered?
if(!is.ordered(x)) return(NA)
if(na.rm) x <- na.omit(x)
if(any(is.na(x))) return(NA)
levs <- levels(x)
m <- median(as.integer(x), na.rm = na.rm)
if(floor(m) != m)
{
warning("Median is between two values; using the first one")
m <- floor(m)
}
ordered(m, labels = levs, levels = seq_along(levs))
}
Median.Freq <- function(x, breaks, ...) {
mi <- min(which(x$cumperc > 0.5))
breaks[mi] + (tail(x$cumfreq, 1)/2 - x[mi-1, "cumfreq"]) /
x[mi, "freq"] * diff(breaks[c(mi, mi+1)])
}
# further weighted quantiles in Hmisc and modi, both on CRAN
Quantile <- function(x, weights = NULL, probs = seq(0, 1, 0.25),
na.rm = FALSE, names=TRUE, type = 7, digits=7) {
if(is.null(weights)){
quantile(x=x, probs=probs, na.rm=na.rm, names=names, type=type, digits=digits)
} else {
# this is a not exported stats function
format_perc <- function (x, digits = max(2L, getOption("digits")), probability = TRUE,
use.fC = length(x) < 100, ...) {
if (length(x)) {
if (probability)
x <- 100 * x
ans <- paste0(if (use.fC)
formatC(x, format = "fg", width = 1, digits = digits)
else format(x, trim = TRUE, digits = digits, ...), "%")
ans[is.na(x)] <- ""
ans
}
else character(0)
}
sorted <- FALSE
# initializations
if (!is.numeric(x)) stop("'x' must be a numeric vector")
n <- length(x)
if (n == 0 || (!isTRUE(na.rm) && any(is.na(x)))) {
# zero length or missing values
return(rep.int(NA, length(probs)))
}
if (!is.null(weights)) {
if (!is.numeric(weights)) stop("'weights' must be a numeric vector")
else if (length(weights) != n) {
stop("'weights' must have the same length as 'x'")
} else if (!all(is.finite(weights))) stop("missing or infinite weights")
if (any(weights < 0)) warning("negative weights")
if (!is.numeric(probs) || all(is.na(probs)) ||
isTRUE(any(probs < 0 | probs > 1))) {
stop("'probs' must be a numeric vector with values in [0,1]")
}
if (all(weights == 0)) { # all zero weights
warning("all weights equal to zero")
return(rep.int(0, length(probs)))
}
}
# remove NAs (if requested)
if(isTRUE(na.rm)){
indices <- !is.na(x)
x <- x[indices]
n <- length(x)
if(!is.null(weights)) weights <- weights[indices]
}
# sort values and weights (if requested)
if(!isTRUE(sorted)) {
# order <- order(x, na.last=NA) ## too slow
order <- order(x)
x <- x[order]
weights <- weights[order] # also works if 'weights' is NULL
}
# some preparations
if(is.null(weights)) rw <- (1:n)/n
else rw <- cumsum(weights)/sum(weights)
# obtain quantiles
# currently only type 5
if (type == 5) {
qs <- sapply(probs,
function(p) {
if (p == 0) return(x[1])
else if (p == 1) return(x[n])
select <- min(which(rw >= p))
if(rw[select] == p) mean(x[select:(select+1)])
else x[select]
})
} else if(type == 7){
if(is.null(weights)){
index <- 1 + max(n - 1, 0) * probs
lo <- pmax(floor(index), 1)
hi <- ceiling(index)
x <- sort(x, partial = if (n == 0)
numeric()
else unique(c(lo, hi)))
qs <- x[lo]
i <- which((index > lo & x[hi] != qs))
h <- (index - lo)[i]
qs[i] <- (1 - h) * qs[i] + h * x[hi[i]]
} else {
n <- sum(weights)
ord <- 1 + (n - 1) * probs
low <- pmax(floor(ord), 1)
high <- pmin(low + 1, n)
ord <- ord %% 1
## Find low and high order statistics
## These are minimum values of x such that the cum. freqs >= c(low,high)
allq <- approx(cumsum(weights), x, xout=c(low, high),
method='constant', f=1, rule=2)$y
k <- length(probs)
qs <- (1 - ord)*allq[1:k] + ord*allq[-(1:k)]
}
} else {
qs <- NA
warning(gettextf("type %s is not implemented", type))
}
# return(unname(q))
# why unname? change to named.. 14.10.2020
if (names && length(probs) > 0L) {
stopifnot(is.numeric(digits), digits >= 1)
names(qs) <- format_perc(probs, digits = digits)
}
return(qs)
}
}
IQRw <- function (x, weights = NULL, na.rm = FALSE, type = 7) {
if(is.null(weights))
IQR(x=x, na.rm=na.rm, type=type)
else
diff(Quantile(x, weights=weights, probs=c(0.25, 0.75), na.rm=na.rm, type=type))
}
## stats: functions (RobRange, Hmean, Gmean, Aad, HuberM etc.) ====
CorPart <- function(m, x, y) {
cl <- match.call()
if(dim(m)[1] != dim(m)[2]) {
n.obs <- dim(m)[1]
m <- cor(m, use="pairwise")
}
if(!is.matrix(m)) m <- as.matrix(m)
# first reorder the matrix to select the right variables
nm <- dim(m)[1]
t.mat <- matrix(0, ncol=nm, nrow=nm)
xy <- c(x,y)
numx <- length(x)
numy <- length(y)
nxy <- numx+numy
for (i in 1:nxy) {
t.mat[i, xy[i]] <- 1
}
reorder <- t.mat %*% m %*% t(t.mat)
reorder[abs(reorder) > 1] <- NA # this allows us to use the matrix operations to reorder and pick
X <- reorder[1:numx, 1:numx]
Y <- reorder[1:numx, (numx+1):nxy]
phi <- reorder[(numx+1):nxy,(numx+1):nxy]
phi.inv <- solve(phi)
X.resid <- X - Y %*% phi.inv %*% t(Y)
sd <- diag(sqrt(1/diag(X.resid)))
X.resid <- sd %*% X.resid %*% sd
colnames(X.resid) <- rownames(X.resid) <- colnames(m)[x]
return(X.resid)
}
FisherZ <- function(rho) {0.5*log((1+rho)/(1-rho)) } #converts r to z
FisherZInv <- function(z) {(exp(2*z)-1)/(1+exp(2*z)) } #converts back again
CorCI <- function(rho, n, conf.level = 0.95, alternative = c("two.sided","less","greater")) {
if (n < 3L)
stop("not enough finite observations")
if (!missing(conf.level) && (length(conf.level) != 1 || !is.finite(conf.level)
|| conf.level < 0 || conf.level > 1))
stop("'conf.level' must be a single number between 0 and 1")
alternative <- match.arg(alternative)
# correct rho == 1 with rho == almost 1 in order to return ci = c(1, 1)
# which is a sensible value for the confidence interval
if(identical(rho, 1))
ci <- c(1, 1)
else {
z <- FisherZ(rho)
sigma <- 1/sqrt(n - 3)
ci <- switch(alternative,
less = c(-Inf, z + sigma * qnorm(conf.level)),
greater = c(z - sigma * qnorm(conf.level), Inf),
two.sided = z + c(-1, 1) * sigma * qnorm((1 + conf.level)/2))
ci <- FisherZInv(ci)
}
return(c(cor = rho, lwr.ci = ci[1], upr.ci = ci[2]))
}
CorPolychor <- function (x, y, ML=FALSE, control=list(), std.err=FALSE, maxcor=.9999){
# last modified 21 Oct 08 by J. Fox
binBvn <- function(rho, row.cuts, col.cuts, bins=4){
# last modified 29 Mar 07 by J. Fox
row.cuts <- if (missing(row.cuts)) c(-Inf, 1:(bins - 1)/bins, Inf) else c(-Inf, row.cuts, Inf)
col.cuts <- if (missing(col.cuts)) c(-Inf, 1:(bins - 1)/bins, Inf) else c(-Inf, col.cuts, Inf)
r <- length(row.cuts) - 1
c <- length(col.cuts) - 1
P <- matrix(0, r, c)
R <- matrix(c(1, rho, rho, 1), 2, 2)
for (i in 1:r){
for (j in 1:c){
P[i,j] <- pmvnorm(lower=c(row.cuts[i], col.cuts[j]),
upper=c(row.cuts[i+1], col.cuts[j+1]),
corr=R)
}
}
P
}
f <- function(pars) {
if (length(pars) == 1){
rho <- pars
if (abs(rho) > maxcor) rho <- sign(rho)*maxcor
row.cuts <- rc
col.cuts <- cc
}
else {
rho <- pars[1]
if (abs(rho) > maxcor) rho <- sign(rho)*maxcor
row.cuts <- pars[2:r]
col.cuts <- pars[(r+1):(r+c-1)]
}
P <- binBvn(rho, row.cuts, col.cuts)
- sum(tab * log(P))
}
tab <- if (missing(y)) x else table(x, y)
zerorows <- apply(tab, 1, function(x) all(x == 0))
zerocols <- apply(tab, 2, function(x) all(x == 0))
zr <- sum(zerorows)
if (0 < zr) warning(paste(zr, " row", suffix <- if(zr == 1) "" else "s",
" with zero marginal", suffix," removed", sep=""))
zc <- sum(zerocols)
if (0 < zc) warning(paste(zc, " column", suffix <- if(zc == 1) "" else "s",
" with zero marginal", suffix, " removed", sep=""))
tab <- tab[!zerorows, ,drop=FALSE]
tab <- tab[, !zerocols, drop=FALSE]
r <- nrow(tab)
c <- ncol(tab)
if (r < 2) {
warning("the table has fewer than 2 rows")
return(NA)
}
if (c < 2) {
warning("the table has fewer than 2 columns")
return(NA)
}
n <- sum(tab)
rc <- qnorm(cumsum(rowSums(tab))/n)[-r]
cc <- qnorm(cumsum(colSums(tab))/n)[-c]
if (ML) {
result <- optim(c(optimise(f, interval=c(-1, 1))$minimum, rc, cc), f,
control=control, hessian=std.err)
if (result$par[1] > 1){
result$par[1] <- 1
warning("inadmissible correlation set to 1")
}
else if (result$par[1] < -1){
result$par[1] <- -1
warning("inadmissible correlation set to -1")
}
if (std.err) {
chisq <- 2*(result$value + sum(tab * log((tab + 1e-6)/n)))
df <- length(tab) - r - c
result <- list(type="polychoric",
rho=result$par[1],
row.cuts=result$par[2:r],
col.cuts=result$par[(r+1):(r+c-1)],
var=solve(result$hessian),
n=n,
chisq=chisq,
df=df,
ML=TRUE)
class(result) <- "polycor"
return(result)
}
else return(as.vector(result$par[1]))
}
else if (std.err){
result <- optim(0, f, control=control, hessian=TRUE, method="BFGS")
if (result$par > 1){
result$par <- 1
warning("inadmissible correlation set to 1")
}
else if (result$par < -1){
result$par <- -1
warning("inadmissible correlation set to -1")
}
chisq <- 2*(result$value + sum(tab *log((tab + 1e-6)/n)))
df <- length(tab) - r - c
result <- list(type="polychoric",
rho=result$par,
var=1/result$hessian,
n=n,
chisq=chisq,
df=df,
ML=FALSE)
class(result) <- "CorPolychor"
return(result)
}
else optimise(f, interval=c(-1, 1))$minimum
}
print.CorPolychor <- function(x, digits = max(3, getOption("digits") - 3), ...){
# last modified 24 June 04 by J. Fox
if (x$type == "polychoric"){
se <- sqrt(diag(x$var))
se.rho <- se[1]
est <- if (x$ML) "ML est." else "2-step est."
cat("\nPolychoric Correlation, ", est, " = ", signif(x$rho, digits),
" (", signif(se.rho, digits), ")", sep="")
if (x$df > 0)
cat("\nTest of bivariate normality: Chisquare = ",
signif(x$chisq, digits), ", df = ", x$df, ", p = ",
signif(pchisq(x$chisq, x$df, lower.tail=FALSE), digits), "\n", sep="")
else cat("\n")
r <- length(x$row.cuts)
c <- length(x$col.cuts)
if (r == 0) return(invisible(x))
row.cuts.se <- se[2:(r+1)]
col.cuts.se <- se[(r+2):(r+c+1)]
rowThresh <- signif(cbind(x$row.cuts, row.cuts.se), digits)
if (r > 1) cat("\n Row Thresholds\n")
else cat("\n Row Threshold\n")
colnames(rowThresh) <- c("Threshold", "Std.Err.")
rownames(rowThresh) <- if (r > 1) 1:r else " "
print(rowThresh)
colThresh <- signif(cbind(x$col.cuts, col.cuts.se), digits)
if (c > 1) cat("\n\n Column Thresholds\n")
else cat("\n\n Column Threshold\n")
colnames(colThresh) <- c("Threshold", "Std.Err.")
rownames(colThresh) <- if (c > 1) 1:c else " "
print(colThresh)
}
else if (x$type == "polyserial"){
se <- sqrt(diag(x$var))
se.rho <- se[1]
est <- if (x$ML) "ML est." else "2-step est."
cat("\nPolyserial Correlation, ", est, " = ", signif(x$rho, digits),
" (", signif(se.rho, digits), ")", sep="")
cat("\nTest of bivariate normality: Chisquare = ", signif(x$chisq, digits),
", df = ", x$df, ", p = ", signif(pchisq(x$chisq, x$df, lower.tail=FALSE), digits),
"\n\n", sep="")
if (length(se) == 1) return(invisible(x))
cuts.se <- se[-1]
thresh <- signif(rbind(x$cuts, cuts.se), digits)
colnames(thresh) <- 1:length(x$cuts)
rownames(thresh) <- c("Threshold", "Std.Err.")
print(thresh)
}
else print(unclass(x))
invisible(x)
}
FindCorr <- function(x, cutoff = .90, verbose = FALSE) {
# Author: Max Kuhn
# source library(caret)
varnum <- dim(x)[1]
if(!isTRUE(all.equal(x, t(x)))) stop("correlation matrix is not symmetric")
if(varnum ==1) stop("only one variable given")
x <- abs(x)
# re-ordered columns based on max absolute correlation
originalOrder <- 1:varnum
averageCorr <- function(x) mean(x, na.rm = TRUE)
tmp <- x
diag(tmp) <- NA
maxAbsCorOrder <- order(apply(tmp, 2, averageCorr), decreasing = TRUE)
x <- x[maxAbsCorOrder, maxAbsCorOrder]
newOrder <- originalOrder[maxAbsCorOrder]
deletecol <- 0
for(i in 1L:(varnum-1))
{
for(j in (i+1):varnum)
{
if(!any(i == deletecol) & !any(j == deletecol))
{
if(verbose)
cat("Considering row\t", newOrder[i],
"column\t", newOrder[j],
"value\t", round(x[i,j], 3), "\n")
if(abs(x[i,j]) > cutoff)
{
if(mean(x[i, -i]) > mean(x[-j, j]))
{
deletecol <- unique(c(deletecol, i))
if(verbose) cat(" Flagging column\t", newOrder[i], "\n")
} else {
deletecol <- unique(c(deletecol, j))
if(verbose) cat(" Flagging column\t", newOrder[j], "\n")
}
}
}
}
}
deletecol <- deletecol[deletecol != 0]
newOrder[deletecol]
}
# Alternative:
# From roc bioconductor
# Vince Carey (stvjc@channing.harvard.edu)
# trapezint <- function (x, y, a, b){
#
# if (length(x) != length(y))
# stop("length x must equal length y")
# y <- y[x >= a & x <= b]
# x <- x[x >= a & x <= b]
# if (length(unique(x)) < 2)
# return(NA)
# ya <- approx(x, y, a, ties = max, rule = 2)$y
# yb <- approx(x, y, b, ties = max, rule = 2)$y
# x <- c(a, x, b)
# y <- c(ya, y, yb)
# h <- diff(x)
# lx <- length(x)
# 0.5 * sum(h * (y[-1] + y[-lx]))
# }
# AUC_deprecated <- function(x, y, from=min(x, na.rm=TRUE), to = max(x, na.rm=TRUE),
# method=c("trapezoid", "step", "spline", "linear"),
# absolutearea = FALSE, subdivisions = 100, na.rm = FALSE, ...) {
#
# # calculates Area unter the curve
# # example:
# # AUC( x=c(1,2,3,5), y=c(0,1,1,2))
# # AUC( x=c(2,3,4,5), y=c(0,1,1,2))
#
# if(na.rm) {
# idx <- complete.cases(cbind(x,y))
# x <- x[idx]
# y <- y[idx]
# }
#
# if (length(x) != length(y))
# stop("length x must equal length y")
#
# idx <- order(x)
# x <- x[idx]
# y <- y[idx]
#
# switch( match.arg( arg=method, choices=c("trapezoid","step","spline","linear") )
# , "trapezoid" = { a <- sum((apply( cbind(y[-length(y)], y[-1]), 1, mean))*(x[-1] - x[-length(x)])) }
# , "step" = { a <- sum( y[-length(y)] * (x[-1] - x[-length(x)])) }
# , "linear" = {
# a <- MESS_auc(x, y, from = from , to = to, type="linear",
# absolutearea=absolutearea, subdivisions=subdivisions, ...)
# }
# , "spline" = {
# a <- MESS_auc(x, y, from = from , to = to, type="spline",
# absolutearea=absolutearea, subdivisions=subdivisions, ...)
# # a <- integrate(splinefun(x, y, method="natural"), lower=min(x), upper=max(x))$value
# }
# )
# return(a)
# }
# New version, publish as soon as package sobir is updated
AUC <- function(x, y, from = min(x, na.rm=TRUE), to = max(x, na.rm=TRUE),
method=c("trapezoid", "step", "spline", "linear"), absolutearea = FALSE,
subdivisions = 100, na.rm = FALSE, ...) {
if(identical(method, "linear")){
warning("method linear is no longer supported!")
return(NA)
}
# calculates Area unter the curve
# example:
# AUC( x=c(1,2,3,5), y=c(0,1,1,2))
# AUC( x=c(2,3,4,5), y=c(0,1,1,2))
if(na.rm) {
idx <- complete.cases(cbind(x,y))
x <- x[idx]
y <- y[idx]
}
if (length(x) != length(y))
stop("length x must equal length y")
if (length(x) < 2)
return(NA)
o <- order(x)
x <- x[o]
y <- y[o]
ox <- x[o]
oy <- y[o]
method <- match.arg(method)
if (method=="trapezoid") {
# easy and short
# , "trapezoid" = { a <- sum((apply( cbind(y[-length(y)], y[-1]), 1, mean))*(x[-1] - x[-length(x)])) }
## Default option
if (!absolutearea) {
values <- approx(x, y, xout = sort(unique(c(from, to, x[x > from & x < to]))), ...)
res <- 0.5 * sum(diff(values$x) * (values$y[-1] + values$y[-length(values$y)]))
} else { ## Absolute areas
idx <- which(diff(oy >= 0)!=0)
newx <- c(x, x[idx] - oy[idx]*(x[idx+1]-x[idx]) / (y[idx+1]-y[idx]))
newy <- c(y, rep(0, length(idx)))
values <- approx(newx, newy, xout = sort(unique(c(from, to, newx[newx > from & newx < to]))), ...)
res <- 0.5 * sum(diff(values$x) * (abs(values$y[-1]) + abs(values$y[-length(values$y)])))
}
} else if (method=="step") {
# easy and short
# , "step" = { a <- sum( y[-length(y)] * (x[-1] - x[-length(x)])) }
## Default option
if (!absolutearea) {
values <- approx(x, y, xout = sort(unique(c(from, to, x[x > from & x < to]))), ...)
res <- sum(diff(values$x) * values$y[-length(values$y)])
# res <- sum( y[-length(y)] * (x[-1] - x[-length(x)]))
} else { ## Absolute areas
idx <- which(diff(oy >= 0)!=0)
newx <- c(x, x[idx] - oy[idx]*(x[idx+1]-x[idx]) / (y[idx+1]-y[idx]))
newy <- c(y, rep(0, length(idx)))
values <- approx(newx, newy, xout = sort(unique(c(from, to, newx[newx > from & newx < to]))), ...)
res <- sum(diff(values$x) * abs(values$y[-length(values$y)]))
}
} else if (method=="spline") {
if (absolutearea)
myfunction <- function(z) { abs(splinefun(x, y, method="natural")(z)) }
else
myfunction <- splinefun(x, y, method="natural")
res <- integrate(myfunction, lower=from, upper=to, subdivisions=subdivisions)$value
}
return(res)
}
MESS_auc <- function(x, y, from = min(x, na.rm=TRUE), to = max(x, na.rm=TRUE), type=c("linear", "spline"),
absolutearea=FALSE, subdivisions =100, ...) {
type <- match.arg(type)
# Sanity checks
stopifnot(length(x) == length(y))
stopifnot(!is.na(from))
if (length(unique(x)) < 2)
return(NA)
if (type=="linear") {
## Default option
if (absolutearea==FALSE) {
values <- approx(x, y, xout = sort(unique(c(from, to, x[x > from & x < to]))), ...)
res <- 0.5 * sum(diff(values$x) * (values$y[-1] + values$y[-length(values$y)]))
} else { ## Absolute areas
## This is done by adding artificial dummy points on the x axis
o <- order(x)
ox <- x[o]
oy <- y[o]
idx <- which(diff(oy >= 0)!=0)
newx <- c(x, x[idx] - oy[idx]*(x[idx+1]-x[idx]) / (y[idx+1]-y[idx]))
newy <- c(y, rep(0, length(idx)))
values <- approx(newx, newy, xout = sort(unique(c(from, to, newx[newx > from & newx < to]))), ...)
res <- 0.5 * sum(diff(values$x) * (abs(values$y[-1]) + abs(values$y[-length(values$y)])))
}
} else { ## If it is not a linear approximation
if (absolutearea)
myfunction <- function(z) { abs(splinefun(x, y, method="natural")(z)) }
else
myfunction <- splinefun(x, y, method="natural")
res <- integrate(myfunction, lower=from, upper=to, subdivisions=subdivisions)$value
}
res
}
# library(microbenchmark)
#
# baseMode <- function(x, narm = FALSE) {
# if (narm) x <- x[!is.na(x)]
# ux <- unique(x)
# ux[which.max(table(match(x, ux)))]
# }
# x <- round(rnorm(1e7) *100, 4)
# microbenchmark(Mode(x), baseMode(x), DescTools:::fastMode(x), times = 15, unit = "relative")
#
# mode value, the most frequent element
Mode <- function(x, na.rm=FALSE) {
# // Source
# // https://stackoverflow.com/questions/55212746/rcpp-fast-statistical-mode-function-with-vector-input-of-any-type
# // Author: Ralf Stubner, Joseph Wood
if(!is.atomic(x) | is.matrix(x)) stop("Mode supports only atomic vectors. Use sapply(*, Mode) instead.")
if (na.rm)
x <- x[!is.na(x)]
if (anyNA(x))
# there are NAs, so no mode exist nor frequency
return(structure(NA_real_, freq = NA_integer_))
if(length(x) == 1L)
# only one value in x, x is the mode
# return(structure(x, freq = 1L))
# changed to: only one value in x, no mode defined
return(structure(NA_real_, freq = NA_integer_))
# we don't have NAs so far, either there were then we've already stopped
# or they've been stripped above
res <- fastModeX(x, narm=FALSE)
# no mode existing, if max freq is only 1 observation
if(length(res)== 0L & attr(res, "freq")==1L)
return(structure(NA_real_, freq = NA_integer_))
else
# order results kills the attribute
return(structure(res[order(res)], freq = attr(res, "freq")))
}
Gmean <- function (x, method = c("classic", "boot"),
conf.level = NA, sides = c("two.sided","left","right"),
na.rm = FALSE, ...) {
# see also: http://www.stata.com/manuals13/rameans.pdf
if(na.rm) x <- na.omit(x)
if(any(is.na(x) | (is_neg <- x < 0))){
if(any(na.omit(is_neg)))
warning("x contains negative values")
if(is.na(conf.level))
NA
else
c(NA, NA, NA)
} else if(any(x==0)) {
if(is.na(conf.level))
0
else
c(0, NA, NA)
} else {
if(is.na(conf.level))
exp(mean(log(x)))
else
exp(MeanCI(x=log(x), method = method,
conf.level = conf.level, sides = sides, ...))
}
}
Gsd <- function (x, na.rm = FALSE) {
if(na.rm) x <- na.omit(x)
is.na(x) <- x <= 0
exp(sd(log(x)))
}
Hmean <- function(x, method = c("classic", "boot"),
conf.level = NA, sides = c("two.sided","left","right"),
na.rm = FALSE, ...) {
# see also for alternative ci
# https://www.unistat.com/guide/confidence-intervals/
is.na(x) <- x <= 0
if(is.na(conf.level))
res <- 1 / mean(1/x, na.rm = na.rm)
else {
# res <- (1 / MeanCI(x = 1/x, method = method,
# conf.level = conf.level, sides = sides, na.rm=na.rm, ...))
#
# if(!is.na(conf.level)){
# res[2:3] <- c(min(res[2:3]), max(res[2:3]))
# if(res[2] < 0)
# res[c(2,3)] <- NA
# }
#
sides <- match.arg(sides, choices = c("two.sided", "left",
"right"), several.ok = FALSE)
if (sides != "two.sided")
conf.level <- 1 - 2 * (1 - conf.level)
res <- (1/(mci <- MeanCI(x = 1/x, method = method, conf.level = conf.level,
sides = "two.sided", na.rm = na.rm, ...)))[c(1, 3, 2)]
# check if lower ci < 0, if so return NA, as CI not defined see Stata definition
if( mci[2] <= 0)
res[2:3] <- NA
names(res) <- names(res)[c(1,3,2)]
if (sides == "left")
res[3] <- Inf
else if (sides == "right")
# it's not clear, if we should not set this to 0
res[2] <- NA
}
return(res)
}
TukeyBiweight <- function(x, const=9, na.rm = FALSE, conf.level = NA, ci.type = "bca", R=1000, ...) {
if(na.rm) x <- na.omit(x)
if(anyNA(x)) return(NA)
if(is.na(conf.level)){
# .Call("tbrm", as.double(x[!is.na(x)]), const)
# res <- .Call("tbrm", PACKAGE="DescTools", as.double(x), const)
res <- .Call("_DescTools_tbrm", PACKAGE = "DescTools", x, const)
} else {
# adjusted bootstrap percentile (BCa) interval
boot.tbw <- boot(x, function(x, d)
.Call("_DescTools_tbrm", PACKAGE="DescTools", x[d], const), R=R, ...)
ci <- boot.ci(boot.tbw, conf=conf.level, type=ci.type)
res <- c(tbw=boot.tbw$t0, lwr.ci=ci[[4]][4], upr.ci=ci[[4]][5])
}
return(res)
}
## Originally from /u/ftp/NDK/Source-NDK-9/R/rg2-fkt.R :
.tauHuber <- function(x, mu, k=1.345, s = mad(x), resid = (x - mu)/s) {
## Purpose: Korrekturfaktor Tau fuer die Varianz von Huber-M-Schaetzern
## -------------------------------------------------------------------------
## Arguments: x = Daten mu = Lokations-Punkt k = Parameter der Huber Psi-Funktion
## -------------------------------------------------------------------------
## Author: Rene Locher Update: R. Frisullo 23.4.02; M.Maechler (as.log(); s, resid)
inr <- abs(resid) <= k
psi <- ifelse(inr, resid, sign(resid)*k) # psi (x)
psiP <- as.logical(inr)# = ifelse(abs(resid) <= k, 1, 0) # psi'(x)
length(x) * sum(psi^2) / sum(psiP)^2
}
.wgt.himedian <- function(x, weights = rep(1,n)) {
# Purpose: weighted hiMedian of x
# Author: Martin Maechler, Date: 14 Mar 2002
n <- length(x <- as.double(x))
stopifnot(storage.mode(weights) %in% c("integer", "double"))
if(n != length(weights))
stop("'weights' must have same length as 'x'")
# if(is.integer(weights)) message("using integer weights")
# Original
# .C(if(is.integer(weights)) "wgt_himed_i" else "wgt_himed",
# x, n, weights,
# res = double(1))$res
if(is.integer(weights))
.C("wgt_himed_i",
x, n, weights,
res = double(1))$res
else
.C("wgt_himed",
x, n, weights,
res = double(1))$res
}
## A modified "safe" (and more general) Huber estimator:
.huberM <-
function(x, k = 1.345, weights = NULL,
tol = 1e-06,
mu = if(is.null(weights)) median(x) else .wgt.himedian(x, weights),
s = if(is.null(weights)) mad(x, center=mu)
else .wgt.himedian(abs(x - mu), weights),
se = FALSE,
warn0scale = getOption("verbose"))
{
## Author: Martin Maechler, Date: 6 Jan 2003, ff
## implicit 'na.rm = TRUE':
if(any(i <- is.na(x))) {
x <- x[!i]
if(!is.null(weights)) weights <- weights[!i]
}
n <- length(x)
sum.w <-
if(!is.null(weights)) {
stopifnot(is.numeric(weights), weights >= 0, length(weights) == n)
sum(weights)
} else n
it <- 0L
NA. <- NA_real_
if(sum.w == 0) # e.g 'x' was all NA
return(list(mu = NA., s = NA., it = it, se = NA.)) # instead of error
if(se && !is.null(weights))
stop("Std.error computation not yet available for the case of 'weights'")
if (s <= 0) {
if(s < 0) stop("negative scale 's'")
if(warn0scale && n > 1)
warning("scale 's' is zero -- returning initial 'mu'")
}
else {
wsum <- if(is.null(weights)) sum else function(u) sum(u * weights)
repeat {
it <- it + 1L
y <- pmin(pmax(mu - k * s, x), mu + k * s)
mu1 <- wsum(y) / sum.w
if (abs(mu - mu1) < tol * s)
break
mu <- mu1
}
}
list(mu = mu, s = s, it = it,
SE = if(se) s * sqrt(.tauHuber(x, mu=mu, s=s, k=k) / n) else NA.)
}
HuberM <- function(x, k = 1.345, mu = median(x), s = mad(x, center=mu),
na.rm = FALSE, conf.level = NA, ci.type = c("wald", "boot"), ...){
# new interface to HuberM, making it less complex
# refer to robustbase::huberM if more control is required
if(na.rm) x <- na.omit(x)
if(anyNA(x)) return(NA)
if(is.na(conf.level)){
res <- .huberM(x=x, k=k, mu=mu, s=s, warn0scale=TRUE)$mu
return(res)
} else {
switch(match.arg(ci.type)
,"wald"={
res <- .huberM(x=x, k=k, mu=mu, s=s, se=TRUE, warn0scale=TRUE)
# Solution: (12.6.06) - Robuste Regression (Rg-2d) - Musterloeungen zu Serie 1
# r.loc$mu + c(-1,1)*qt(0.975,8)*sqrt(t.tau/length(d.ertrag))*r.loc$s
#
# Ruckstuhl's Loesung:
# (Sleep.HM$mu + c(-1,1)*qt(0.975, length(Sleep)-1) *
# sqrt(f.tau(Sleep, Sleep.HM$mu)) * Sleep.HM$s/sqrt(length(Sleep)))
# ci <- qnorm(1-(1-conf.level)/2) * res$SE
ci <- qt(1-(1-conf.level)/2, length(x)-1) *
sqrt(.tauHuber(x, res$mu, k=k)) * res$s/sqrt(length(x))
res <- c(hm=res$mu, lwr.ci=res$mu - ci, upr.ci=res$mu + ci)
}
,"boot" ={
R <- InDots(..., arg="R", default=1000)
bci.type <- InDots(..., arg="type", default="perc")
boot.hm <- boot(x, function(x, d){
hm <- .huberM(x=x[d], k=k, mu=mu, s=s, se=TRUE)
return(c(hm$mu, hm$s^2))
}, R=R)
ci <- boot.ci(boot.hm, conf=conf.level, ...)
if(ci.type =="norm") {
lwr.ci <- ci[[4]][2]
upr.ci <- ci[[4]][3]
} else {
lwr.ci <- ci[[4]][4]
upr.ci <- ci[[4]][5]
}
res <- c(hm=boot.hm$t0[1], lwr.ci=lwr.ci, upr.ci=upr.ci)
}
)
return(res)
}
}
# old version, replace 13.5.2015
#
# # A modified "safe" (and more general) Huber estimator:
# HuberM <- function(x, k = 1.5, weights = NULL, tol = 1e-06,
# mu = if(is.null(weights)) median(x) else wgt.himedian(x, weights),
# s = if(is.null(weights)) mad(x, center=mu) else wgt.himedian(abs(x - mu), weights),
# se = FALSE, warn0scale = getOption("verbose"), na.rm = FALSE, stats = FALSE) {
#
# # Author: Martin Maechler, Date: 6 Jan 2003, ff
#
# # Originally from /u/ftp/NDK/Source-NDK-9/R/rg2-fkt.R :
# tauHuber <- function(x, mu, k=1.5, s = mad(x), resid = (x - mu)/s) {
# # Purpose: Korrekturfaktor Tau fuer die Varianz von Huber-M-Schaetzern
# # ******************************************************************************
# # Arguments: x = Daten mu = Lokations-Punkt k = Parameter der Huber Psi-Funktion
# # ******************************************************************************
# # Author: Rene Locher Update: R. Frisullo 23.4.02; M.Maechler (as.log(); s, resid)
# inr <- abs(resid) <= k
# psi <- ifelse(inr, resid, sign(resid)*k) #### psi (x)
# psiP <- as.logical(inr) # = ifelse(abs(resid) <= k, 1, 0) #### psi'(x)
# length(x) * sum(psi^2) / sum(psiP)^2
# }
#
# wgt.himedian <- function(x, weights = rep(1,n)) {
#
# # Purpose: weighted hiMedian of x
# # Author: Martin Maechler, Date: 14 Mar 2002
# n <- length(x <- as.double(x))
# stopifnot(storage.mode(weights) %in% c("integer", "double"))
# if(n != length(weights))
# stop("'weights' must have same length as 'x'")
# # if(is.integer(weights)) message("using integer weights")
# .C(if(is.integer(weights)) "wgt_himed_i" else "wgt_himed",
# x, n, weights,
# res = double(1))$res
# }
#
#
# # Andri: introduce na.rm
# # old: implicit 'na.rm = TRUE'
# if(na.rm) {
# i <- is.na(x)
# x <- x[!i]
# if(!is.null(weights)) weights <- weights[!i]
# } else {
# if(anyNA(x)) return(NA)
# }
#
#
# n <- length(x)
# sum.w <-
# if(!is.null(weights)) {
# stopifnot(is.numeric(weights), weights >= 0, length(weights) == n)
# sum(weights)
# } else n
# it <- 0L
# NA. <- NA_real_
# if(sum.w == 0) # e.g 'x' was all NA
# return(list(mu = NA., s = NA., it = it, se = NA.)) # instead of error
#
# if(se && !is.null(weights))
# stop("Std.error computation not yet available for the case of 'weights'")
#
# if (s <= 0) {
# if(s < 0) stop("negative scale 's'")
# if(warn0scale && n > 1)
# warning("scale 's' is zero -- returning initial 'mu'")
# }
# else {
# wsum <- if(is.null(weights)) sum else function(u) sum(u * weights)
#
# repeat {
# it <- it + 1L
# y <- pmin(pmax(mu - k * s, x), mu + k * s)
# mu1 <- wsum(y) / sum.w
# if (abs(mu - mu1) < tol * s)
# break
# mu <- mu1
# }
# }
#
# if(stats)
# res <- list(mu = mu, s = s, it = it,
# SE = if(se) s * sqrt(tauHuber(x, mu=mu, s=s, k=k) / n) else NA.)
# else
# res <- mu
#
# return(res)
#
# }
HodgesLehmann <- function(x, y = NULL, conf.level = NA, na.rm = FALSE) {
# Werner Stahel's version:
#
# f.HodgesLehmann <- function(data)
# {
# ## Purpose: Hodges-Lehmann estimate and confidence interval
# ## -------------------------------------------------------------------------
# ## Arguments:
# ## Remark: function changed so that CI covers >= 95%, before it was too
# ## small (9/22/04)
# ## -------------------------------------------------------------------------
# ## Author: Werner Stahel, Date: 12 Aug 2002, 14:13
# ## Update: Beat Jaggi, Date: 22 Sept 2004
# .cexact <-
# # c(NA,NA,NA,NA,NA,21,26,33,40,47,56,65,74,84,95,107,119,131,144,158)
# c(NA,NA,NA,NA,NA,22,27,34,41,48,57,66,75,85,96,108,120,132,145,159)
# .d <- na.omit(data)
# .n <- length(.d)
# .wa <- sort(c(outer(.d,.d,"+")/2)[outer(1:.n,1:.n,"<=")])
# .c <- if (.n<=length(.cexact)) .n*(.n+1)/2+1-.cexact[.n] else
# floor(.n*(.n+1)/4-1.96*sqrt(.n*(.n+1)*(2*.n+1)/24))
# .r <- c(median(.wa), .wa[c(.c,.n*(.n+1)/2+1-.c)])
# names(.r) <- c("estimate","lower","upper")
# .r
# }
if(na.rm) {
if(is.null(y))
x <- na.omit(x)
else {
ok <- complete.cases(x, y)
x <- x[ok]
y <- y[ok]
}
}
if(anyNA(x) || (!is.null(y) && anyNA(y)))
if(is.na(conf.level))
return(NA)
else
return(c(est=NA, lwr.ci=NA, upr.ci=NA))
# res <- wilcox.test(x, y, conf.int = TRUE, conf.level = Coalesce(conf.level, 0.8))
if(is.null(y)){
res <- .Call("_DescTools_hlqest", PACKAGE = "DescTools", x)
} else {
res <- .Call("_DescTools_hl2qest", PACKAGE = "DescTools", x, y)
}
if(is.na(conf.level)){
result <- res
names(result) <- NULL
} else {
n <- length(x)
# lci <- n^2/2 + qnorm((1-conf.level)/2) * sqrt(n^2 * (2*n+1)/12) - 0.5
# uci <- n^2/2 - qnorm((1-conf.level)/2) * sqrt(n^2 * (2*n+1)/12) - 0.5
lci <- uci <- NA
warning("Confidence intervals not yet implemented for Hodges-Lehman-Estimator.")
result <- c(est=res, lwr.ci=lci, upr.ci=uci)
}
return(result)
}
Skew <- function (x, weights=NULL, na.rm = FALSE, method = 3, conf.level = NA, ci.type = "bca", R=1000, ...) {
# C part for the expensive (x - mean(x))^2 etc. is a kind of 14 times faster
# > x <- rchisq(100000000, df=2)
# > system.time(Skew(x))
# user system elapsed
# 6.32 0.30 6.62
# > system.time(Skew2(x))
# user system elapsed
# 0.47 0.00 0.47
i.skew <- function(x, weights=NULL, method = 3) {
# method 1: older textbooks
if(!is.null(weights)){
# use a standard treatment for weights
z <- .NormWeights(x, weights, na.rm=na.rm, zero.rm=TRUE)
r.skew <- .Call("rskeww",
as.numeric(z$x), as.numeric(Mean(z$x, weights = z$weights)),
as.numeric(z$weights), PACKAGE="DescTools")
n <- z$wsum
} else {
if (na.rm) x <- na.omit(x)
r.skew <- .Call("rskew", as.numeric(x),
as.numeric(mean(x)), PACKAGE="DescTools")
n <- length(x)
}
se <- sqrt((6*(n-2))/((n+1)*(n+3)))
if (method == 2) {
# method 2: SAS/SPSS
r.skew <- r.skew * n^0.5 * (n - 1)^0.5/(n - 2)
se <- se * sqrt(n*(n-1))/(n-2)
}
else if (method == 3) {
# method 3: MINITAB/BDMP
r.skew <- r.skew * ((n - 1)/n)^(3/2)
se <- se * ((n - 1)/n)^(3/2)
}
return(c(r.skew, se^2))
}
if(is.na(conf.level)){
res <- i.skew(x, weights=weights, method=method)[1]
} else {
if(ci.type == "classic") {
res <- i.skew(x, weights=weights, method=method)
res <- c(skewness=res[1],
lwr.ci=qnorm((1-conf.level)/2) * sqrt(res[2]),
upr.ci=qnorm(1-(1-conf.level)/2) * sqrt(res[2]))
} else {
# Problematic standard errors and confidence intervals for skewness and kurtosis.
# Wright DB, Herrington JA. (2011) recommend only bootstrap intervals
# adjusted bootstrap percentile (BCa) interval
boot.skew <- boot(x, function(x, d) i.skew(x[d], weights=weights, method=method), R=R, ...)
ci <- boot.ci(boot.skew, conf=conf.level, type=ci.type)
if(ci.type =="norm") {
lwr.ci <- ci[[4]][2]
upr.ci <- ci[[4]][3]
} else {
lwr.ci <- ci[[4]][4]
upr.ci <- ci[[4]][5]
}
res <- c(skew=boot.skew$t0[1], lwr.ci=lwr.ci, upr.ci=upr.ci)
}
}
return(res)
}
Kurt <- function (x, weights=NULL, na.rm = FALSE, method = 3, conf.level = NA,
ci.type = "bca", R=1000, ...) {
i.kurt <- function(x, weights=NULL, na.rm = FALSE, method = 3) {
# method 1: older textbooks
if(!is.null(weights)){
# use a standard treatment for weights
z <- .NormWeights(x, weights, na.rm=na.rm, zero.rm=TRUE)
r.kurt <- .Call("rkurtw", as.numeric(z$x), as.numeric(Mean(z$x, weights = z$weights)), as.numeric(z$weights), PACKAGE="DescTools")
n <- z$wsum
} else {
if (na.rm) x <- na.omit(x)
r.kurt <- .Call("rkurt", as.numeric(x), as.numeric(mean(x)), PACKAGE="DescTools")
n <- length(x)
}
se <- sqrt((24*n*(n-2)*(n-3))/((n+1)^2*(n+3)*(n+5)))
if (method == 2) {
# method 2: SAS/SPSS
r.kurt <- ((r.kurt + 3) * (n + 1)/(n - 1) - 3) * (n - 1)^2/(n - 2)/(n - 3)
se <- se * (((n-1)*(n+1))/((n-2)*(n-3)))
}
else if (method == 3) {
# method 3: MINITAB/BDMP
r.kurt <- (r.kurt + 3) * (1 - 1/n)^2 - 3
se <- se * ((n-1)/n)^2
}
return(c(r.kurt, se^2))
}
if(is.na(conf.level)){
res <- i.kurt(x, weights=weights, na.rm=na.rm, method=method)[1]
} else {
if(ci.type == "classic") {
res <- i.kurt(x, weights=weights, method=method)
res <- c(kurtosis=res[1],
lwr.ci=qnorm((1-conf.level)/2) * sqrt(res[2]),
upr.ci=qnorm(1-(1-conf.level)/2) * sqrt(res[2]))
} else {
# Problematic standard errors and confidence intervals for skewness and kurtosis.
# Wright DB, Herrington JA. (2011) recommend only bootstrap intervals
# adjusted bootstrap percentile (BCa) interval
boot.kurt <- boot(x, function(x, d) i.kurt(x[d], weights=weights, na.rm=na.rm, method=method), R=R, ...)
ci <- boot.ci(boot.kurt, conf=conf.level, type=ci.type)
if(ci.type =="norm") {
lwr.ci <- ci[[4]][2]
upr.ci <- ci[[4]][3]
} else {
lwr.ci <- ci[[4]][4]
upr.ci <- ci[[4]][5]
}
res <- c(kurt=boot.kurt$t0[1], lwr.ci=lwr.ci, upr.ci=upr.ci)
}
}
return(res)
}
Outlier <- function(x, method=c("boxplot", "hampel"), value=TRUE, na.rm=FALSE){
switch(match.arg(arg = method, choices = c("boxplot", "hampel")),
# boxplot = { x[x %)(% (quantile(x, c(0.25,0.75), na.rm=na.rm) + c(-1,1) * 1.5*IQR(x,na.rm=na.rm))] }
boxplot = {
# old, replaced by v. 0.99.26
# res <- boxplot(x, plot = FALSE)$out
qq <- quantile(as.numeric(x), c(0.25, 0.75), na.rm = na.rm, names = FALSE)
iqr <- diff(qq)
id <- x < (qq[1] - 1.5 * iqr) | x > (qq[2] + 1.5 * iqr)
},
hampel = {
# hampel considers values outside of median ± 3*(median absolute deviation) to be outliers
id <- x %][% (median(x, na.rm=na.rm) + 3 * c(-1, 1) * mad(x, na.rm=na.rm))
}
)
if(value)
res <- x[id]
else
res <- which(id)
res <- res[!is.na(res)]
return(res)
}
LOF <- function(data,k) {
# source: library(dprep)
# A function that finds the local outlier factor (Breunig,2000) of
# the matrix "data" with k neighbors
# Adapted by Caroline Rodriguez and Edgar Acuna, may 2004
knneigh.vect <-
function(x,data,k)
{
#Function that returns the distance from a vector "x" to
#its k-nearest-neighbors in the matrix "data"
temp=as.matrix(data)
numrow=dim(data)[1]
dimnames(temp)=NULL
#subtract rowvector x from each row of data
difference<- scale(temp, x, FALSE)
#square and add all differences and then take the square root
dtemp <- drop(difference^2 %*% rep(1, ncol(data)))
dtemp=sqrt(dtemp)
#order the distances
order.dist <- order(dtemp)
nndist=dtemp[order.dist]
#find distance to k-nearest neighbor
#uses k+1 since first distance in vector is a 0
knndist=nndist[k+1]
#find neighborhood
#eliminate first row of zeros from neighborhood
neighborhood=drop(nndist[nndist<=knndist])
neighborhood=neighborhood[-1]
numneigh=length(neighborhood)
#find indexes of each neighbor in the neighborhood
index.neigh=order.dist[1:numneigh+1]
# this will become the index of the distance to first neighbor
num1=length(index.neigh)+3
# this will become the index of the distance to last neighbor
num2=length(index.neigh)+numneigh+2
#form a vector
neigh.dist=c(num1,num2,index.neigh,neighborhood)
return(neigh.dist)
}
dist.to.knn <-
function(dataset,neighbors)
{
#function returns an object in which each column contains
#the indices of the first k neighbors followed by the
#distances to each of these neighbors
numrow=dim(dataset)[1]
#applies a function to find distance to k nearest neighbors
#within "dataset" for each row of the matrix "dataset"
knndist=rep(0,0)
for (i in 1:numrow)
{
#find obervations that make up the k-distance neighborhood for dataset[i,]
neighdist=knneigh.vect(dataset[i,],dataset,neighbors)
#adjust the length of neighdist or knndist as needed to form matrix of neighbors
#and their distances
if (i==2)
{
if (length(knndist)<length(neighdist))
{
z=length(neighdist)-length(knndist)
zeros=rep(0,z)
knndist=c(knndist,zeros)
}
else if (length(knndist)>length(neighdist))
{
z=length(knndist)-length(neighdist)
zeros=rep(0,z)
neighdist=c(neighdist,zeros)
}
}
else
{
if (i!=1)
{
if (dim(knndist)[1]<length(neighdist))
{
z=(length(neighdist)-dim(knndist)[1])
zeros=rep(0,z*dim(knndist)[2])
zeros=matrix(zeros,z,dim(knndist)[2])
knndist=rbind(knndist,zeros)
}
else if (dim(knndist)[1]>length(neighdist))
{
z=(dim(knndist)[1]-length(neighdist))
zeros=rep(0,z)
neighdist=c(neighdist,zeros)
}
}
}
knndist=cbind(knndist,neighdist)
}
return(knndist)
}
reachability <-
function(distdata,k)
{
# function that calculates the local reachability density
# of Breuing(2000) for each observation in a matrix, using
# a matrix (distdata) of k nearest neighbors computed by the function dist.to.knn2
p=dim(distdata)[2]
lrd=rep(0,p)
for (i in 1:p)
{
j=seq(3,3+(distdata[2,i]-distdata[1,i]))
# compare the k-distance from each observation to its kth neighbor
# to the actual distance between each observation and its neighbors
numneigh=distdata[2,i]-distdata[1,i]+1
temp=rbind(diag(distdata[distdata[2,distdata[j,i]],distdata[j,i]]),distdata[j+numneigh,i])
# calculate reachability
reach=1/(sum(apply(temp,2,max))/numneigh)
lrd[i]=reach
}
lrd
}
data=as.matrix(data)
# find k nearest neighbors and their distance from each observation
# in data
distdata=dist.to.knn(data,k)
p=dim(distdata)[2]
# calculate the local reachability density for each observation in data
lrddata=reachability(distdata,k)
lof=rep(0,p)
# computer the local outlier factor of each observation in data
for ( i in 1:p)
{
nneigh=distdata[2,i]-distdata[1,i]+1
j=seq(0,(nneigh-1))
local.factor=sum(lrddata[distdata[3+j,i]]/lrddata[i])/nneigh
lof[i]=local.factor
}
# return lof, a vector with the local outlier factor of each observation
lof
}
BootCI <- function(x, y=NULL, FUN, ..., bci.method = c("norm", "basic", "stud", "perc", "bca"),
conf.level = 0.95, sides = c("two.sided", "left", "right"), R = 999) {
dots <- as.list(substitute(list( ... ))) [-1]
bci.method <- match.arg(bci.method)
sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
if(sides!="two.sided")
conf.level <- 1 - 2*(1-conf.level)
if(is.null(y))
boot.fun <- boot(x, function(x, d) do.call(FUN, append(list(x[d]), dots)), R = R)
else
boot.fun <- boot(x, function(x, d) do.call(FUN, append(list(x[d], y[d]), dots)), R = R)
ci <- boot.ci(boot.fun, conf=conf.level, type=bci.method)
if (bci.method == "norm") {
res <- c(est = boot.fun$t0, lwr.ci = ci[[4]][2],
upr.ci = ci[[4]][3])
} else {
res <- c(est = boot.fun$t0, lwr.ci = ci[[4]][4],
upr.ci = ci[[4]][5])
}
if(sides=="left")
res[3] <- Inf
else if(sides=="right")
res[2] <- -Inf
names(res)[1] <- deparse(substitute(FUN))
return(res)
}
# Confidence Intervals for Binomial Proportions
BinomCI <- function(x, n, conf.level = 0.95, sides = c("two.sided","left","right"),
method = c("wilson", "wald", "waldcc", "agresti-coull", "jeffreys", "modified wilson", "wilsoncc",
"modified jeffreys", "clopper-pearson", "arcsine", "logit", "witting", "pratt", "midp", "lik", "blaker"),
rand = 123, tol=1e-05, std_est=TRUE) {
if(missing(method)) method <- "wilson"
if(missing(sides)) sides <- "two.sided"
iBinomCI <- function(x, n, conf.level = 0.95, sides = c("two.sided","left","right"),
method = c("wilson", "wilsoncc", "wald", "waldcc","agresti-coull", "jeffreys", "modified wilson",
"modified jeffreys", "clopper-pearson", "arcsine", "logit", "witting", "pratt", "midp", "lik", "blaker"),
rand = 123, tol=1e-05, std_est=TRUE) {
if(length(x) != 1) stop("'x' has to be of length 1 (number of successes)")
if(length(n) != 1) stop("'n' has to be of length 1 (number of trials)")
if(length(conf.level) != 1) stop("'conf.level' has to be of length 1 (confidence level)")
if(conf.level < 0.5 | conf.level > 1) stop("'conf.level' has to be in [0.5, 1]")
method <- match.arg(arg=method,
choices=c("wilson", "wald", "waldcc", "wilsoncc","agresti-coull",
"jeffreys", "modified wilson",
"modified jeffreys", "clopper-pearson", "arcsine",
"logit", "witting","pratt", "midp", "lik", "blaker"))
sides <- match.arg(sides, choices = c("two.sided","left","right"),
several.ok = FALSE)
if(sides!="two.sided")
conf.level <- 1 - 2*(1-conf.level)
alpha <- 1 - conf.level
kappa <- qnorm(1-alpha/2)
p.hat <- x/n
q.hat <- 1 - p.hat
# this is the default estimator used by the most (but not all) methods
est <- p.hat
switch( method
, "wald" = {
term2 <- kappa*sqrt(p.hat*q.hat)/sqrt(n)
CI.lower <- max(0, p.hat - term2)
CI.upper <- min(1, p.hat + term2)
}
, "waldcc" = {
term2 <- kappa*sqrt(p.hat*q.hat)/sqrt(n)
# continuity correction
term2 <- term2 + 1/(2*n)
CI.lower <- max(0, p.hat - term2)
CI.upper <- min(1, p.hat + term2)
}
, "wilson" = {
# non standard estimator
if(!std_est){
x.tilde <- x + kappa^2/2
n.tilde <- n + kappa^2
p.tilde <- x.tilde/n.tilde
est <- p.tilde
}
term1 <- (x + kappa^2/2)/(n + kappa^2)
term2 <- kappa*sqrt(n)/(n + kappa^2)*sqrt(p.hat*q.hat + kappa^2/(4*n))
CI.lower <- max(0, term1 - term2)
CI.upper <- min(1, term1 + term2)
}
, "wilsoncc" = {
# non standard estimator
if(!std_est){
x.tilde <- x + kappa^2/2
n.tilde <- n + kappa^2
p.tilde <- x.tilde/n.tilde
est <- p.tilde
}
lci <- ( 2*x+kappa**2 -1 - kappa*sqrt(kappa**2 -
2- 1/n + 4*p.hat*(n*q.hat+1))) / (2*(n+kappa**2))
uci <- ( 2*x+kappa**2 +1 + kappa*sqrt(kappa**2 +
2- 1/n + 4*p.hat*(n*q.hat-1))) / (2*(n+kappa**2))
CI.lower <- max(0, ifelse(p.hat==0, 0, lci))
CI.upper <- min(1, ifelse(p.hat==1, 1, uci))
}
, "agresti-coull" = {
x.tilde <- x + kappa^2/2
n.tilde <- n + kappa^2
p.tilde <- x.tilde/n.tilde
q.tilde <- 1 - p.tilde
# non standard estimator
if(!std_est)
est <- p.tilde
term2 <- kappa*sqrt(p.tilde*q.tilde)/sqrt(n.tilde)
CI.lower <- max(0, p.tilde - term2)
CI.upper <- min(1, p.tilde + term2)
}
, "jeffreys" = {
if(x == 0)
CI.lower <- 0
else
CI.lower <- qbeta(alpha/2, x+0.5, n-x+0.5)
if(x == n)
CI.upper <- 1
else
CI.upper <- qbeta(1-alpha/2, x+0.5, n-x+0.5)
}
, "modified wilson" = {
# non standard estimator
if(!std_est){
x.tilde <- x + kappa^2/2
n.tilde <- n + kappa^2
p.tilde <- x.tilde/n.tilde
est <- p.tilde
}
term1 <- (x + kappa^2/2)/(n + kappa^2)
term2 <- kappa*sqrt(n)/(n + kappa^2)*sqrt(p.hat*q.hat + kappa^2/(4*n))
## comment by Andre Gillibert, 19.6.2017:
## old:
## if((n <= 50 & x %in% c(1, 2)) | (n >= 51 & n <= 100 & x %in% c(1:3)))
## new:
if((n <= 50 & x %in% c(1, 2)) | (n >= 51 & x %in% c(1:3)))
CI.lower <- 0.5*qchisq(alpha, 2*x)/n
else
CI.lower <- max(0, term1 - term2)
## if((n <= 50 & x %in% c(n-1, n-2)) | (n >= 51 & n <= 100 & x %in% c(n-(1:3))))
if((n <= 50 & x %in% c(n-1, n-2)) | (n >= 51 & x %in% c(n-(1:3))))
CI.upper <- 1 - 0.5*qchisq(alpha, 2*(n-x))/n
else
CI.upper <- min(1, term1 + term2)
}
, "modified jeffreys" = {
if(x == n)
CI.lower <- (alpha/2)^(1/n)
else {
if(x <= 1)
CI.lower <- 0
else
CI.lower <- qbeta(alpha/2, x+0.5, n-x+0.5)
}
if(x == 0)
CI.upper <- 1 - (alpha/2)^(1/n)
else{
if(x >= n-1)
CI.upper <- 1
else
CI.upper <- qbeta(1-alpha/2, x+0.5, n-x+0.5)
}
}
, "clopper-pearson" = {
CI.lower <- qbeta(alpha/2, x, n-x+1)
CI.upper <- qbeta(1-alpha/2, x+1, n-x)
}
, "arcsine" = {
p.tilde <- (x + 0.375)/(n + 0.75)
# non standard estimator
if(!std_est)
est <- p.tilde
CI.lower <- sin(asin(sqrt(p.tilde)) - 0.5*kappa/sqrt(n))^2
CI.upper <- sin(asin(sqrt(p.tilde)) + 0.5*kappa/sqrt(n))^2
}
, "logit" = {
lambda.hat <- log(x/(n-x))
V.hat <- n/(x*(n-x))
lambda.lower <- lambda.hat - kappa*sqrt(V.hat)
lambda.upper <- lambda.hat + kappa*sqrt(V.hat)
CI.lower <- exp(lambda.lower)/(1 + exp(lambda.lower))
CI.upper <- exp(lambda.upper)/(1 + exp(lambda.upper))
}
, "witting" = {
set.seed(rand)
x.tilde <- x + runif(1, min = 0, max = 1)
pbinom.abscont <- function(q, size, prob){
v <- trunc(q)
term1 <- pbinom(v-1, size = size, prob = prob)
term2 <- (q - v)*dbinom(v, size = size, prob = prob)
return(term1 + term2)
}
qbinom.abscont <- function(p, size, x){
fun <- function(prob, size, x, p){
pbinom.abscont(x, size, prob) - p
}
uniroot(fun, interval = c(0, 1), size = size, x = x, p = p)$root
}
CI.lower <- qbinom.abscont(1-alpha, size = n, x = x.tilde)
CI.upper <- qbinom.abscont(alpha, size = n, x = x.tilde)
}
, "pratt" = {
if(x==0) {
CI.lower <- 0
CI.upper <- 1-alpha^(1/n)
} else if(x==1) {
CI.lower <- 1-(1-alpha/2)^(1/n)
CI.upper <- 1-(alpha/2)^(1/n)
} else if(x==(n-1)) {
CI.lower <- (alpha/2)^(1/n)
CI.upper <- (1-alpha/2)^(1/n)
} else if(x==n) {
CI.lower <- alpha^(1/n)
CI.upper <- 1
} else {
z <- qnorm(1 - alpha/2)
A <- ((x+1) / (n-x))^2
B <- 81*(x+1)*(n-x)-9*n-8
C <- (0-3)*z*sqrt(9*(x+1)*(n-x)*(9*n+5-z^2)+n+1)
D <- 81*(x+1)^2-9*(x+1)*(2+z^2)+1
E <- 1+A*((B+C)/D)^3
CI.upper <- 1/E
A <- (x / (n-x-1))^2
B <- 81*x*(n-x-1)-9*n-8
C <- 3*z*sqrt(9*x*(n-x-1)*(9*n+5-z^2)+n+1)
D <- 81*x^2-9*x*(2+z^2)+1
E <- 1+A*((B+C)/D)^3
CI.lower <- 1/E
}
}
, "midp" = {
#Functions to find root of for the lower and higher bounds of the CI
#These are helper functions.
f.low <- function(pi, x, n) {
1/2*dbinom(x, size=n, prob=pi) +
pbinom(x, size=n, prob=pi, lower.tail=FALSE) - (1-conf.level)/2
}
f.up <- function(pi, x, n) {
1/2*dbinom(x, size=n, prob=pi) +
pbinom(x-1, size=n, prob=pi) - (1-conf.level)/2
}
# One takes pi_low = 0 when x=0 and pi_up=1 when x=n
CI.lower <- 0
CI.upper <- 1
# Calculate CI by finding roots of the f funcs
if (x!=0) {
CI.lower <- uniroot(f.low, interval=c(0, p.hat), x=x, n=n)$root
}
if (x!=n) {
CI.upper <- uniroot(f.up, interval=c(p.hat, 1), x=x, n=n)$root
}
}
, "lik" = {
CI.lower <- 0
CI.upper <- 1
z <- qnorm(1 - alpha * 0.5)
# preset tolerance, should we offer function argument?
tol = .Machine$double.eps^0.5
BinDev <- function(y, x, mu, wt, bound = 0,
tol = .Machine$double.eps^0.5, ...) {
# returns the binomial deviance for y, x, wt
ll.y <- ifelse(y %in% c(0, 1), 0, dbinom(x, wt, y, log=TRUE))
ll.mu <- ifelse(mu %in% c(0, 1), 0, dbinom(x, wt, mu, log=TRUE))
res <- ifelse(abs(y - mu) < tol, 0,
sign(y - mu) * sqrt(-2 * (ll.y - ll.mu)))
return(res - bound)
}
if(x!=0 && tol<p.hat) {
CI.lower <- if(BinDev(tol, x, p.hat, n, -z, tol) <= 0) {
uniroot(f = BinDev, interval = c(tol, if(p.hat < tol || p.hat == 1) 1 - tol else p.hat),
bound = -z, x = x, mu = p.hat, wt = n)$root }
}
if(x!=n && p.hat<(1-tol)) {
CI.upper <- if(BinDev(y = 1 - tol, x = x, mu = ifelse(p.hat > 1 - tol, tol, p.hat),
wt = n, bound = z, tol = tol) < 0) {
CI.lower <- if(BinDev(tol, x, if(p.hat < tol || p.hat == 1) 1 - tol else p.hat, n, -z, tol) <= 0) {
uniroot(f = BinDev, interval = c(tol, p.hat),
bound = -z, x = x, mu = p.hat, wt = n)$root }
} else {
uniroot(f = BinDev, interval = c(if(p.hat > 1 - tol) tol else p.hat, 1 - tol),
bound = z, x = x, mu = p.hat, wt = n)$root }
}
}
, "blaker" ={
acceptbin <- function (x, n, p) {
p1 <- 1 - pbinom(x - 1, n, p)
p2 <- pbinom(x, n, p)
a1 <- p1 + pbinom(qbinom(p1, n, p) - 1, n, p)
a2 <- p2 + 1 - pbinom(qbinom(1 - p2, n, p), n, p)
return(min(a1, a2))
}
CI.lower <- 0
CI.upper <- 1
if (x != 0) {
CI.lower <- qbeta((1 - conf.level)/2, x, n - x + 1)
while (acceptbin(x, n, CI.lower + tol) < (1 - conf.level))
CI.lower = CI.lower + tol
}
if (x != n) {
CI.upper <- qbeta(1 - (1 - conf.level)/2, x + 1, n - x)
while (acceptbin(x, n, CI.upper - tol) < (1 - conf.level))
CI.upper <- CI.upper - tol
}
}
)
# dot not return ci bounds outside [0,1]
ci <- c( est=est, lwr.ci=max(0, CI.lower), upr.ci=min(1, CI.upper) )
if(sides=="left")
ci[3] <- 1
else if(sides=="right")
ci[2] <- 0
return(ci)
}
# handle vectors
# which parameter has the highest dimension
lst <- list(x=x, n=n, conf.level=conf.level, sides=sides,
method=method, rand=rand, std_est=std_est)
maxdim <- max(unlist(lapply(lst, length)))
# recycle all params to maxdim
lgp <- lapply( lst, rep, length.out=maxdim )
# # increase conf.level for one sided intervals
# lgp$conf.level[lgp.sides!="two.sided"] <- 1 - 2*(1-lgp$conf.level[lgp.sides!="two.sided"])
# get rownames
lgn <- DescTools::Recycle(x=if(is.null(names(x))) paste("x", seq_along(x), sep=".") else names(x),
n=if(is.null(names(n))) paste("n", seq_along(n), sep=".") else names(n),
conf.level=conf.level, sides=sides, method=method, std_est=std_est)
xn <- apply(as.data.frame(lgn[sapply(lgn, function(x) length(unique(x)) != 1)]), 1, paste, collapse=":")
res <- t(sapply(1:maxdim, function(i) iBinomCI(x=lgp$x[i], n=lgp$n[i],
conf.level=lgp$conf.level[i],
sides=lgp$sides[i],
method=lgp$method[i], rand=lgp$rand[i],
std_est=lgp$std_est[i])))
colnames(res)[1] <- c("est")
rownames(res) <- xn
# if(nrow(res)==1)
# res <- res[1,]
return(res)
}
BinomCIn <- function(p=0.5, width, interval=c(1, 1e5), conf.level=0.95, sides="two.sided", method="wilson") {
uniroot(f = function(n) diff(BinomCI(x=p*n, n=n, conf.level=conf.level,
sides=sides, method=method)[-1]) - width,
interval = interval)$root
}
BinomDiffCI <- function(x1, n1, x2, n2, conf.level = 0.95, sides = c("two.sided","left","right"),
method=c("ac", "wald", "waldcc", "score", "scorecc", "mn",
"mee", "blj", "ha", "hal", "jp")) {
if(missing(sides)) sides <- match.arg(sides)
if(missing(method)) method <- match.arg(method)
iBinomDiffCI <- function(x1, n1, x2, n2, conf.level, sides, method) {
# .Wald #1
# .Wald (Corrected) #2
# .Exact
# .Exact (FM Score)
# .Newcombe Score #10
# .Newcombe Score (Corrected) #11
# .Farrington-Manning
# .Hauck-Anderson
# http://www.jiangtanghu.com/blog/2012/09/23/statistical-notes-5-confidence-intervals-for-difference-between-independent-binomial-proportions-using-sas/
# Interval estimation for the difference between independent proportions: comparison of eleven methods.
# https://www.lexjansen.com/wuss/2016/127_Final_Paper_PDF.pdf
# http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.633.9380&rep=rep1&type=pdf
# Newcombe (1998) (free):
# http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.408.7354&rep=rep1&type=pdf
# no need to check args here, they're already ok...
# method <- match.arg(arg = method,
# choices = c("wald", "waldcc", "ac", "score", "scorecc", "mn",
# "mee", "blj", "ha", "hal", "jp"))
#
# sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
if(sides!="two.sided")
conf.level <- 1 - 2*(1-conf.level)
alpha <- 1 - conf.level
kappa <- qnorm(1 - alpha/2)
p1.hat <- x1/n1
p2.hat <- x2/n2
est <- p1.hat - p2.hat
switch(method,
"wald" = {
vd <- p1.hat*(1-p1.hat)/n1 + p2.hat*(1-p2.hat)/n2
term2 <- kappa * sqrt(vd)
CI.lower <- max(-1, est - term2)
CI.upper <- min(1, est + term2)
},
"waldcc" = {
vd <- p1.hat*(1-p1.hat)/n1 + p2.hat*(1-p2.hat)/n2
term2 <- kappa * sqrt(vd)
term2 <- term2 + 0.5 * (1/n1+1/n2)
CI.lower <- max(-1, est - term2)
CI.upper <- min(1, est + term2)
},
"ac" = { # Agresti-Caffo
n1 <- n1+2
n2 <- n2+2
x1 <- x1+1
x2 <- x2+1
p1.hat <- x1/n1
p2.hat <- x2/n2
est1 <- p1.hat - p2.hat
vd <- p1.hat*(1-p1.hat)/n1 + p2.hat*(1-p2.hat)/n2
term2 <- kappa * sqrt(vd)
CI.lower <- max(-1, est1 - term2)
CI.upper <- min(1, est1 + term2)
} ,
"exact" = { # exact
CI.lower <- NA
CI.upper <- NA
},
"score" = { # Newcombe
w1 <- BinomCI(x=x1, n=n1, conf.level=conf.level, method="wilson")
w2 <- BinomCI(x=x2, n=n2, conf.level=conf.level, method="wilson")
l1 <- w1[2]
u1 <- w1[3]
l2 <- w2[2]
u2 <- w2[3]
CI.lower <- est - kappa * sqrt(l1*(1-l1)/n1 + u2*(1-u2)/n2)
CI.upper <- est + kappa * sqrt(u1*(1-u1)/n1 + l2*(1-l2)/n2)
},
"scorecc" = { # Newcombe
w1 <- BinomCI(x=x1, n=n1, conf.level=conf.level, method="wilsoncc")
w2 <- BinomCI(x=x2, n=n2, conf.level=conf.level, method="wilsoncc")
l1 <- w1[2]
u1 <- w1[3]
l2 <- w2[2]
u2 <- w2[3]
CI.lower <- max(-1, est - sqrt((p1.hat - l1)^2 + (u2-p2.hat)^2) )
CI.upper <- min( 1, est + sqrt((u1-p1.hat)^2 + (p2.hat-l2)^2) )
},
"mee" = { # Mee, also called Farrington-Mannig
.score <- function (p1, n1, p2, n2, dif) {
if(dif > 1) dif <- 1
if(dif < -1) dif <- -1
diff <- p1 - p2 - dif
if (abs(diff) == 0) {
res <- 0
} else {
t <- n2/n1
a <- 1 + t
b <- -(1 + t + p1 + t * p2 + dif * (t + 2))
c <- dif * dif + dif * (2 * p1 + t + 1) + p1 + t * p2
d <- -p1 * dif * (1 + dif)
v <- (b/a/3)^3 - b * c/(6 * a * a) + d/a/2
# v might be very small, resulting in a value v/u^3 > |1|
# causing a numeric error for acos(v/u^3)
# see: x1=10, n1=10, x2=0, n1=10
if(abs(v) < .Machine$double.eps) v <- 0
s <- sqrt((b/a/3)^2 - c/a/3)
u <- ifelse(v>0, 1,-1) * s
w <- (3.141592654 + acos(v/u^3))/3
p1d <- 2 * u * cos(w) - b/a/3
p2d <- p1d - dif
n <- n1 + n2
res <- (p1d * (1 - p1d)/n1 + p2d * (1 - p2d)/n2)
# res <- max(0, res) # might result in a value slightly negative
}
return(sqrt(res))
}
pval <- function(delta){
z <- (est - delta)/.score(p1.hat, n1, p2.hat, n2, delta)
2 * min(pnorm(z), 1-pnorm(z))
}
CI.lower <- max(-1, uniroot(
function(delta) pval(delta) - alpha,
interval = c(-1+1e-6, est-1e-6)
)$root)
CI.upper <- min(1, uniroot(
function(delta) pval(delta) - alpha,
interval = c(est + 1e-6, 1-1e-6)
)$root)
},
"blj" = { # brown-li-jeffrey
p1.dash <- (x1 + 0.5) / (n1+1)
p2.dash <- (x2 + 0.5) / (n2+1)
vd <- p1.dash*(1-p1.dash)/n1 + p2.dash*(1-p2.dash)/n2
term2 <- kappa * sqrt(vd)
est.dash <- p1.dash - p2.dash
CI.lower <- max(-1, est.dash - term2)
CI.upper <- min(1, est.dash + term2)
},
"ha" = { # Hauck-Anderson
term2 <- 1/(2*min(n1,n2)) + kappa * sqrt(p1.hat*(1-p1.hat)/(n1-1) +
p2.hat*(1-p2.hat)/(n2-1))
CI.lower <- max(-1, est - term2)
CI.upper <- min( 1, est + term2 )
},
"mn" = { # Miettinen-Nurminen
.conf <- function(x1, n1, x2, n2, z, lower=FALSE){
p1 <- x1/n1
p2 <- x2/n2
p.hat <- p1 - p2
dp <- 1 + ifelse(lower, 1, -1) * p.hat
i <- 1
while (i <= 50) {
dp <- 0.5 * dp
y <- p.hat + ifelse(lower, -1, 1) * dp
score <- .score(p1, n1, p2, n2, y)
if (score < z) {
p.hat <- y
}
if ((dp < 0.0000001) || (abs(z - score) < 0.000001))
break()
else
i <- i + 1
}
return(y)
}
.score <- function (p1, n1, p2, n2, dif) {
diff <- p1 - p2 - dif
if (abs(diff) == 0) {
res <- 0
}
else {
t <- n2/n1
a <- 1 + t
b <- -(1 + t + p1 + t * p2 + dif * (t + 2))
c <- dif * dif + dif * (2 * p1 + t + 1) + p1 + t * p2
d <- -p1 * dif * (1 + dif)
v <- (b/a/3)^3 - b * c/(6 * a * a) + d/a/2
s <- sqrt((b/a/3)^2 - c/a/3)
u <- ifelse(v>0, 1,-1) * s
w <- (3.141592654 + acos(v/u^3))/3
p1d <- 2 * u * cos(w) - b/a/3
p2d <- p1d - dif
n <- n1 + n2
var <- (p1d * (1 - p1d)/n1 + p2d * (1 - p2d)/n2) * n/(n - 1)
res <- diff^2/var
}
return(res)
}
z = qchisq(conf.level, 1)
CI.lower <- max(-1, .conf(x1, n1, x2, n2, z, TRUE))
CI.upper <- min(1, .conf(x1, n1, x2, n2, z, FALSE))
},
"beal" = {
# experimental code only...
# http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.633.9380&rep=rep1&type=pdf
a <- p1.hat + p2.hat
b <- p1.hat - p2.hat
u <- ((1/n1) + (1/n2)) / 4
v <- ((1/n1) - (1/n2)) / 4
V <- u*((2-a)*a - b^2) + 2*v*(1-a)*b
z <- qchisq(p=1-alpha/2, df = 1)
A <- sqrt(z*(V + z*u^2*(2-a)*a + z*v^2*(1-a)^2))
B <- (b + z*v*(1-a)) / (1+z*u)
CI.lower <- max(-1, B - A / (1 + z*u))
CI.upper <- min(1, B + A / (1 + z*u))
},
"hal" = { # haldane
psi <- (p1.hat + p2.hat) / 2
u <- (1/n1 + 1/n2) / 4
v <- (1/n1 - 1/n2) / 4
z <- kappa
theta <- ((p1.hat - p2.hat) + z^2 * v* (1-2*psi)) / (1+z^2*u)
w <- z / (1+z^2*u) * sqrt(u * (4*psi*(1-psi) - (p1.hat - p2.hat)^2) +
2*v*(1-2*psi) *(p1.hat - p2.hat) +
4*z^2*u^2*(1-psi)*psi + z^2*v^2*(1-2*psi)^2)
c(theta + w, theta - w)
CI.lower <- max(-1, theta - w)
CI.upper <- min(1, theta + w)
},
"jp" = { # jeffery perks
# same as haldane but with other psi
psi <- 0.5 * ((x1 + 0.5) / (n1 + 1) + (x2 + 0.5) / (n2 + 1) )
u <- (1/n1 + 1/n2) / 4
v <- (1/n1 - 1/n2) / 4
z <- kappa
theta <- ((p1.hat - p2.hat) + z^2 * v* (1-2*psi)) / (1+z^2*u)
w <- z / (1+z^2*u) * sqrt(u * (4*psi*(1-psi) - (p1.hat - p2.hat)^2) +
2*v*(1-2*psi) *(p1.hat - p2.hat) +
4*z^2*u^2*(1-psi)*psi + z^2*v^2*(1-2*psi)^2)
c(theta + w, theta - w)
CI.lower <- max(-1, theta - w)
CI.upper <- min(1, theta + w)
},
)
ci <- c(est = est, lwr.ci = min(CI.lower, CI.upper), upr.ci = max(CI.lower, CI.upper))
if(sides=="left")
ci[3] <- 1
else if(sides=="right")
ci[2] <- -1
return(ci)
}
method <- match.arg(arg=method, several.ok = TRUE)
sides <- match.arg(arg=sides, several.ok = TRUE)
# Recycle arguments
lst <- Recycle(x1=x1, n1=n1, x2=x2, n2=n2, conf.level=conf.level, sides=sides, method=method)
res <- t(sapply(1:attr(lst, "maxdim"),
function(i) iBinomDiffCI(x1=lst$x1[i], n1=lst$n1[i], x2=lst$x2[i], n2=lst$n2[i],
conf.level=lst$conf.level[i],
sides=lst$sides[i],
method=lst$method[i])))
# get rownames
lgn <- Recycle(x1=if(is.null(names(x1))) paste("x1", seq_along(x1), sep=".") else names(x1),
n1=if(is.null(names(n1))) paste("n1", seq_along(n1), sep=".") else names(n1),
x2=if(is.null(names(x2))) paste("x2", seq_along(x2), sep=".") else names(x2),
n2=if(is.null(names(n2))) paste("n2", seq_along(n2), sep=".") else names(n2),
conf.level=conf.level, sides=sides, method=method)
xn <- apply(as.data.frame(lgn[sapply(lgn, function(x) length(unique(x)) != 1)]), 1, paste, collapse=":")
rownames(res) <- xn
return(res)
}
BinomRatioCI_old <- function(x1, n1, x2, n2, conf.level = 0.95, method = "katz.log", bonf = FALSE,
tol = .Machine$double.eps^0.25, R = 1000, r = length(x1)) {
# source: asbio::ci.prat by Ken Aho <kenaho1 at gmail.com>
conf <- conf.level
x <- x1; m <- n1; y <- x2; n <- n2
indices <- c("adj.log","bailey","boot","katz.log","koopman","noether","sinh-1")
method <- match.arg(method, indices)
if(any(c(length(m),length(y),length(n))!= length(x))) stop("x1, n1, x2, and n2 vectors must have equal length")
alpha <- 1 - conf
oconf <- conf
conf <- ifelse(bonf == FALSE, conf, 1 - alpha/r)
z.star <- qnorm(1 - (1 - conf)/2)
x2 <- qchisq(conf, 1)
ci.prat1 <- function(x, m, y, n, conf = 0.95, method = "katz.log", bonf = FALSE){
if((x > m)|(y > n)) stop("Use correct parameterization for x1, x2, n1, and n2")
#-------------------------- Adj-log ------------------------------#
if(method == "adj.log"){
if((x == m & y == n)){
rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- ((x+0.5)/(m+0.5))/((y+0.5)/(n+0.5)); varhat <- (1/(x+0.5)) - (1/(m+0.5)) + (1/(y+0.5)) - (1/(n+0.5))
CIL <- nrat * exp(-1 * z.star * sqrt(varhat))
CIU <- nrat * exp(z.star * sqrt(varhat))
} else if(x == 0 & y == 0){CIL = 0; CIU = Inf; rat = 0; varhat <- (1/(x+0.5)) - (1/(m+0.5)) + (1/(y+0.5)) - (1/(n+0.5))
}else{
rat <- (x/m)/(y/n); nrat <- ((x+0.5)/(m+0.5))/((y+0.5)/(n+0.5)); varhat <- (1/(x+0.5)) - (1/(m+0.5)) + (1/(y+0.5)) - (1/(n+0.5))
CIL <- nrat * exp(-1 * z.star * sqrt(varhat))
CIU <- nrat * exp(z.star * sqrt(varhat))}
CI <- c(rat, CIL, CIU)
}
#-------------------------------Bailey-----------------------------#
if(method == "bailey"){
rat <- (x/m)/(y/n)
varhat <- ifelse((x == m) & (y == n),(1/(m-0.5)) - (1/(m)) + (1/(n-0.5)) - (1/(n)),(1/(x)) - (1/(m)) + (1/(y)) - (1/(n)))
p.hat1 <- x/m; p.hat2 <- y/n;
q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
if(x == 0 | y == 0){
xn <- ifelse(x == 0, 0.5, x)
yn <- ifelse(y == 0, 0.5, y)
nrat <- (xn/m)/(yn/n)
p.hat1 <- xn/m; p.hat2 <- yn/n;
q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
if(xn == m | yn == n){
xn <- ifelse(xn == m, m - 0.5, xn)
yn <- ifelse(yn == n, n - 0.5, yn)
nrat <- (xn/m)/(yn/n)
p.hat1 <- xn/m; p.hat2 <- yn/n;
q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
}
}
if(x == 0 | y == 0){
if(x == 0 & y == 0){
rat <- Inf
CIL <- 0
CIU <- Inf
}
if(x == 0 & y != 0){
CIL <- 0
CIU <- nrat * ((1+ z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
}
if(y == 0 & x != 0){
CIU = Inf
CIL <- nrat * ((1- z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
}
}else if(x == m | y == n){
xn <- ifelse(x == m, m - 0.5, x)
yn <- ifelse(y == n, n - 0.5, y)
nrat <- (xn/m)/(yn/n)
p.hat1 <- xn/m; p.hat2 <- yn/n;
q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
CIL <- nrat * ((1- z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
CIU <- nrat * ((1+ z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
}else{
CIL <- rat * ((1- z.star * sqrt((q.hat1/x) + (q.hat2/y) - (z.star^2 * q.hat1 * q.hat2)/(9 * x * y))/3)/((1 - (z.star^2 * q.hat2)/(9 * y))))^3
CIU <- rat * ((1+ z.star * sqrt((q.hat1/x) + (q.hat2/y) - (z.star^2 * q.hat1 * q.hat2)/(9 * x * y))/3)/((1 - (z.star^2 * q.hat2)/(9 * y))))^3
}
CI <- c(rat, CIL, CIU)
}
#-------------------------- Boot ------------------------------#
if(method == "boot"){
rat <- (x/m)/(y/n)
if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)){
if(x == 0 & y == 0) {CIL <- 0; CIU <- Inf; rat = 0; varhat = NA}
if(x == 0 & y != 0) {CIL <- 0; rat <- (x/m)/(y/n); x <- 0.5; nrat <- (x/m)/(y/n)
varhat <- (1/x) - (1/m) + (1/y) - (1/n)
CIU <- nrat * exp(z.star * sqrt(varhat))}
if(x != 0 & y == 0) {CIU <- Inf; rat <- (x/m)/(y/n); y <- 0.5; nrat <- (x/m)/(y/n)
varhat <- (1/x) - (1/m) + (1/y) - (1/n)
CIL <- nrat * exp(-1 * z.star * sqrt(varhat))}
} else{
num.data <- c(rep(1, x), rep(0, m - x))
den.data <- c(rep(1, y), rep(0, n - y))
nd <- matrix(ncol = R, nrow = m)
dd <- matrix(ncol = R, nrow = n)
brat <- 1:R
for(i in 1L:R){
nd[,i] <- sample(num.data, m, replace = TRUE)
dd[,i] <- sample(den.data, n, replace = TRUE)
brat[i] <- (sum(nd[,i])/m)/(sum(dd[,i])/n)
}
alpha <- 1 - conf
CIU <- quantile(brat, 1 - alpha/2, na.rm = TRUE)
CIL <- quantile(brat, alpha/2, na.rm = TRUE)
varhat <- var(brat)
}
CI <- c(rat, CIL, CIU)
}
#-------------------------- Katz-log ------------------------------#
if(method == "katz.log"){
if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)|(x == m & y == n)){
if(x == 0 & y == 0) {CIL <- 0; CIU <- Inf; rat = 0; varhat = NA}
if(x == 0 & y != 0) {CIL <- 0; rat <- (x/m)/(y/n); x <- 0.5; nrat <- (x/m)/(y/n)
varhat <- (1/x) - (1/m) + (1/y) - (1/n)
CIU <- nrat * exp(z.star * sqrt(varhat))}
if(x != 0 & y == 0) {CIU <- Inf; rat <- (x/m)/(y/n); y <- 0.5; nrat <- (x/m)/(y/n)
varhat <- (1/x) - (1/m) + (1/y) - (1/n)
CIL <- nrat * exp(-1 * z.star * sqrt(varhat))}
if(x == m & y == n) {
rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n); CIL <- nrat * exp(-1 * z.star * sqrt(varhat))
x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n); CIU <- nrat * exp(z.star * sqrt(varhat))
}
} else
{rat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n)
CIL <- rat * exp(-1 * z.star * sqrt(varhat))
CIU <- rat * exp(z.star * sqrt(varhat))}
CI <- c(rat, CIL, CIU)
}
#-------------------------- Koopman ------------------------------#
if(method == "koopman"){
if(x == 0 & y == 0) {CIL <- 0; CIU <- Inf; rat = 0; varhat = NA
} else {
a1 = n * (n * (n + m) * x + m * (n + x) * (z.star^2))
a2 = -n * (n * m * (y + x) + 2 * (n + m) * y *
x + m * (n + y + 2 * x) * (z.star^2))
a3 = 2 * n * m * y * (y + x) + (n + m) * (y^2) *
x + n * m * (y + x) * (z.star^2)
a4 = -m * (y^2) * (y + x)
b1 = a2/a1; b2 = a3/a1; b3 = a4/a1
c1 = b2 - (b1^2)/3; c2 = b3 - b1 * b2/3 + 2 * (b1^3)/27
ceta = suppressWarnings(acos(sqrt(27) * c2/(2 * c1 * sqrt(-c1))))
t1 <- suppressWarnings(-2 * sqrt(-c1/3) * cos(pi/3 - ceta/3))
t2 <- suppressWarnings(-2 * sqrt(-c1/3) * cos(pi/3 + ceta/3))
t3 <- suppressWarnings(2 * sqrt(-c1/3) * cos(ceta/3))
p01 = t1 - b1/3; p02 = t2 - b1/3; p03 = t3 - b1/3
p0sum = p01 + p02 + p03; p0up = min(p01, p02, p03); p0low = p0sum - p0up - max(p01, p02, p03)
U <- function(a){
p.hatf <- function(a){
(a * (m + y) + x + n - ((a * (m + y) + x + n)^2 - 4 * a * (m + n) * (x + y))^0.5)/(2 * (m + n))
}
p.hat <- p.hatf(a)
(((x - m * p.hat)^2)/(m * p.hat * (1 - p.hat)))*(1 + (m * (a - p.hat))/(n * (1 - p.hat))) - x2
}
rat <- (x/m)/(y/n); nrat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n)
if((x == 0) & (y != 0)) {nrat <- ((x + 0.5)/m)/(y/n); varhat <- (1/(x + 0.5)) - (1/m) + (1/y) - (1/n)}
if((y == 0) & (x != 0)) {nrat <- (x/m)/((y + 0.5)/n); varhat <- (1/x) - (1/m) + (1/(y + 0.5)) - (1/n)}
if((y == n) & (x == m)) {nrat <- 1; varhat <- (1/(m - 0.5)) - (1/m) + 1/(n - 0.5) - (1/n)}
La <- nrat * exp(-1 * z.star * sqrt(varhat)) * 1/4
Lb <- nrat
Ha <- nrat
Hb <- nrat * exp(z.star * sqrt(varhat)) * 4
#----------------------------------------------------------------------------#
if((x != 0) & (y == 0)) {
if(x == m){
CIL = (1 - (m - x) * (1 - p0low)/(y + m - (n + m) * p0low))/p0low
CIU <- Inf
}
else{
CIL <- uniroot(U, c(La, Lb), tol=tol)$root
CIU <- Inf
}
}
#------------------------------------------------------------#
if((x == 0) & (y != n)) {
CIU <- uniroot(U, c(Ha, Hb), tol=tol)$root
CIL <- 0
}
#------------------------------------------------------------#
if(((x == m)|(y == n)) & (y != 0)){
if((x == m)&(y == n)){
U.0 <- function(a){if(a <= 1) {m * (1 - a)/a - x2}
else{(n * (a - 1)) - x2}
}
CIL <- uniroot(U.0, c(La, rat), tol = tol)$root
CIU <- uniroot(U.0, c(rat, Hb), tol = tol)$root
}
#------------------------------------------------------------#
if((x == m) & (y != n)){
phat1 = x/m; phat2 = y/n
phihat = phat2/phat1
phiu = 1.1 * phihat
r = 0
while (r >= -z.star) {
a = (m + n) * phiu
b = -((x + n) * phiu + y + m)
c = x + y
p1hat = (-b - sqrt(b^2 - 4 * a * c))/(2 * a)
p2hat = p1hat * phiu
q2hat = 1 - p2hat
var = (m * n * p2hat)/(n * (phiu - p2hat) +
m * q2hat)
r = ((y - n * p2hat)/q2hat)/sqrt(var)
phiu1 = phiu
phiu = 1.0001 * phiu1
}
CIU = (1 - (m - x) * (1 - p0up)/(y + m - (n + m) * p0up))/p0up
CIL = 1/phiu1
}
#------------------------------------------------------------#
if((y == n) & (x != m)){
p.hat2 = y/n; p.hat1 = x/m; phihat = p.hat1/p.hat2
phil = 0.95 * phihat; r = 0
if(x != 0){
while(r <= z.star) {
a = (n + m) * phil
b = -((y + m) * phil + x + n)
c = y + x
p1hat = (-b - sqrt(b^2 - 4 * a * c))/(2 * a)
p2hat = p1hat * phil
q2hat = 1 - p2hat
var = (n * m * p2hat)/(m * (phil - p2hat) +
n * q2hat)
r = ((x - m * p2hat)/q2hat)/sqrt(var)
CIL = phil
phil = CIL/1.0001
}
}
phiu = 1.1 * phihat
if(x == 0){CIL = 0; phiu <- ifelse(n < 100, 0.01, 0.001)}
r = 0
while(r >= -z.star) {
a = (n + m) * phiu
b = -((y + m) * phiu + x + n)
c = y + x
p1hat = (-b - sqrt(b^2 - 4 * a * c))/(2 * a)
p2hat = p1hat * phiu
q2hat = 1 - p2hat
var = (n * m * p2hat)/(m * (phiu - p2hat) +
n * q2hat)
r = ((x - m * p2hat)/q2hat)/sqrt(var)
phiu1 = phiu
phiu = 1.0001 * phiu1
}
CIU <- phiu1
}
} else if((y != n) & (x != m) & (x != 0) & (y != 0)){
CIL <- uniroot(U, c(La, Lb), tol=tol)$root
CIU <- uniroot(U, c(Ha, Hb), tol=tol)$root
}
}
CI <- c(rat, CIL, CIU)
}
#-------------------------- Noether ------------------------------#
if(method == "noether"){
if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)|(x == m & y == n)){
if(x == 0 & y == 0) {CIL <- 0; CIU <- Inf; rat = 0; se.hat <- NA; varhat = NA}
if(x == 0 & y != 0) {rat <- (x/m)/(y/n); CIL <- 0; x <- 0.5
nrat <- (x/m)/(y/n); se.hat <- nrat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
CIU <- nrat + z.star * se.hat}
if(x != 0 & y == 0) {rat <- Inf; CIU <- Inf; y <- 0.5
nrat <- (x/m)/(y/n); se.hat <- nrat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
CIL <- nrat - z.star * se.hat}
if(x == m & y == n) {
rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); se.hat <- nrat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
CIU <- nrat + z.star * se.hat
CIL <- nrat - z.star * se.hat
}
} else
{
rat <- (x/m)/(y/n)
se.hat <- rat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
CIL <- rat - z.star * se.hat
CIU <- rat + z.star * se.hat
}
varhat <- ifelse(is.na(se.hat), NA, se.hat^2)
CI <- c(rat, max(0,CIL), CIU)
}
#------------------------- sinh-1 -----------------------------#
if(method == "sinh-1"){
if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)|(x == m & y == n)){
if(x == 0 & y == 0) {CIL <- 0; CIU <- Inf; rat = 0; varhat = NA}
if(x == 0 & y != 0) {rat <- (x/m)/(y/n); CIL <- 0; x <- z.star
nrat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
CIU <- exp(log(nrat) + varhat)}
if(x != 0 & y == 0) {rat = Inf; CIU <- Inf; y <- z.star
nrat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
CIL <- exp(log(nrat) - varhat)}
if(x == m & y == n) {
rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
CIL <- exp(log(nrat) - varhat)
CIU <- exp(log(nrat) + varhat)
}
} else
{rat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
CIL <- exp(log(rat) - varhat)
CIU <- exp(log(rat) + varhat)
}
CI <- c(rat, CIL, CIU)
}
#------------------------Results ------------------------------#
res <- list(CI = CI, varhat = varhat)
res
}
CI <- matrix(ncol = 3, nrow = length(x1))
vh <- rep(NA, length(x1))
for(i in 1L : length(x1)){
temp <- ci.prat1(x = x[i], m = m[i], y = y[i], n = n[i], conf = conf, method = method, bonf = bonf)
CI[i,] <- temp$CI
vh[i] <- temp$varhat
}
CI <- data.frame(CI)
if(length(x1) == 1) row.names(CI) <- ""
head <- paste(paste(as.character(oconf * 100),"%",sep=""), c("Confidence interval for ratio of binomial proportions"))
if(method == "adj.log")head <- paste(head,"(method=adj-log)")
if(method == "bailey")head <- paste(head,"(method=Bailey)")
if(method == "boot")head <- paste(head,"(method=percentile bootstrap)")
if(method == "katz.log")head <- paste(head,"(method=Katz-log)")
if(method == "koopman")head <- paste(head,"(method=Koopman)")
if(method == "noether")head <- paste(head,"(method=Noether)")
if(method == "sinh")head <- paste(head,"(method=sinh^-1)")
if(bonf == TRUE)head <- paste(head, "\n Bonferroni simultaneous intervals, r = ", bquote(.(r)),
"\n Marginal confidence = ", bquote(.(conf)), "\n", sep = "")
ends <- c("Estimate", paste(as.character(c((1-oconf)/2, 1-((1-oconf)/2))*100), "%", sep=""))
# res <- list(varhat = vh, ci = CI, ends = ends, head = head)
# class(res) <- "ci"
res <- data.matrix(CI)
dimnames(res) <- list(NULL, c("est","lwr.ci","upr.ci"))
res
}
BinomRatioCI <- function(x1, n1, x2, n2, conf.level = 0.95, sides = c("two.sided","left","right"),
method =c("katz.log","adj.log","bailey","koopman","noether","sinh-1","boot"),
tol = .Machine$double.eps^0.25, R = 1000) {
# source: asbio::ci.prat by Ken Aho <kenaho1 at gmail.com>
iBinomRatioCI <- function(x, m, y, n, conf, sides, method) {
if((x > m)|(y > n)) stop("Use correct parameterization for x1, x2, n1, and n2")
method <- match.arg(method, c("katz.log","adj.log","bailey","koopman","noether","sinh-1","boot"))
if(sides!="two.sided")
conf <- 1 - 2*(1-conf)
alpha <- 1 - conf
z.star <- qnorm(1 - (1 - conf)/2)
x2 <- qchisq(conf, 1)
#-------------------------- Adj-log ------------------------------#
if(method == "adj.log"){
if((x == m & y == n)){
rat <- (x/m)/(y/n)
x <- m - 0.5
y <- n - 0.5
nrat <- ((x+0.5)/(m+0.5))/((y+0.5)/(n+0.5))
varhat <- (1/(x+0.5)) - (1/(m+0.5)) + (1/(y+0.5)) - (1/(n+0.5))
CIL <- nrat * exp(-1 * z.star * sqrt(varhat))
CIU <- nrat * exp(z.star * sqrt(varhat))
} else if(x == 0 & y == 0){
CIL = 0
CIU = Inf
rat = 0
varhat <- (1/(x+0.5)) - (1/(m+0.5)) + (1/(y+0.5)) - (1/(n+0.5))
} else {
rat <- (x/m)/(y/n)
nrat <- ((x+0.5)/(m+0.5))/((y+0.5)/(n+0.5))
varhat <- (1/(x+0.5)) - (1/(m+0.5)) + (1/(y+0.5)) - (1/(n+0.5))
CIL <- nrat * exp(-1 * z.star * sqrt(varhat))
CIU <- nrat * exp(z.star * sqrt(varhat))
}
CI <- c(rat, CIL, CIU)
}
#-------------------------------Bailey-----------------------------#
if(method == "bailey"){
rat <- (x/m)/(y/n)
varhat <- ifelse((x == m) & (y == n),(1/(m-0.5)) - (1/(m)) + (1/(n-0.5)) - (1/(n)),(1/(x)) - (1/(m)) + (1/(y)) - (1/(n)))
p.hat1 <- x/m; p.hat2 <- y/n;
q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
if(x == 0 | y == 0){
xn <- ifelse(x == 0, 0.5, x)
yn <- ifelse(y == 0, 0.5, y)
nrat <- (xn/m)/(yn/n)
p.hat1 <- xn/m; p.hat2 <- yn/n;
q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
if(xn == m | yn == n){
xn <- ifelse(xn == m, m - 0.5, xn)
yn <- ifelse(yn == n, n - 0.5, yn)
nrat <- (xn/m)/(yn/n)
p.hat1 <- xn/m; p.hat2 <- yn/n;
q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
}
}
if(x == 0 | y == 0){
if(x == 0 & y == 0){
rat <- Inf
CIL <- 0
CIU <- Inf
}
if(x == 0 & y != 0){
CIL <- 0
CIU <- nrat * ((1+ z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
}
if(y == 0 & x != 0){
CIU = Inf
CIL <- nrat * ((1- z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
}
}else if(x == m | y == n){
xn <- ifelse(x == m, m - 0.5, x)
yn <- ifelse(y == n, n - 0.5, y)
nrat <- (xn/m)/(yn/n)
p.hat1 <- xn/m; p.hat2 <- yn/n;
q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
CIL <- nrat * ((1- z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
CIU <- nrat * ((1+ z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
}else{
CIL <- rat * ((1- z.star * sqrt((q.hat1/x) + (q.hat2/y) - (z.star^2 * q.hat1 * q.hat2)/(9 * x * y))/3)/((1 - (z.star^2 * q.hat2)/(9 * y))))^3
CIU <- rat * ((1+ z.star * sqrt((q.hat1/x) + (q.hat2/y) - (z.star^2 * q.hat1 * q.hat2)/(9 * x * y))/3)/((1 - (z.star^2 * q.hat2)/(9 * y))))^3
}
CI <- c(rat, CIL, CIU)
}
#-------------------------- Boot ------------------------------#
if(method == "boot"){
rat <- (x/m)/(y/n)
if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)){
if(x == 0 & y == 0) {CIL <- 0; CIU <- Inf; rat = 0; varhat = NA}
if(x == 0 & y != 0) {CIL <- 0; rat <- (x/m)/(y/n); x <- 0.5; nrat <- (x/m)/(y/n)
varhat <- (1/x) - (1/m) + (1/y) - (1/n)
CIU <- nrat * exp(z.star * sqrt(varhat))}
if(x != 0 & y == 0) {CIU <- Inf; rat <- (x/m)/(y/n); y <- 0.5; nrat <- (x/m)/(y/n)
varhat <- (1/x) - (1/m) + (1/y) - (1/n)
CIL <- nrat * exp(-1 * z.star * sqrt(varhat))}
} else{
num.data <- c(rep(1, x), rep(0, m - x))
den.data <- c(rep(1, y), rep(0, n - y))
nd <- matrix(ncol = R, nrow = m)
dd <- matrix(ncol = R, nrow = n)
brat <- 1:R
for(i in 1L:R){
nd[,i] <- sample(num.data, m, replace = TRUE)
dd[,i] <- sample(den.data, n, replace = TRUE)
brat[i] <- (sum(nd[,i])/m)/(sum(dd[,i])/n)
}
alpha <- 1 - conf
CIU <- quantile(brat, 1 - alpha/2, na.rm = TRUE)
CIL <- quantile(brat, alpha/2, na.rm = TRUE)
varhat <- var(brat)
}
CI <- c(rat, CIL, CIU)
}
#-------------------------- Katz-log ------------------------------#
if(method == "katz.log"){
if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)|(x == m & y == n)){
if(x == 0 & y == 0) {CIL <- 0; CIU <- Inf; rat = 0; varhat = NA}
if(x == 0 & y != 0) {CIL <- 0; rat <- (x/m)/(y/n); x <- 0.5; nrat <- (x/m)/(y/n)
varhat <- (1/x) - (1/m) + (1/y) - (1/n)
CIU <- nrat * exp(z.star * sqrt(varhat))}
if(x != 0 & y == 0) {CIU <- Inf; rat <- (x/m)/(y/n); y <- 0.5; nrat <- (x/m)/(y/n)
varhat <- (1/x) - (1/m) + (1/y) - (1/n)
CIL <- nrat * exp(-1 * z.star * sqrt(varhat))}
if(x == m & y == n) {
rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n); CIL <- nrat * exp(-1 * z.star * sqrt(varhat))
x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n); CIU <- nrat * exp(z.star * sqrt(varhat))
}
} else
{rat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n)
CIL <- rat * exp(-1 * z.star * sqrt(varhat))
CIU <- rat * exp(z.star * sqrt(varhat))}
CI <- c(rat, CIL, CIU)
}
#-------------------------- Koopman ------------------------------#
if(method == "koopman"){
if(x == 0 & y == 0) {CIL <- 0; CIU <- Inf; rat = 0; varhat = NA
} else {
a1 = n * (n * (n + m) * x + m * (n + x) * (z.star^2))
a2 = -n * (n * m * (y + x) + 2 * (n + m) * y *
x + m * (n + y + 2 * x) * (z.star^2))
a3 = 2 * n * m * y * (y + x) + (n + m) * (y^2) *
x + n * m * (y + x) * (z.star^2)
a4 = -m * (y^2) * (y + x)
b1 = a2/a1; b2 = a3/a1; b3 = a4/a1
c1 = b2 - (b1^2)/3; c2 = b3 - b1 * b2/3 + 2 * (b1^3)/27
ceta = suppressWarnings(acos(sqrt(27) * c2/(2 * c1 * sqrt(-c1))))
t1 <- suppressWarnings(-2 * sqrt(-c1/3) * cos(pi/3 - ceta/3))
t2 <- suppressWarnings(-2 * sqrt(-c1/3) * cos(pi/3 + ceta/3))
t3 <- suppressWarnings(2 * sqrt(-c1/3) * cos(ceta/3))
p01 = t1 - b1/3; p02 = t2 - b1/3; p03 = t3 - b1/3
p0sum = p01 + p02 + p03; p0up = min(p01, p02, p03); p0low = p0sum - p0up - max(p01, p02, p03)
U <- function(a){
p.hatf <- function(a){
(a * (m + y) + x + n - ((a * (m + y) + x + n)^2 - 4 * a * (m + n) * (x + y))^0.5)/(2 * (m + n))
}
p.hat <- p.hatf(a)
(((x - m * p.hat)^2)/(m * p.hat * (1 - p.hat)))*(1 + (m * (a - p.hat))/(n * (1 - p.hat))) - x2
}
rat <- (x/m)/(y/n); nrat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n)
if((x == 0) & (y != 0)) {nrat <- ((x + 0.5)/m)/(y/n); varhat <- (1/(x + 0.5)) - (1/m) + (1/y) - (1/n)}
if((y == 0) & (x != 0)) {nrat <- (x/m)/((y + 0.5)/n); varhat <- (1/x) - (1/m) + (1/(y + 0.5)) - (1/n)}
if((y == n) & (x == m)) {nrat <- 1; varhat <- (1/(m - 0.5)) - (1/m) + 1/(n - 0.5) - (1/n)}
La <- nrat * exp(-1 * z.star * sqrt(varhat)) * 1/4
Lb <- nrat
Ha <- nrat
Hb <- nrat * exp(z.star * sqrt(varhat)) * 4
#----------------------------------------------------------------------------#
if((x != 0) & (y == 0)) {
if(x == m){
CIL = (1 - (m - x) * (1 - p0low)/(y + m - (n + m) * p0low))/p0low
CIU <- Inf
}
else{
CIL <- uniroot(U, c(La, Lb), tol=tol)$root
CIU <- Inf
}
}
#------------------------------------------------------------#
if((x == 0) & (y != n)) {
CIU <- uniroot(U, c(Ha, Hb), tol=tol)$root
CIL <- 0
}
#------------------------------------------------------------#
if(((x == m)|(y == n)) & (y != 0)){
if((x == m)&(y == n)){
U.0 <- function(a){if(a <= 1) {m * (1 - a)/a - x2}
else{(n * (a - 1)) - x2}
}
CIL <- uniroot(U.0, c(La, rat), tol = tol)$root
CIU <- uniroot(U.0, c(rat, Hb), tol = tol)$root
}
#------------------------------------------------------------#
if((x == m) & (y != n)){
phat1 = x/m; phat2 = y/n
phihat = phat2/phat1
phiu = 1.1 * phihat
r = 0
while (r >= -z.star) {
a = (m + n) * phiu
b = -((x + n) * phiu + y + m)
c = x + y
p1hat = (-b - sqrt(b^2 - 4 * a * c))/(2 * a)
p2hat = p1hat * phiu
q2hat = 1 - p2hat
var = (m * n * p2hat)/(n * (phiu - p2hat) +
m * q2hat)
r = ((y - n * p2hat)/q2hat)/sqrt(var)
phiu1 = phiu
phiu = 1.0001 * phiu1
}
CIU = (1 - (m - x) * (1 - p0up)/(y + m - (n + m) * p0up))/p0up
CIL = 1/phiu1
}
#------------------------------------------------------------#
if((y == n) & (x != m)){
p.hat2 = y/n; p.hat1 = x/m; phihat = p.hat1/p.hat2
phil = 0.95 * phihat; r = 0
if(x != 0){
while(r <= z.star) {
a = (n + m) * phil
b = -((y + m) * phil + x + n)
c = y + x
p1hat = (-b - sqrt(b^2 - 4 * a * c))/(2 * a)
p2hat = p1hat * phil
q2hat = 1 - p2hat
var = (n * m * p2hat)/(m * (phil - p2hat) +
n * q2hat)
r = ((x - m * p2hat)/q2hat)/sqrt(var)
CIL = phil
phil = CIL/1.0001
}
}
phiu = 1.1 * phihat
if(x == 0){CIL = 0; phiu <- ifelse(n < 100, 0.01, 0.001)}
r = 0
while(r >= -z.star) {
a = (n + m) * phiu
b = -((y + m) * phiu + x + n)
c = y + x
p1hat = (-b - sqrt(b^2 - 4 * a * c))/(2 * a)
p2hat = p1hat * phiu
q2hat = 1 - p2hat
var = (n * m * p2hat)/(m * (phiu - p2hat) +
n * q2hat)
r = ((x - m * p2hat)/q2hat)/sqrt(var)
phiu1 = phiu
phiu = 1.0001 * phiu1
}
CIU <- phiu1
}
} else if((y != n) & (x != m) & (x != 0) & (y != 0)){
CIL <- uniroot(U, c(La, Lb), tol=tol)$root
CIU <- uniroot(U, c(Ha, Hb), tol=tol)$root
}
}
CI <- c(rat, CIL, CIU)
}
#-------------------------- Noether ------------------------------#
if(method == "noether"){
if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)|(x == m & y == n)){
if(x == 0 & y == 0) {CIL <- 0; CIU <- Inf; rat = 0; se.hat <- NA; varhat = NA}
if(x == 0 & y != 0) {rat <- (x/m)/(y/n); CIL <- 0; x <- 0.5
nrat <- (x/m)/(y/n); se.hat <- nrat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
CIU <- nrat + z.star * se.hat}
if(x != 0 & y == 0) {rat <- Inf; CIU <- Inf; y <- 0.5
nrat <- (x/m)/(y/n); se.hat <- nrat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
CIL <- nrat - z.star * se.hat}
if(x == m & y == n) {
rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); se.hat <- nrat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
CIU <- nrat + z.star * se.hat
CIL <- nrat - z.star * se.hat
}
} else
{
rat <- (x/m)/(y/n)
se.hat <- rat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
CIL <- rat - z.star * se.hat
CIU <- rat + z.star * se.hat
}
varhat <- ifelse(is.na(se.hat), NA, se.hat^2)
CI <- c(rat, max(0,CIL), CIU)
}
#------------------------- sinh-1 -----------------------------#
if(method == "sinh-1"){
if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)|(x == m & y == n)){
if(x == 0 & y == 0) {CIL <- 0; CIU <- Inf; rat = 0; varhat = NA}
if(x == 0 & y != 0) {rat <- (x/m)/(y/n); CIL <- 0; x <- z.star
nrat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
CIU <- exp(log(nrat) + varhat)}
if(x != 0 & y == 0) {rat = Inf; CIU <- Inf; y <- z.star
nrat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
CIL <- exp(log(nrat) - varhat)}
if(x == m & y == n) {
rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
CIL <- exp(log(nrat) - varhat)
CIU <- exp(log(nrat) + varhat)
}
} else
{rat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
CIL <- exp(log(rat) - varhat)
CIU <- exp(log(rat) + varhat)
}
CI <- c(rat, CIL, CIU)
}
#------------------------Results ------------------------------#
# res <- list(CI = CI, varhat = varhat)
CI
}
if(missing(sides)) sides <- match.arg(sides)
if(missing(method)) method <- match.arg(method)
# Recycle arguments
lst <- Recycle(x1=x1, n1=n1, x2=x2, n2=n2, conf.level=conf.level, sides=sides, method=method)
# iBinomRatioCI <- function(x, m, y, n, conf, method){
res <- t(sapply(1:attr(lst, "maxdim"),
function(i) iBinomRatioCI(x=lst$x1[i], m=lst$n1[i], y=lst$x2[i], n=lst$n2[i],
conf=lst$conf.level[i],
sides=lst$sides[i],
method=lst$method[i])))
# get rownames
lgn <- Recycle(x1=if(is.null(names(x1))) paste("x1", seq_along(x1), sep=".") else names(x1),
n1=if(is.null(names(n1))) paste("n1", seq_along(n1), sep=".") else names(n1),
x2=if(is.null(names(x2))) paste("x2", seq_along(x2), sep=".") else names(x2),
n2=if(is.null(names(n2))) paste("n2", seq_along(n2), sep=".") else names(n2),
conf.level=conf.level, sides=sides, method=method)
xn <- apply(as.data.frame(lgn[sapply(lgn, function(x) length(unique(x)) != 1)]), 1, paste, collapse=":")
return(SetNames(res,
rownames=xn,
colnames=c("est", "lwr.ci", "upr.ci")))
}
MultinomCI <- function(x, conf.level = 0.95, sides = c("two.sided","left","right"),
method = c("sisonglaz", "cplus1", "goodman", "wald", "waldcc", "wilson", "qh", "fs")) {
# Code mainly by:
# Pablo J. Villacorta Iglesias <pjvi@decsai.ugr.es>\n
# Department of Computer Science and Artificial Intelligence, University of Granada (Spain)
.moments <- function(c, lambda){
a <- lambda + c
b <- lambda - c
if(b < 0) b <- 0
if(b > 0) den <- ppois(a, lambda) - ppois(b-1, lambda)
if(b == 0) den <- ppois(a,lambda)
mu <- mat.or.vec(4,1)
mom <- mat.or.vec(5,1)
for(r in 1:4){
poisA <- 0
poisB <- 0
if((a-r) >=0){ poisA <- ppois(a,lambda)-ppois(a-r,lambda) }
if((a-r) < 0){ poisA <- ppois(a,lambda) }
if((b-r-1) >=0){ poisB <- ppois(b-1,lambda)-ppois(b-r-1,lambda) }
if((b-r-1) < 0 && (b-1)>=0){ poisB <- ppois(b-1,lambda) }
if((b-r-1) < 0 && (b-1) < 0){ poisB <- 0 }
mu[r] <- (lambda^r)*(1-(poisA-poisB)/den)
}
mom[1] <- mu[1]
mom[2] <- mu[2] + mu[1] - mu[1]^2
mom[3] <- mu[3] + mu[2]*(3-3*mu[1]) + (mu[1]-3*mu[1]^2+2*mu[1]^3)
mom[4] <- mu[4] + mu[3]*(6-4*mu[1]) + mu[2]*(7-12*mu[1]+6*mu[1]^2)+mu[1]-4*mu[1]^2+6*mu[1]^3-3*mu[1]^4
mom[5] <- den
return(mom)
}
.truncpoi <- function(c, x, n, k){
m <- matrix(0, k, 5)
for(i in 1L:k){
lambda <- x[i]
mom <- .moments(c, lambda)
for(j in 1L:5L){ m[i,j] <- mom[j] }
}
for(i in 1L:k){ m[i, 4] <- m[i, 4] - 3 * m[i, 2]^2 }
s <- colSums(m)
s1 <- s[1]
s2 <- s[2]
s3 <- s[3]
s4 <- s[4]
probn <- 1/(ppois(n,n)-ppois(n-1,n))
z <- (n-s1)/sqrt(s2)
g1 <- s3/(s2^(3/2))
g2 <- s4/(s2^2)
poly <- 1 + g1*(z^3-3*z)/6 + g2*(z^4-6*z^2+3)/24
+ g1^2*(z^6-15*z^4 + 45*z^2-15)/72
f <- poly*exp(-z^2/2)/(sqrt(2)*gamma(0.5))
probx <- 1
for(i in 1L:k){ probx <- probx * m[i,5] }
return(probn * probx * f / sqrt(s2))
}
n <- sum(x, na.rm=TRUE)
k <- length(x)
p <- x/n
if (missing(method)) method <- "sisonglaz"
if(missing(sides)) sides <- "two.sided"
sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
if(sides!="two.sided")
conf.level <- 1 - 2*(1-conf.level)
method <- match.arg(arg = method, choices = c("sisonglaz", "cplus1", "goodman", "wald", "waldcc", "wilson", "qh", "fs"))
if(method == "goodman") {
# erroneous: q.chi <- qchisq(conf.level, k - 1)
# corrected on
q.chi <- qchisq(1 - (1-conf.level)/k, df = 1)
lci <- (q.chi + 2*x - sqrt(q.chi*(q.chi + 4*x*(n-x)/n))) / (2*(n+q.chi))
uci <- (q.chi + 2*x + sqrt(q.chi*(q.chi + 4*x*(n-x)/n))) / (2*(n+q.chi))
res <- cbind(est=p, lwr.ci=pmax(0, lci), upr.ci=pmin(1, uci))
} else if(method == "wald") {
q.chi <- qchisq(conf.level, 1)
lci <- p - sqrt(q.chi * p * (1 - p)/n)
uci <- p + sqrt(q.chi * p * (1 - p)/n)
res <- cbind(est=p, lwr.ci=pmax(0, lci), upr.ci=pmin(1, uci))
} else if(method == "waldcc") {
q.chi <- qchisq(conf.level, 1)
lci <- p - sqrt(q.chi * p * (1 - p)/n) - 1/(2*n)
uci <- p + sqrt(q.chi * p * (1 - p)/n) + 1/(2*n)
res <- cbind(est=p, lwr.ci=pmax(0, lci), upr.ci=pmin(1, uci))
} else if(method == "wilson") {
q.chi <- qchisq(conf.level, 1)
lci <- (q.chi + 2*x - sqrt(q.chi^2 + 4*x*q.chi * (1 - p))) / (2*(q.chi + n))
uci <- (q.chi + 2*x + sqrt(q.chi^2 + 4*x*q.chi * (1 - p))) / (2*(q.chi + n))
res <- cbind(est=p, lwr.ci=pmax(0, lci), upr.ci=pmin(1, uci))
} else if (method == "fs") {
# references Fitzpatrick, S. and Scott, A. (1987). Quick simultaneous confidence
# interval for multinomial proportions.
# Journal of American Statistical Association 82(399): 875-878.
q.snorm <- qnorm(1-(1 - conf.level)/2)
lci <- p - q.snorm / (2 * sqrt(n))
uci <- p + q.snorm / (2 * sqrt(n))
res <- cbind(est = p, lwr.ci = pmax(0, lci), upr.ci = pmin(1, uci))
} else if (method == "qh") {
# references Quesensberry, C.P. and Hurst, D.C. (1964).
# Large Sample Simultaneous Confidence Intervals for
# Multinational Proportions. Technometrics, 6: 191-195.
q.chi <- qchisq(conf.level, df = k-1)
lci <- (q.chi + 2*x - sqrt(q.chi^2 + 4*x*q.chi*(1 - p)))/(2*(q.chi+n))
uci <- (q.chi + 2*x + sqrt(q.chi^2 + 4*x*q.chi*(1 - p)))/(2*(q.chi+n))
res <- cbind(est = p, lwr.ci = pmax(0, lci), upr.ci = pmin(1, uci))
} else { # sisonglaz, cplus1
const <- 0
pold <- 0
for(cc in 1:n){
poi <- .truncpoi(cc, x, n, k)
if(poi > conf.level && pold < conf.level) {
const <- cc
break
}
pold <- poi
}
delta <- (conf.level - pold)/(poi - pold)
const <- const - 1
if(method == "sisonglaz") {
res <- cbind(est = p, lwr.ci = pmax(0, p - const/n), upr.ci = pmin(1, p + const/n + 2*delta/n))
} else if(method == "cplus1") {
res <- cbind(est = p, lwr.ci = pmax(0, p - const/n - 1/n), upr.ci = pmin(1,p + const/n + 1/n))
}
}
if(sides=="left")
res[,3] <- 1
else if(sides=="right")
res[,2] <- 0
return(res)
}
# Confidence Intervals for Poisson mean
PoissonCI <- function(x, n = 1, conf.level = 0.95, sides = c("two.sided","left","right"),
method = c("exact","score", "wald","byar")) {
if(missing(method)) method <- "exact"
if(missing(sides)) sides <- "two.sided"
iPoissonCI <- function(x, n = 1, conf.level = 0.95, sides = c("two.sided","left","right"),
method = c("exact","score", "wald","byar")) {
# ref: http://www.ijmo.org/papers/189-S083.pdf but wacklig!!!
# http://www.math.montana.edu/~rjboik/classes/502/ci.pdf
# http://www.ine.pt/revstat/pdf/rs120203.pdf
# http://www.pvamu.edu/include/Math/AAM/AAM%20Vol%206,%20Issue%201%20(June%202011)/06_%20Kibria_AAM_R308_BK_090110_Vol_6_Issue_1.pdf
# see also: pois.conf.int {epitools}
sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
if(sides!="two.sided")
conf.level <- 1 - 2*(1-conf.level)
if(missing(method)) method <- "score"
if(length(conf.level) != 1) stop("'conf.level' has to be of length 1 (confidence level)")
if(conf.level < 0.5 | conf.level > 1) stop("'conf.level' has to be in [0.5, 1]")
alpha <- 1 - conf.level
z <- qnorm(1-alpha/2)
lambda <- x/n
switch( match.arg(arg=method, choices=c("exact","score", "wald","byar"))
, "exact" = {
ci <- poisson.test(x, n, conf.level = conf.level)$conf.int
lwr.ci <- ci[1]
upr.ci <- ci[2]
}
, "score" = {
term1 <- (x + z^2/2)/n
term2 <- z * n^-0.5 * sqrt(x/n + z^2/(4*n))
lwr.ci <- term1 - term2
upr.ci <- term1 + term2
}
, "wald" = {
term2 <- z*sqrt(lambda/n)
lwr.ci <- lambda - term2
upr.ci <- lambda + term2
}
, "byar" = {
xcc <- x + 0.5
zz <- (z/3) * sqrt(1/xcc)
lwr.ci <- (xcc * (1 - 1/(9 * xcc) - zz)^3)/n
upr.ci <- (xcc * (1 - 1/(9 * xcc) + zz)^3)/n
}
# agresti-coull is the same as score
# , "agresti-coull" = {
# lwr.ci <- lambda + z^2/(2*n) - z*sqrt(lambda/n + z^2/(4*n^2))
# upr.ci <- lambda + z^2/(2*n) + z*sqrt(lambda/n + z^2/(4*n^2))
#
# }
# garwood is the same as exact, check that!!
# , "garwood" = {
# lwr.ci <- qchisq((1 - conf.level)/2, 2*x)/(2*n)
# upr.ci <- qchisq(1 - (1 - conf.level)/2, 2*(x + 1))/(2*n)
# }
)
ci <- c( est=lambda, lwr.ci=lwr.ci, upr.ci=upr.ci )
if(sides=="left")
ci[3] <- Inf
else if(sides=="right")
ci[2] <- -Inf
return(ci)
}
# handle vectors
# which parameter has the highest dimension
lst <- list(x=x, n=n, conf.level=conf.level, sides=sides, method=method)
maxdim <- max(unlist(lapply(lst, length)))
# recycle all params to maxdim
lgp <- lapply( lst, rep, length.out=maxdim )
res <- sapply(1:maxdim, function(i) iPoissonCI(x=lgp$x[i], n=lgp$n[i],
conf.level=lgp$conf.level[i],
sides=lgp$sides[i],
method=lgp$method[i]))
rownames(res)[1] <- c("est")
lgn <- Recycle(x=if(is.null(names(x))) paste("x", seq_along(x), sep=".") else names(x),
n=if(is.null(names(n))) paste("n", seq_along(n), sep=".") else names(n),
conf.level=conf.level, sides=sides, method=method)
xn <- apply(as.data.frame(lgn[sapply(lgn, function(x) length(unique(x)) != 1)]), 1, paste, collapse=":")
colnames(res) <- xn
return(t(res))
}
QuantileCI <- function(x, probs=seq(0, 1, .25), conf.level = 0.95, sides = c("two.sided", "left", "right"),
na.rm = FALSE, method = c("exact", "boot"), R = 999) {
.QuantileCI <- function(x, prob, conf.level = 0.95, sides = c("two.sided", "left", "right")) {
# Near-symmetric distribution-free confidence interval for a quantile `q`.
# https://stats.stackexchange.com/questions/99829/how-to-obtain-a-confidence-interval-for-a-percentile
# Search over a small range of upper and lower order statistics for the
# closest coverage to 1-alpha (but not less than it, if possible).
n <- length(x)
alpha <- 1- conf.level
if(sides == "two.sided"){
u <- qbinom(p = 1-alpha/2, size = n, prob = prob) + (-2:2) + 1
l <- qbinom(p = alpha/2, size = n, prob = prob) + (-2:2)
u[u > n] <- Inf
l[l < 0] <- -Inf
coverage <- outer(l, u, function(a,b) pbinom(b-1, n, prob = prob) - pbinom(a-1, n, prob=prob))
if (max(coverage) < 1-alpha) i <- which(coverage==max(coverage)) else
i <- which(coverage == min(coverage[coverage >= 1-alpha]))
# minimal difference
i <- i[1]
# order statistics and the actual coverage.
u <- rep(u, each=5)[i]
l <- rep(l, 5)[i]
coverage <- coverage[i]
} else if(sides == "left"){
l <- qbinom(p = alpha, size = n, prob = prob)
u <- Inf
coverage <- 1 - pbinom(q = l-1, size = n, prob = prob)
} else if(sides == "right"){
l <- -Inf
u <- qbinom(p = 1-alpha, size = n, prob = prob)
coverage <- pbinom(q = u, size = n, prob = prob)
}
# get the values
if(prob %nin% c(0,1))
s <- sort(x, partial= c(u, l)[is.finite(c(u, l))])
else
s <- sort(x)
res <- c(lwr.ci=s[l], upr.ci=s[u])
attr(res, "conf.level") <- coverage
if(sides=="left")
res[2] <- Inf
else if(sides=="right")
res[1] <- -Inf
return(res)
}
if (na.rm) x <- na.omit(x)
if(anyNA(x))
stop("missing values and NaN's not allowed if 'na.rm' is FALSE")
sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
method <- match.arg(arg=method, choices=c("exact","boot"))
switch( method
, "exact" = { # this is the SAS-way to do it
r <- lapply(probs, function(p) .QuantileCI(x, prob=p, conf.level = conf.level, sides=sides))
coverage <- sapply(r, function(z) attr(z, "conf.level"))
r <- do.call(rbind, r)
attr(r, "conf.level") <- coverage
}
, "boot" = {
if(sides!="two.sided")
conf.level <- 1 - 2*(1-conf.level)
r <- t(sapply(probs,
function(p) {
boot.med <- boot(x, function(x, d) quantile(x[d], probs=p, na.rm=na.rm), R=R)
boot.ci(boot.med, conf=conf.level, type="basic")[[4]][4:5]
}))
} )
qq <- quantile(x, probs=probs, na.rm=na.rm)
if(length(probs)==1){
res <- c(qq, r)
names(res) <- c("est","lwr.ci","upr.ci")
# report the conf.level which can deviate from the required one
if(method=="exact") attr(res, "conf.level") <- attr(r, "conf.level")
} else {
res <- cbind(qq, r)
colnames(res) <- c("est","lwr.ci","upr.ci")
# report the conf.level which can deviate from the required one
if(method=="exact")
# report coverages for all probs
attr(res, "conf.level") <- attr(r, "conf.level")
}
return( res )
}
# standard error of mean
MeanSE <- function(x, sd = NULL, na.rm = FALSE) {
if(na.rm) x <- na.omit(x)
if(is.null(sd)) s <- sd(x)
s/sqrt(length(x))
}
MeanCIn <- function(ci, sd, interval=c(2, 1e5), conf.level=0.95, norm=FALSE,
tol = .Machine$double.eps^0.5) {
width <- diff(ci)/2
alpha <- (1-conf.level)/2
if(width > sd){
warning("Width of confidence intervall > 2*sd, samplesize n=1 is ok for that case.")
return(1)
} else {
if(norm)
uniroot(f = function(n) sd/sqrt(n) * qnorm(p = 1-alpha) - width,
interval = interval, tol = tol)$root
else
uniroot(f = function(n) (qt(1-alpha, df=n-1) * sd / sqrt(n)) - width,
interval = interval, tol = tol)$root
}
}
MeanDiffCI <- function(x, ...){
UseMethod("MeanDiffCI")
}
MeanDiffCI.formula <- function (formula, data, subset, na.action, ...) {
# this is from t.test.formula
if (missing(formula) || (length(formula) != 3L) || (length(attr(terms(formula[-2L]),
"term.labels")) != 1L))
stop("'formula' missing or incorrect")
m <- match.call(expand.dots = FALSE)
if (is.matrix(eval(m$data, parent.frame())))
m$data <- as.data.frame(data)
m[[1L]] <- as.name("model.frame")
m$... <- NULL
mf <- eval(m, parent.frame())
DNAME <- paste(names(mf), collapse = " by ")
names(mf) <- NULL
response <- attr(attr(mf, "terms"), "response")
g <- factor(mf[[-response]])
if (nlevels(g) != 2L)
stop("grouping factor must have exactly 2 levels")
DATA <- setNames(split(mf[[response]], g), c("x", "y"))
y <- DoCall("MeanDiffCI", c(DATA, list(...)))
# y$data.name <- DNAME
# if (length(y$estimate) == 2L)
# names(y$estimate) <- paste("mean in group", levels(g))
y
}
MeanDiffCI.default <- function (x, y, method = c("classic", "norm","basic","stud","perc","bca"),
conf.level = 0.95, sides = c("two.sided","left","right"),
paired = FALSE, na.rm = FALSE, R=999, ...) {
if (na.rm) {
x <- na.omit(x)
y <- na.omit(y)
}
sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
if(sides!="two.sided")
conf.level <- 1 - 2*(1-conf.level)
method <- match.arg(method, c("classic", "norm","basic","stud","perc","bca"))
if(method == "classic"){
a <- t.test(x, y, conf.level = conf.level, paired = paired)
if(paired)
res <- c(meandiff = mean(x - y), lwr.ci = a$conf.int[1], upr.ci = a$conf.int[2])
else
res <- c(meandiff = mean(x) - mean(y), lwr.ci = a$conf.int[1], upr.ci = a$conf.int[2])
} else {
diff.means <- function(d, f){
n <- nrow(d)
gp1 <- 1:table(as.numeric(d[,2]))[1]
m1 <- sum(d[gp1,1] * f[gp1])/sum(f[gp1])
m2 <- sum(d[-gp1,1] * f[-gp1])/sum(f[-gp1])
m1 - m2
}
m <- cbind(c(x,y), c(rep(1,length(x)), rep(2,length(y))))
if(paired)
boot.fun <- boot(x-y, function(d, i) mean(d[i]), R=R, stype="i")
else
boot.fun <- boot(m, diff.means, R=R, stype="f", strata = m[,2])
ci <- boot.ci(boot.fun, conf=conf.level, type=method)
if(method == "norm"){
res <- c(meandiff=boot.fun$t0, lwr.ci=ci[[4]][2], upr.ci=ci[[4]][3])
} else {
res <- c(meandiff=boot.fun$t0, lwr.ci=ci[[4]][4], upr.ci=ci[[4]][5])
}
}
if(sides=="left")
res[3] <- Inf
else if(sides=="right")
res[2] <- -Inf
return(res)
}
# CohenEffectSize <- function(x){
# (C) Antti Arppe 2007-2011
# E-mail: antti.arppe@helsinki.fi
# Cohen's Effect Size (1988)
# e0 <- matrix(,ctable.rows,ctable.cols)
# for(i in 1:ctable.rows)
# for(j in 1:ctable.cols)
# e0[i,j] <- sum.row[i]*sum.col[j]/N
# p0 <- e0/N
# p1 <- ctable/N
# effect.size <- sqrt(sum(((p1-p0)^2)/p0))
# noncentrality <- N*(effect.size^2)
# d.f=(ctable.rows-1)*(ctable.cols-1)
# beta <- pchisq(qchisq(alpha,df=d.f,lower.tail=FALSE),df=d.f,ncp=noncentrality)
# power <- 1-beta
# return(effect.size)
# }
.cohen_d_ci <- function (d, n = NULL, n2 = NULL, n1 = NULL, alpha = 0.05) {
# William Revelle in psych
d2t <- function (d, n = NULL, n2 = NULL, n1 = NULL) {
if (is.null(n1)) {
t <- d * sqrt(n)/2
} else if (is.null(n2)) {
t <- d * sqrt(n1)
} else {
t <- d/sqrt(1/n1 + 1/n2)
}
return(t)
}
t2d <- function (t, n = NULL, n2 = NULL, n1 = NULL) {
if (is.null(n1)) {
d <- 2 * t/sqrt(n)
} else {
if (is.null(n2)) {
d <- t/sqrt(n1)
} else {
d <- t * sqrt(1/n1 + 1/n2)
}
}
return(d)
}
t <- d2t(d = d, n = n, n2 = n2, n1 = n1)
tail <- 1 - alpha/2
ci <- matrix(NA, ncol = 3, nrow = length(d))
for (i in 1:length(d)) {
nmax <- max(c(n/2 + 1, n1 + 1, n1 + n2))
upper <- try(t2d(uniroot(function(x) {
suppressWarnings(pt(q = t[i], df = nmax - 2, ncp = x)) -
alpha/2
}, c(min(-5, -abs(t[i]) * 10), max(5, abs(t[i]) * 10)))$root,
n = n[i], n2 = n2[i], n1 = n1[i]), silent = TRUE)
if (inherits(upper, "try-error")) {
ci[i, 3] <- NA
}
else {
ci[i, 3] <- upper
}
ci[i, 2] <- d[i]
lower.ci <- try(t2d(uniroot(function(x) {
suppressWarnings(pt(q = t[i], df = nmax - 2, ncp = x)) -
tail
}, c(min(-5, -abs(t[i]) * 10), max(5, abs(t[i]) * 10)))$root,
n = n[i], n2 = n2[i], n1 = n1[i]), silent = TRUE)
if (inherits(lower.ci, "try-error")) {
ci[i, 1] <- NA
}
else {
ci[i, 1] <- lower.ci
}
}
colnames(ci) <- c("lower", "effect", "upper")
rownames(ci) <- names(d)
return(ci)
}
CohenD <- function(x, y=NULL, pooled = TRUE, correct = FALSE, conf.level = NA, na.rm = FALSE) {
if (na.rm) {
x <- na.omit(x)
if(!is.null(y)) y <- na.omit(y)
}
if(is.null(y)){ # one sample Cohen d
d <- mean(x) / sd(x)
n <- length(x)
if(!is.na(conf.level)){
# # reference: Smithson Confidence Intervals pp. 36:
# ci <- .nctCI(d / sqrt(n), df = n-1, conf = conf.level)
# res <- c(d=d, lwr.ci=ci[1]/sqrt(n), upr.ci=ci[3]/sqrt(n))
# changed to Revelle 2022-10-22:
ci <- .cohen_d_ci(d = d, n = n, alpha = 1-conf.level)
res <- c(d=d, lwr.ci=ci[1], upr.ci=ci[3])
} else {
res <- d
}
} else {
meanx <- mean(x)
meany <- mean(y)
# ssqx <- sum((x - meanx)^2)
# ssqy <- sum((y - meany)^2)
nx <- length(x)
ny <- length(y)
DF <- nx + ny - 2
d <- (meanx - meany)
if(pooled){
d <- d / sqrt(((nx - 1) * var(x) + (ny - 1) * var(y)) / DF)
}else{
d <- d / sd(c(x, y))
}
# if(unbiased) d <- d * gamma(DF/2)/(sqrt(DF/2) * gamma((DF - 1)/2))
if(correct){ # "Hedges's g"
# Hedges, L. V. & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.
d <- d * (1 - 3 / ( 4 * (nx + ny) - 9))
}
if(!is.na(conf.level)) {
# old:
# The Handbook of Research Synthesis and Meta-Analysis (Cooper, Hedges, & Valentine, 2009)
## p 238
# ci <- d + c(-1, 1) * sqrt(((nx+ny) / (nx*ny) + .5 * d^2 / DF) * ((nx + ny)/DF)) * qt((1 - conf.level) / 2, DF)
# # supposed to be better, Smithson's version:
# ci <- .nctCI(d / sqrt(nx*ny/(nx+ny)), df = DF, conf = conf.level)
# res <- c(d=d, lwr.ci=ci[1]/sqrt(nx*ny/(nx+ny)), upr.ci=ci[3]/sqrt(nx*ny/(nx+ny)))
# changed to Revelle
ci <- .cohen_d_ci(d, n2 = nx, n1 = ny, alpha = 1-conf.level)
res <- c(d=d, lwr.ci=unname(ci[1]), upr.ci=unname(ci[3]))
} else {
res <- d
}
}
## Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159. Crow, E. L. (1991).
attr(res, "magnitude") <- c("negligible","small","medium","large")[findInterval(abs(d), c(0.2, 0.5, 0.8)) + 1]
return(res)
}
# find non-centrality parameter for the F-distribution
ncparamF <- function(type1, type2, nu1, nu2) {
# author Ali Baharev <ali.baharev at gmail.com>
# Returns the noncentrality parameter of the noncentral F distribution
# if probability of Type I and Type II error, degrees of freedom of the
# numerator and the denominator in the F test statistics are given.
.C("fpow", PACKAGE = "DescTools", as.double(type1), as.double(type2),
as.double(nu1), as.double(nu2), lambda=double(1))$lambda
}
.nctCI <- function(t, df, conf) {
alpha <- 1 - conf
probs <- c(alpha/2, 1 - alpha/2)
ncp <- suppressWarnings(optim(par = 1.1 * rep(t, 2), fn = function(x) {
p <- pt(q = t, df = df, ncp = x)
abs(max(p) - probs[2]) + abs(min(p) - probs[1])
}, control = list(abstol = 0.000000001)))
t_ncp <- unname(sort(ncp$par))
return(t_ncp)
}
# .nctCI <- function(tval.1, df, conf) {
#
# # Function for finding the upper and lower confidence limits for the noncentrality from noncentral t distributions.
# # Especially helpful when forming confidence intervals around the standardized effect size, Cohen's d.
#
# ###################################################################################################################
# # The following code was adapted from code written by Michael Smithson:
# # Australian National University, sometime around the early part of October, 2001
# # Adapted by Joe Rausch & Ken Kelley: University of Notre Dame, in January 2002.
# # Available at: JRausch@nd.edu & KKelley@nd.edu
# ###################################################################################################################
#
#
# # tval.1 is the observed t value, df is the degrees of freedom (group size need not be equal), and conf is simply 1 - alpha
#
# # Result <- matrix(NA,1,4)
# tval <- abs(tval.1)
#
#
# ############################This part Finds the Lower bound for the confidence interval###########################
# ulim <- 1 - (1-conf)/2
#
# # This first part finds a lower value from which to start.
# lc <- c(-tval,tval/2,tval)
# while(pt(tval, df, lc[1])<ulim) {
# lc <- c(lc[1]-tval,lc[1],lc[3])
# }
#
# # This next part finds the lower limit for the ncp.
# diff <- 1
# while(diff > .00000001) {
# if(pt(tval, df, lc[2]) <ulim)
# lc <- c(lc[1],(lc[1]+lc[2])/2,lc[2])
# else lc <- c(lc[2],(lc[2]+lc[3])/2,lc[3])
# diff <- abs(pt(tval,df,lc[2]) - ulim)
# ucdf <- pt(tval,df,lc[2])
# }
# res.1 <- ifelse(tval.1 >= 0,lc[2],-lc[2])
#
# ############################This part Finds the Upper bound for the confidence interval###########################
# llim <- (1-conf)/2
#
# # This first part finds an upper value from which to start.
# uc <- c(tval,1.5*tval,2*tval)
# while(pt(tval,df,uc[3])>llim) {
# uc <- c(uc[1],uc[3],uc[3]+tval)
# }
#
# # This next part finds the upper limit for the ncp.
# diff <- 1
# while(diff > .00000001) {
# if(pt(tval,df,uc[2])<llim)
# uc <- c(uc[1],(uc[1]+uc[2])/2,uc[2])
# else uc <- c(uc[2],(uc[2]+uc[3])/2,uc[3])
# diff <- abs(pt(tval,df,uc[2]) - llim)
# lcdf <- pt(tval,df,uc[2])
# }
# res <- ifelse(tval.1 >= 0,uc[2],-uc[2])
#
#
# #################################This part Compiles the results into a matrix#####################################
#
# return(c(lwr.ci=min(res, res.1), lprob=ucdf, upr.ci=max(res, res.1), uprob=lcdf))
#
# # Result[1,1] <- min(res,res.1)
# # Result[1,2] <- ucdf
# # Result[1,3] <- max(res,res.1)
# # Result[1,4] <- lcdf
# # dimnames(Result) <- list("Values", c("Lower.Limit", "Prob.Low.Limit", "Upper.Limit", "Prob.Up.Limit"))
# # Result
# }
CoefVar <- function (x, ...) {
UseMethod("CoefVar")
}
CoefVar.lm <- function (x, unbiased = FALSE, na.rm = FALSE, ...) {
# source: http://www.ats.ucla.edu/stat/mult_pkg/faq/general/coefficient_of_variation.htm
# In the modeling setting, the CV is calculated as the ratio of the root mean squared error (RMSE)
# to the mean of the dependent variable.
# root mean squared error
rmse <- sqrt(sum(x$residuals^2) / x$df.residual)
res <- rmse / mean(x$model[[1]], na.rm=na.rm)
# This is the same approach as in CoefVar.default, but it's not clear
# if it is correct in the environment of a model
n <- x$df.residual
if (unbiased) {
res <- res * ((1 - (1/(4 * (n - 1))) + (1/n) * res^2) +
(1/(2 * (n - 1)^2)))
}
# if (!is.na(conf.level)) {
# ci <- .nctCI(sqrt(n)/res, df = n - 1, conf = conf.level)
# res <- c(est = res, low.ci = unname(sqrt(n)/ci["upr.ci"]),
# upr.ci = unname(sqrt(n)/ci["lwr.ci"]))
# }
return(res)
}
# interface for lme???
# dependent variable in lme
# dv <- unname(nlme::getResponse(x))
# CoefVar.default <- function (x, weights=NULL, unbiased = FALSE, conf.level = NA, na.rm = FALSE, ...) {
#
# if(is.null(weights)){
# if(na.rm) x <- na.omit(x)
# res <- SD(x) / Mean(x)
# n <- length(x)
#
# }
# else {
# res <- SD(x, weights = weights) / Mean(x, weights = weights)
# n <- sum(weights)
#
# }
#
# if(unbiased) {
# res <- res * ((1 - (1/(4*(n-1))) + (1/n) * res^2)+(1/(2*(n-1)^2)))
# }
#
# if(!is.na(conf.level)){
# ci <- .nctCI(sqrt(n)/res, df = n-1, conf = conf.level)
# res <- c(est=res, low.ci= unname(sqrt(n)/ci["upr.ci"]), upr.ci= unname(sqrt(n)/ci["lwr.ci"]))
# }
#
# return(res)
#
# }
CoefVarCI <- function (K, n, conf.level = 0.95,
sides = c("two.sided", "left", "right"),
method = c("nct","vangel","mckay","verrill","naive")) {
# Description of confidence intervals
# https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/coefvacl.htm
.iCoefVarCI <- Vectorize(function(K, n, conf.level=0.95,
sides = c("two.sided", "left", "right"),
method = c("vangel","mckay","verrill","nct","naive")) {
method <- match.arg(method)
sides <- match.arg(sides, choices = c("two.sided", "left", "right"),
several.ok = FALSE)
# double alpha in case of one-sided intervals in order to be able
# to generally calculate twosided intervals and select afterwards..
if (sides != "two.sided")
conf.level <- 1 - 2 * (1 - conf.level)
alpha <- 1 - conf.level
df <- n - 1
u1 <- qchisq(1-alpha/2, df)
u2 <- qchisq(alpha/2, df)
switch(method, verrill = {
CI.lower <- 0
CI.upper <- 1
}, vangel = {
CI.lower <- K / sqrt(((u1+2)/n - 1) * K^2 + u1/df)
CI.upper <- K / sqrt(((u2+2)/n - 1) * K^2 + u2/df)
}, mckay = {
CI.lower <- K / sqrt((u1/n - 1) * K^2 + u1/df)
CI.upper <- K / sqrt((u2/n - 1) * K^2 + u2/df)
}, nct = {
ci <- .nctCI(sqrt(n)/K, df = df, conf = conf.level)
CI.lower <- unname(sqrt(n)/ci[2])
CI.upper <- unname(sqrt(n)/ci[1])
}, naive = {
CI.lower <- K * sqrt(df / u1)
CI.upper <- K * sqrt(df / u2)
}
)
ci <- c(est = K,
lwr.ci = CI.lower, # max(0, CI.lower),
upr.ci = CI.upper) # min(1, CI.upper))
if (sides == "left")
ci[3] <- Inf
else if (sides == "right")
ci[2] <- -Inf
return(ci)
})
sides <- match.arg(sides)
method <- match.arg(method)
res <- t(.iCoefVarCI(K=K, n=n, method=method, sides=sides, conf.level = conf.level))
return(res)
}
CoefVar.default <- function (x, weights = NULL, unbiased = FALSE,
na.rm = FALSE, ...) {
if (is.null(weights)) {
if (na.rm)
x <- na.omit(x)
res <- SD(x)/Mean(x)
n <- length(x)
} else {
res <- SD(x, weights = weights)/Mean(x, weights = weights)
n <- sum(weights)
}
if (unbiased) {
res <- res * ((1 - (1/(4 * (n - 1))) + (1/n) * res^2) + (1/(2 * (n - 1)^2)))
}
return(res)
}
# aus agricolae: Variations Koeffizient aus aov objekt
#
# CoefVar.aov <- function(x){
# return(sqrt(sum(x$residual^2) / x$df.residual) / mean(x$fitted.values))
# }
CoefVar.aov <- function (x, unbiased = FALSE, na.rm = FALSE, ...) {
# source: http://www.ats.ucla.edu/stat/mult_pkg/faq/general/coefficient_of_variation.htm
# In the modeling setting, the CV is calculated as the ratio of the root mean squared error (RMSE)
# to the mean of the dependent variable.
# root mean squared error
rmse <- sqrt(sum(x$residuals^2) / x$df.residual)
res <- rmse / mean(x$model[[1]], na.rm=na.rm)
# This is the same approach as in CoefVar.default, but it's not clear
# if it is correct in the enviroment of a model
n <- x$df.residual
if (unbiased) {
res <- res * ((1 - (1/(4 * (n - 1))) + (1/n) * res^2) +
(1/(2 * (n - 1)^2)))
}
# if (!is.na(conf.level)) {
# ci <- .nctCI(sqrt(n)/res, df = n - 1, conf = conf.level)
# res <- c(est = res, low.ci = unname(sqrt(n)/ci["upr.ci"]),
# upr.ci = unname(sqrt(n)/ci["lwr.ci"]))
# }
return(res)
}
VarCI <- function (x, method = c("classic", "bonett", "norm", "basic","stud","perc","bca"),
conf.level = 0.95, sides = c("two.sided","left","right"), na.rm = FALSE, R=999) {
if (na.rm) x <- na.omit(x)
method <- match.arg(method, c("classic","bonett", "norm","basic","stud","perc","bca"))
sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
if(sides!="two.sided")
conf.level <- 1 - 2*(1-conf.level)
if(method == "classic"){
df <- length(x) - 1
v <- var(x)
res <- c (var = v, lwr.ci = df * v/qchisq((1 - conf.level)/2, df, lower.tail = FALSE)
, upr.ci = df * v/qchisq((1 - conf.level)/2, df) )
} else if(method=="bonett") {
z <- qnorm(1-(1-conf.level)/2)
n <- length(x)
cc <- n/(n-z)
v <- var(x)
mtr <- mean(x, trim = 1/(2*(n-4)^0.5))
m <- mean(x)
gam4 <- n * sum((x-mtr)^4) / (sum((x-m)^2))^2
se <- cc * sqrt((gam4 - (n-3)/n)/(n-1))
lci <- exp(log(cc * v) - z*se)
uci <- exp(log(cc * v) + z*se)
res <- c(var=v, lwr.ci=lci, upr.ci=uci)
} else {
boot.fun <- boot(x, function(x, d) var(x[d], na.rm=na.rm), R=R)
ci <- boot.ci(boot.fun, conf=conf.level, type=method)
if(method == "norm"){
res <- c(var=boot.fun$t0, lwr.ci=ci[[4]][2], upr.ci=ci[[4]][3])
} else {
res <- c(var=boot.fun$t0, lwr.ci=ci[[4]][4], upr.ci=ci[[4]][5])
}
}
if(sides=="left")
res[3] <- Inf
else if(sides=="right")
res[2] <- 0
return(res)
}
## stats: Lorenz, <- & ineq ====
Lc <- function(x, ...)
UseMethod("Lc")
Lc.formula <- function(formula, data, subset, na.action, ...) {
# this is taken basically from wilcox.test.formula
if (missing(formula) || (length(formula) != 3L) || (length(attr(terms(formula[-2L]),
"term.labels")) != 1L))
stop("'formula' missing or incorrect")
m <- match.call(expand.dots = FALSE)
if (is.matrix(eval(m$data, parent.frame())))
m$data <- as.data.frame(data)
m[[1L]] <- as.name("model.frame")
m$... <- NULL
mf <- eval(m, parent.frame())
# mf$na.action <- substitute(na.action)
# DNAME <- paste(names(mf), collapse = " by ")
#
# DATA <- list(table(mf))
# do.call("Lc", c(DATA, list(...)))
drop <- TRUE
# mf <- model.frame(x, data)
x <- split(x = mf[,1], f = mf[,2], drop=drop, ...)
res <- lapply(x, FUN = "Lc", ...)
class(res) <- "Lclist"
return(res)
}
Lc.default <- function(x, n = rep(1, length(x)), na.rm = FALSE, ...) {
xx <- x
nn <- n
g <- Gini(x, n, na.rm=na.rm)
if(na.rm) x <- na.omit(x)
if (any(is.na(x)) || any(x < 0)) return(NA_real_)
k <- length(x)
o <- order(x)
x <- x[o]
n <- n[o]
x <- n*x
p <- cumsum(n)/sum(n)
L <- cumsum(x)/sum(x)
p <- c(0,p)
L <- c(0,L)
L2 <- L * mean(x)
Lc <- list(p, L, L2, g, xx, nn)
names(Lc) <- c("p", "L", "L.general", "Gini", "x", "n")
class(Lc) <- "Lc"
# no plot anymore, we have plot(lc) and Desc(lc, plotit=TRUE)
# if(plot) plot(Lc)
Lc
}
plot.Lc <- function(x, general=FALSE, lwd=2, type="l", xlab="p", ylab="L(p)",
main="Lorenz curve", las=1, pch=NA, ...) {
if(!general)
L <- x$L
else
L <- x$L.general
plot(x$p, L, type=type, main=main, lwd=lwd, xlab=xlab, ylab=ylab, xaxs="i",
yaxs="i", las=las, ...)
abline(0, max(L))
if(!is.na(pch)){
opar <- par(xpd=TRUE)
on.exit(par(opar))
points(x$p, L, pch=pch, ...)
}
}
lines.Lc <- function(x, general=FALSE, lwd=2, conf.level = NA, args.cband = NULL, ...) {
# Lc.boot.ci <- function(x, conf.level=0.95, n=1000){
#
# x <- rep(x$x, times=x$n)
# m <- matrix(sapply(1:n, function(i) sample(x, replace = TRUE)), nrow=length(x))
#
# lst <- apply(m, 2, Lc)
# list(x=c(lst[[1]]$p, rev(lst[[1]]$p)),
# y=c(apply(do.call(rbind, lapply(lst, "[[", "L")), 2, quantile, probs=(1-conf.level)/2),
# rev(apply(do.call(rbind, lapply(lst, "[[", "L")), 2, quantile, probs=1-(1-conf.level)/2)))
# )
# }
#
#
if(!general)
L <- x$L
else
L <- x$L.general
if (!(is.na(conf.level) || identical(args.cband, NA)) ) {
args.cband1 <- list(col = SetAlpha(DescToolsOptions("col")[1], 0.12), border = NA)
if (!is.null(args.cband))
args.cband1[names(args.cband)] <- args.cband
# ci <- Lc.boot.ci(x, conf.level=conf.level) # Vertrauensband
ci <- predict(object=x, conf.level=conf.level, general=general)
do.call("DrawBand", c(args.cband1, list(x=c(ci$p, rev(ci$p))),
list(y=c(ci$lci, rev(ci$uci)))))
}
lines(x$p, L, lwd=lwd, ...)
}
plot.Lclist <- function(x, col=1, lwd=2, lty=1, main = "Lorenz curve",
xlab="p", ylab="L(p)", ...){
# Recycle arguments
lgp <- Recycle(x=seq_along(x), col=col, lwd=lwd, lty=lty)
plot(x[[1]], col=lgp$col[1], lwd=lgp$lwd[1], lty=lgp$lty[1], main=main, xlab=xlab, ylab=ylab, ...)
for(i in 2L:length(x)){
lines(x[[i]], col=lgp$col[i], lwd=lgp$lwd[i], lty=lgp$lty[i])
}
}
predict.Lc <- function(object, newdata, conf.level=NA, general=FALSE, n=1000, ...){
confint.Lc <- function(object, conf.level = 0.95, general=FALSE, n=1000, ...){
x <- rep(object$x, times=object$n)
m <- replicate(n = n, sample(x, replace = TRUE))
lst <- apply(m, 2, Lc)
list(x=lst[[1]]$p,
lci=apply(do.call(rbind, lapply(lst, "[[", ifelse(general, "L.general", "L"))), 2, quantile, probs=(1-conf.level)/2),
uci=apply(do.call(rbind, lapply(lst, "[[", ifelse(general, "L.general", "L"))), 2, quantile, probs=1-(1-conf.level)/2)
)
}
if(!general)
L <- object$L
else
L <- object$L.general
if(missing(newdata)){
newdata <- object$p
res <- data.frame(p=object$p, L=L)
} else {
res <- do.call(data.frame, approx(x=object$p, y=L, xout=newdata))
colnames(res) <- c("p", "L")
}
if(!identical(conf.level, NA)){
ci <- confint.Lc(object, conf.level=conf.level, general=general, n=n)
lci <- approx(x=ci$x, y=ci$lci, xout=newdata)
uci <- approx(x=ci$x, y=ci$uci, xout=newdata)
res <- data.frame(res, lci=lci$y, uci=uci$y)
}
res
}
# Original Zeileis:
# Gini <- function(x)
# {
# n <- length(x)
# x <- sort(x)
# G <- sum(x * 1:n)
# G <- 2*G/(n*sum(x))
# G - 1 - (1/n)
# }
# other:
# http://rss.acs.unt.edu/Rdoc/library/reldist/html/gini.html
# http://finzi.psych.upenn.edu/R/library/dplR/html/gini.coef.html
# Gini <- function(x, n = rep(1, length(x)), unbiased = TRUE, conf.level = NA, R = 1000, type = "bca", na.rm = FALSE) {
#
# # cast to numeric, as else sum(x * 1:n) might overflow for integers
# # http://stackoverflow.com/questions/39579029/integer-overflow-error-using-gini-function-of-package-desctools
# x <- as.numeric(x)
#
# x <- rep(x, n) # same handling as Lc
# if(na.rm) x <- na.omit(x)
# if (any(is.na(x)) || any(x < 0)) return(NA_real_)
#
# i.gini <- function (x, unbiased = TRUE){
# n <- length(x)
# x <- sort(x)
#
# res <- 2 * sum(x * 1:n) / (n*sum(x)) - 1 - (1/n)
# if(unbiased) res <- n / (n - 1) * res
#
# # limit Gini to 0 here, if negative values appear, which is the case with
# # Gini( c(10,10,10))
# return( pmax(0, res))
#
# # other guy out there:
# # N <- if (unbiased) n * (n - 1) else n * n
# # dsum <- drop(crossprod(2 * 1:n - n - 1, x))
# # dsum / (mean(x) * N)
# # is this slower, than above implementation??
# }
#
# if(is.na(conf.level)){
# res <- i.gini(x, unbiased = unbiased)
#
# } else {
# # adjusted bootstrap percentile (BCa) interval
# boot.gini <- boot(x, function(x, d) i.gini(x[d], unbiased = unbiased), R=R)
# ci <- boot.ci(boot.gini, conf=conf.level, type=type)
# res <- c(gini=boot.gini$t0, lwr.ci=ci[[4]][4], upr.ci=ci[[4]][5])
# }
#
# return(res)
#
# }
# recoded for better support weights 2022-09-14
Gini <- function(x, weights=NULL, unbiased=TRUE,
conf.level = NA, R = 10000, type = "bca", na.rm=FALSE) {
# https://core.ac.uk/download/pdf/41339501.pdf
if (is.null(weights)) {
weights <- rep(1, length(x))
}
if (na.rm){
na <- (is.na(x) | is.na(weights))
x <- x[!na]
weights <- weights[!na]
}
if (any(is.na(x)) || any(x < 0))
return(NA_real_)
i.gini <- function(x, w, unbiased=FALSE) {
w <- w/sum(w)
x <- x[id <- order(x)]
w <- w[id]
f.hat <- w / 2 + c(0, head(cumsum(w), -1))
wm <- Mean(x, w)
res <- 2 / wm * sum(w * (x - wm) * (f.hat - Mean(f.hat, w)))
if(unbiased)
res <- res * 1/(1 - sum(w^2))
return(res)
}
if (is.na(conf.level)) {
res <- i.gini(x, weights, unbiased = unbiased)
} else {
boot.gini <- boot(data = x,
statistic = function(z, i, u, unbiased)
i.gini(x = z[i], w = u[i], unbiased = unbiased),
R=R, u=weights, unbiased=unbiased)
ci <- boot.ci(boot.gini, conf = conf.level, type = type)
res <- c(gini = boot.gini$t0, lwr.ci = ci[[4]][4], upr.ci = ci[[4]][5])
}
return(res)
}
GiniSimpson <- function(x, na.rm = FALSE) {
# referenz: Sachs, Angewandte Statistik, S. 57
# example:
# x <- as.table(c(69,17,7,62))
# rownames(x) <- c("A","B","AB","0")
# GiniSimpson(x)
if(!is.factor(x)){
warning("x is not a factor!")
return(NA)
}
if(na.rm) x <- na.omit(x)
ptab <- prop.table(table(x))
return(sum(ptab*(1-ptab)))
}
GiniDeltas <- function (x, na.rm = FALSE) {
# Deltas (2003, DOI:10.1162/rest.2003.85.1.226).
if (!is.factor(x)) {
warning("x is not a factor!")
return(NA)
}
if (na.rm)
x <- na.omit(x)
p <- prop.table(table(x))
sum(p * (1 - p)) * length(p)/(length(p) - 1)
}
HunterGaston <- function(x, na.rm = FALSE){
# Hunter-Gaston index (Hunter & Gaston, 1988, DOI:10.1128/jcm.26.11.2465-2466.1988)
# Credits to Wim Bernasco
# https://github.com/AndriSignorell/DescTools/issues/120
# see: vegan::simpson.unb(BCI)
if (is.factor(x) | is.character(x)) {
if (na.rm)
x <- na.omit(x)
tt <- table(x)
} else {
tt <- x
}
sum(tt * (tt - 1)) / (sum(tt) * (sum(tt) - 1))
# shouldn't this be:
# 1 - sum(tt * (tt - 1)) / (sum(tt) * (sum(tt) - 1))
# ???
}
Atkinson <- function(x, n = rep(1, length(x)), parameter = 0.5, na.rm = FALSE) {
x <- rep(x, n) # same handling as Lc and Gini
if(na.rm) x <- na.omit(x)
if (any(is.na(x)) || any(x < 0)) return(NA_real_)
if(is.null(parameter)) parameter <- 0.5
if(parameter==1)
A <- 1 - (exp(mean(log(x)))/mean(x))
else
{
x <- (x/mean(x))^(1-parameter)
A <- 1 - mean(x)^(1/(1-parameter))
}
A
}
Herfindahl <- function(x, n = rep(1, length(x)), parameter=1, na.rm = FALSE) {
x <- rep(x, n) # same handling as Lc and Gini
if(na.rm) x <- na.omit(x)
if (any(is.na(x)) || any(x < 0)) return(NA_real_)
if(is.null(parameter))
m <- 1
else
m <- parameter
Herf <- x/sum(x)
Herf <- Herf^(m+1)
Herf <- sum(Herf)^(1/m)
Herf
}
Rosenbluth <- function(x, n = rep(1, length(x)), na.rm = FALSE) {
x <- rep(x, n) # same handling as Lc and Gini
if(na.rm) x <- na.omit(x)
if (any(is.na(x)) || any(x < 0)) return(NA_real_)
n <- length(x)
x <- sort(x)
HT <- (n:1)*x
HT <- 2*sum(HT/sum(x))
HT <- 1/(HT-1)
HT
}
###
## stats: assocs etc. ====
CutAge <- function(x, from=0, to=90, by=10, right=FALSE, ordered_result=TRUE, ...){
cut(x, breaks = c(seq(from, to, by), Inf),
right=right, ordered_result = ordered_result, ...)
}
CutQ <- function(x, breaks=quantile(x, seq(0, 1, by=0.25), na.rm=TRUE),
labels=NULL, na.rm = FALSE, ...){
# old version:
# cut(x, breaks=probsile(x, breaks=probs, na.rm = na.rm), include.lowest=TRUE, labels=labels)
# $Id: probscut.R 1431 2010-04-28 17:23:08Z ggrothendieck2 $
# from gtools
if(na.rm) x <- na.omit(x)
if(length(breaks)==1 && IsWhole(breaks))
breaks <- quantile(x, seq(0, 1, by = 1/breaks), na.rm = TRUE)
if(is.null(labels)) labels <- gettextf("Q%s", 1:(length(breaks)-1))
# probs <- quantile(x, probs)
dups <- duplicated(breaks)
if(any(dups)) {
flag <- x %in% unique(breaks[dups])
retval <- ifelse(flag, paste("[", as.character(x), "]", sep=''), NA)
uniqs <- unique(breaks)
# move cut points over a bit...
reposition <- function(cut) {
flag <- x>=cut
if(sum(flag)==0)
return(cut)
else
return(min(x[flag]))
}
newprobs <- sapply(uniqs, reposition)
retval[!flag] <- as.character(cut(x[!flag], breaks=newprobs, include.lowest=TRUE,...))
levs <- unique(retval[order(x)]) # ensure factor levels are
# properly ordered
retval <- factor(retval, levels=levs)
## determine open/closed interval ends
mkpairs <- function(x) # make table of lower, upper
sapply(x,
function(y) if(length(y)==2) y[c(2,2)] else y[2:3]
)
pairs <- mkpairs(strsplit(levs, '[^0-9+\\.\\-]+'))
rownames(pairs) <- c("lower.bound","upper.bound")
colnames(pairs) <- levs
closed.lower <- rep(FALSE, ncol(pairs)) # default lower is open
closed.upper <- rep(TRUE, ncol(pairs)) # default upper is closed
closed.lower[1] <- TRUE # lowest interval is always closed
for(i in 2:ncol(pairs)) # open lower interval if above singlet
if(pairs[1,i]==pairs[1,i-1] && pairs[1,i]==pairs[2,i-1])
closed.lower[i] <- FALSE
for(i in 1:(ncol(pairs)-1)) # open upper interval if below singlet
if(pairs[2,i]==pairs[1,i+1] && pairs[2,i]==pairs[2,i+1])
closed.upper[i] <- FALSE
levs <- ifelse(pairs[1,]==pairs[2,],
pairs[1,],
paste(ifelse(closed.lower,"[","("),
pairs[1,],
",",
pairs[2,],
ifelse(closed.upper,"]",")"),
sep='')
)
levels(retval) <- levs
} else
retval <- cut( x, breaks, include.lowest=TRUE, labels=labels, ... )
return(retval)
}
# Phi-Koeff
Phi <- function (x, y = NULL, ...) {
if(!is.null(y)) x <- table(x, y, ...)
# when computing phi, note that Yates' correction to chi-square must not be used.
as.numeric( sqrt( suppressWarnings(chisq.test(x, correct=FALSE)$statistic) / sum(x) ) )
# should we implement: ??
# following http://technology.msb.edu/old/training/statistics/sas/books/stat/chap26/sect19.htm#idxfrq0371
# (Liebetrau 1983)
# this makes phi -1 < phi < 1 for 2x2 tables (same for CramerV)
# (prod(diag(x)) - prod(diag(Rev(x, 2)))) / sqrt(prod(colSums(x), rowSums(x)))
}
# Kontingenz-Koeffizient
ContCoef <- function(x, y = NULL, correct = FALSE, ...) {
if(!is.null(y)) x <- table(x, y, ...)
chisq <- suppressWarnings(chisq.test(x, correct = FALSE)$statistic)
cc <- as.numeric( sqrt( chisq / ( chisq + sum(x)) ))
if(correct) { # Sakoda's adjusted Pearson's C
k <- min(nrow(x),ncol(x))
cc <- cc/sqrt((k-1)/k)
}
return(cc)
}
.ncchisqCI <- function(chisq, df, conf) {
alpha <- 1 - conf
probs <- c(alpha/2, 1 - alpha/2)
ncp <- suppressWarnings(optim(par = 1.1 * rep(chisq, 2), fn = function(x) {
p <- pchisq(q = chisq, df = df, ncp = x)
abs(max(p) - probs[2]) + abs(min(p) - probs[1])
}, control = list(abstol = 0.000000001)))
chisq_ncp <- unname(sort(ncp$par))
return(chisq_ncp)
}
CramerV <- function(x, y = NULL, conf.level = NA,
method = c("ncchisq", "ncchisqadj", "fisher", "fisheradj"),
correct=FALSE, ...){
if(!is.null(y)) x <- table(x, y, ...)
# CIs and power for the noncentral chi-sq noncentrality parameter (ncp):
# The function lochi computes the lower CI limit and hichi computes the upper limit.
# Both functions take 3 arguments: observed chi-sq, df, and confidence level.
# author: Michael Smithson
# http://psychology3.anu.edu.au/people/smithson/details/CIstuff/Splusnonc.pdf
# see also: MBESS::conf.limits.nc.chisq, Ken Kelly
lochi <- function(chival, df, conf) {
# we don't have lochi for chival==0
# optimize would report minval = maxval
if(chival==0) return(NA)
ulim <- 1 - (1-conf)/2
# This first part finds a lower value from which to start.
lc <- c(.001, chival/2, chival)
while(pchisq(chival, df, lc[1]) < ulim) {
if(pchisq(chival, df) < ulim)
return(c(0, pchisq(chival, df)))
lc <- c(lc[1]/4, lc[1], lc[3])
}
# This next part finds the lower limit for the ncp.
diff <- 1
while(diff > .00001) {
if(pchisq(chival, df, lc[2]) < ulim)
lc <- c(lc[1],(lc[1]+lc[2])/2, lc[2])
else lc <- c(lc[2], (lc[2]+lc[3])/2, lc[3])
diff <- abs(pchisq(chival, df, lc[2]) - ulim)
ucdf <- pchisq(chival, df, lc[2])
}
c(lc[2], ucdf)
}
hichi <- function(chival,df,conf) {
# we don't have hichi for chival==0
if(chival==0) return(NA)
# This first part finds upper and lower startinig values.
uc <- c(chival, 2*chival, 3*chival)
llim <- (1-conf)/2
while(pchisq(chival, df, uc[1]) < llim) {
uc <- c(uc[1]/4,uc[1],uc[3])
}
while(pchisq(chival,df,uc[3])>llim) {
uc <- c(uc[1],uc[3],uc[3]+chival)
}
# This next part finds the upper limit for the ncp.
diff <- 1
while(diff > .00001) {
if(pchisq(chival, df, uc[2]) < llim)
uc <- c(uc[1], (uc[1] + uc[2]) / 2, uc[2])
else uc <- c(uc[2], (uc[2] + uc[3]) / 2, uc[3])
diff <- abs(pchisq(chival, df, uc[2]) - llim)
lcdf <- pchisq(chival, df, uc[2])
}
c(uc[2], lcdf)
}
# Remark Andri 18.12.2014:
# lochi and hichi could be replaced with:
# optimize(function(x) abs(pchisq(chival, DF, x) - (1-(1-conf.level)/2)), c(0, chival))
# optimize(function(x) abs(pchisq(chival, DF, x) - (1-conf.level)/2), c(0, 3*chival))
#
# ... which would run ~ 25% faster and be more exact
# what can go wrong while calculating chisq.stat?
# we don't need test results here, so we suppress those warnings
chisq.hat <- suppressWarnings(chisq.test(x, correct = FALSE)$statistic)
df <- prod(dim(x)-1)
n <- sum(x)
if(correct){
# Bergsma, W, A bias-correction for Cramer's V and Tschuprow's T
# September 2013Journal of the Korean Statistical Society 42(3)
# DOI: 10.1016/j.jkss.2012.10.002
phi.hat <- chisq.hat / n
v <- as.numeric(sqrt(max(0, phi.hat - df/(n-1)) /
(min(sapply(dim(x), function(i) i - 1 / (n-1) * (i-1)^2) - 1))))
} else {
v <- as.numeric(sqrt(chisq.hat/(n * (min(dim(x)) - 1))))
}
if (is.na(conf.level)) {
res <- v
} else {
switch(match.arg(method),
ncchisq={
ci <- c(lochi(chisq.hat, df, conf.level)[1], hichi(chisq.hat, df, conf.level)[1])
# corrected by michael smithson, 17.5.2014:
# ci <- unname(sqrt( (ci + df) / (sum(x) * (min(dim(x)) - 1)) ))
ci <- unname(sqrt( (ci) / (n * (min(dim(x)) - 1)) ))
},
ncchisqadj={
ci <- c(lochi(chisq.hat, df, conf.level)[1] + df, hichi(chisq.hat, df, conf.level)[1] + df)
# corrected by michael smithson, 17.5.2014:
# ci <- unname(sqrt( (ci + df) / (sum(x) * (min(dim(x)) - 1)) ))
ci <- unname(sqrt( (ci) / (n * (min(dim(x)) - 1)) ))
},
fisher={
se <- 1 / sqrt(n-3) * qnorm(1-(1-conf.level)/2)
ci <- tanh(atanh(v) + c(-se, se))
},
fisheradj={
se <- 1 / sqrt(n-3) * qnorm(1-(1-conf.level)/2)
# bias correction
adj <- 0.5 * v / (n-1)
ci <- tanh(atanh(v) + c(-se, se) + adj)
})
# "Cram\u00E9r's association coefficient"
res <- c("Cramer V"=v, lwr.ci=max(0, ci[1]), upr.ci=min(1, ci[2]))
}
return(res)
}
YuleQ <- function(x, y = NULL, ...){
if(!is.null(y)) x <- table(x, y, ...)
# allow only 2x2 tables
stopifnot(prod(dim(x)) == 4 || length(x) == 4)
a <- x[1,1]
b <- x[1,2]
c <- x[2,1]
d <- x[2,2]
return((a*d- b*c)/(a*d + b*c)) #Yule Q
}
YuleY <- function(x, y = NULL, ...){
if(!is.null(y)) x <- table(x, y, ...)
# allow only 2x2 tables
stopifnot(prod(dim(x)) == 4 || length(x) == 4)
a <- x[1,1]
b <- x[1,2]
c <- x[2,1]
d <- x[2,2]
return((sqrt(a*d) - sqrt(b*c))/(sqrt(a*d)+sqrt(b*c))) # YuleY
}
TschuprowT <- function(x, y = NULL, correct = FALSE, ...){
if(!is.null(y)) x <- table(x, y, ...)
# Tschuprow, A. A. (1939) Principles of the Mathematical Theory of Correlation; translated by M. Kantorowitsch. W. Hodge & Co.
# http://en.wikipedia.org/wiki/Tschuprow's_T
# Hartung S. 451
# what can go wrong while calculating chisq.stat?
# we don't need test results here, so we suppress those warnings
chisq.hat <- suppressWarnings(chisq.test(x, correct = FALSE)$statistic)
n <- sum(x)
df <- prod(dim(x)-1)
if(correct) {
# Bergsma, W, A bias-correction for Cramer's V and Tschuprow's T
# September 2013Journal of the Korean Statistical Society 42(3)
# DOI: 10.1016/j.jkss.2012.10.002
# see also CramerV
phi.hat <- chisq.hat / n
as.numeric(sqrt(max(0, phi.hat - df/(n-1)) /
(sqrt(prod(sapply(dim(x), function(i) i - 1 / (n-1) * (i-1)^2) - 1)))))
} else {
as.numeric( sqrt(chisq.hat/(n * sqrt(df))))
}
}
# based on Kappa from library(vcd)
# author: David Meyer
# see also: kappa in library(psych)
CohenKappa <- function (x, y = NULL,
weights = c("Unweighted", "Equal-Spacing", "Fleiss-Cohen"),
conf.level = NA, ...) {
if (is.character(weights))
weights <- match.arg(weights)
if (!is.null(y)) {
# we can not ensure a reliable weighted kappa for 2 factors with different levels
# so refuse trying it... (unweighted is no problem)
if (!identical(weights, "Unweighted"))
stop("Vector interface for weighted Kappa is not supported. Provide confusion matrix.")
# x and y must have the same levels in order to build a symmetric confusion matrix
x <- factor(x)
y <- factor(y)
lvl <- unique(c(levels(x), levels(y)))
x <- factor(x, levels = lvl)
y <- factor(y, levels = lvl)
x <- table(x, y, ...)
} else {
d <- dim(x)
if (d[1L] != d[2L])
stop("x must be square matrix if provided as confusion matrix")
}
d <- diag(x)
n <- sum(x)
nc <- ncol(x)
colFreqs <- colSums(x)/n
rowFreqs <- rowSums(x)/n
kappa <- function(po, pc) {
(po - pc)/(1 - pc)
}
std <- function(p, pc, k, W = diag(1, ncol = nc, nrow = nc)) {
sqrt((sum(p * sweep(sweep(W, 1, W %*% colSums(p) * (1 - k)),
2, W %*% rowSums(p) * (1 - k))^2) -
(k - pc * (1 - k))^2) / crossprod(1 - pc)/n)
}
if(identical(weights, "Unweighted")) {
po <- sum(d)/n
pc <- as.vector(crossprod(colFreqs, rowFreqs))
k <- kappa(po, pc)
s <- as.vector(std(x/n, pc, k))
} else {
# some kind of weights defined
W <- if (is.matrix(weights))
weights
else if (weights == "Equal-Spacing")
1 - abs(outer(1:nc, 1:nc, "-"))/(nc - 1)
else # weights == "Fleiss-Cohen"
1 - (abs(outer(1:nc, 1:nc, "-"))/(nc - 1))^2
po <- sum(W * x)/n
pc <- sum(W * colFreqs %o% rowFreqs)
k <- kappa(po, pc)
s <- as.vector(std(x/n, pc, k, W))
}
if (is.na(conf.level)) {
res <- k
} else {
ci <- k + c(1, -1) * qnorm((1 - conf.level)/2) * s
res <- c(kappa = k, lwr.ci = ci[1], upr.ci = ci[2])
}
return(res)
}
# KappaTest <- function(x, weights = c("Equal-Spacing", "Fleiss-Cohen"), conf.level = NA) {
# to do, idea is to implement a Kappa test for H0: kappa = 0 as in
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf, pp. 1687
# print( "still to do...." )
# }
KappaM <- function(x, method = c("Fleiss", "Conger", "Light"), conf.level = NA) {
# ratings <- as.matrix(na.omit(x))
#
# ns <- nrow(ratings)
# nr <- ncol(ratings)
#
# # Build table
# lev <- levels(as.factor(ratings))
#
# for (i in 1:ns) {
# frow <- factor(ratings[i,],levels=lev)
#
# if (i==1)
# ttab <- as.numeric(table(frow))
# else
# ttab <- rbind(ttab, as.numeric(table(frow)))
# }
#
# ttab <- matrix(ttab, nrow=ns)
# we have not factors for matrices, but we need factors below...
if(is.matrix(x))
x <- as.data.frame(x)
x <- na.omit(x)
ns <- nrow(x)
nr <- ncol(x)
# find all levels in the data (data.frame)
lev <- levels(factor(unlist(x)))
# apply the same levels to all variables and switch to integer matrix
xx <- do.call(cbind, lapply(x, factor, levels=lev))
ttab <- apply(Abind(lapply(as.data.frame(xx), function(z) Dummy(z, method="full", levels=seq_along(lev))), along = 3),
c(1,2), sum)
agreeP <- sum((rowSums(ttab^2)-nr)/(nr*(nr-1))/ns)
switch( match.arg(method, choices= c("Fleiss", "Conger", "Light"))
, "Fleiss" = {
chanceP <- sum(colSums(ttab)^2)/(ns*nr)^2
value <- (agreeP - chanceP)/(1 - chanceP)
pj <- colSums(ttab)/(ns*nr)
qj <- 1-pj
varkappa <- (2/(sum(pj*qj)^2*(ns*nr*(nr-1))))*(sum(pj*qj)^2-sum(pj*qj*(qj-pj)))
SEkappa <- sqrt(varkappa)
ci <- value + c(1,-1) * qnorm((1-conf.level)/2) * SEkappa
}
, "Conger" = {
# for (i in 1:nr) {
# rcol <- factor(x[,i],levels=lev)
#
# if (i==1)
# rtab <- as.numeric(table(rcol))
# else
# rtab <- rbind(rtab, as.numeric(table(rcol)))
# }
rtab <- apply(Abind(lapply(as.data.frame(t(xx)), function(z) Dummy(z, method="full", levels=seq_along(lev))), along = 3),
c(1,2), sum)
rtab <- rtab/ns
chanceP <- sum(colSums(ttab)^2)/(ns*nr)^2 - sum(apply(rtab, 2, var)*(nr-1)/nr)/(nr-1)
value <- (agreeP - chanceP)/(1 - chanceP)
# we have not SE for exact Kappa value
ci <- c(NA, NA)
}
, "Light" = {
m <- DescTools::PairApply(x, DescTools::CohenKappa, symmetric=TRUE)
value <- mean(m[upper.tri(m)])
levlen <- length(lev)
for (nri in 1:(nr - 1)) for (nrj in (nri + 1):nr) {
for (i in 1:levlen) for (j in 1:levlen) {
if (i != j) {
r1i <- sum(x[, nri] == lev[i])
r2j <- sum(x[, nrj] == lev[j])
if (!exists("dis"))
dis <- r1i * r2j
else dis <- c(dis, r1i * r2j)
}
}
if (!exists("disrater"))
disrater <- sum(dis)
else disrater <- c(disrater, sum(dis))
rm(dis)
}
B <- length(disrater) * prod(disrater)
chanceP <- 1 - B/ns^(choose(nr, 2) * 2)
varkappa <- chanceP/(ns * (1 - chanceP))
SEkappa <- sqrt(varkappa)
ci <- value + c(1,-1) * qnorm((1-conf.level)/2) * SEkappa
}
)
if (is.na(conf.level)) {
res <- value
} else {
res <- c("kappa"=value, lwr.ci=ci[1], upr.ci=ci[2])
}
return(res)
}
Agree <- function(x, tolerance = 0, na.rm = FALSE) {
x <- as.matrix(x)
if(na.rm) x <- na.omit(x)
if(anyNA(x)) return(NA)
ns <- nrow(x)
nr <- ncol(x)
if (is.numeric(x)) {
rangetab <- apply(x, 1, max) - apply(x, 1, min)
coeff <- sum(rangetab <= tolerance)/ns
} else {
rangetab <- as.numeric(sapply(apply(x, 1, table), length))
coeff <- (sum(rangetab == 1)/ns)
tolerance <- 0
}
rval <- coeff
attr(rval, c("subjects")) <- ns
attr(rval, c("raters")) <- nr
return(rval)
}
# ICC(ratings)
# ICC_(ratings, type="ICC3", conf.level=0.95)
# ICC_(ratings, type="all", conf.level=0.95)
ICC <- function(x, type=c("all", "ICC1","ICC2","ICC3","ICC1k","ICC2k","ICC3k"), conf.level = NA, na.rm = FALSE) {
ratings <- as.matrix(x)
if(na.rm) ratings <- na.omit(ratings)
ns <- nrow(ratings)
nr <- ncol(ratings)
x.s <- stack(data.frame(ratings))
x.df <- data.frame(x.s, subs = rep(paste("S", 1:ns, sep = ""), nr))
s.aov <- summary(aov(values ~ subs + ind, data=x.df))
stats <- matrix(unlist(s.aov), ncol=3, byrow=TRUE)
MSB <- stats[3,1]
MSW <- (stats[2,2] + stats[2,3])/(stats[1,2] + stats[1,3])
MSJ <- stats[3,2]
MSE <- stats[3,3]
ICC1 <- (MSB- MSW)/(MSB+ (nr-1)*MSW)
ICC2 <- (MSB- MSE)/(MSB + (nr-1)*MSE + nr*(MSJ-MSE)/ns)
ICC3 <- (MSB - MSE)/(MSB+ (nr-1)*MSE)
ICC12 <- (MSB-MSW)/(MSB)
ICC22 <- (MSB- MSE)/(MSB +(MSJ-MSE)/ns)
ICC32 <- (MSB-MSE)/MSB
#find the various F values from Shrout and Fleiss
F11 <- MSB/MSW
df11n <- ns-1
df11d <- ns*(nr-1)
p11 <- 1 - pf(F11, df11n, df11d)
F21 <- MSB/MSE
df21n <- ns-1
df21d <- (ns-1)*(nr-1)
p21 <- 1-pf(F21, df21n, df21d)
F31 <- F21
# results <- t(results)
results <- data.frame(matrix(NA, ncol=8, nrow=6))
colnames(results ) <- c("type", "est","F-val","df1","df2","p-val","lwr.ci","upr.ci")
rownames(results) <- c("Single_raters_absolute","Single_random_raters","Single_fixed_raters", "Average_raters_absolute","Average_random_raters","Average_fixed_raters")
results[,1] = c("ICC1","ICC2","ICC3","ICC1k","ICC2k","ICC3k")
results[,2] = c(ICC1, ICC2, ICC3, ICC12, ICC22, ICC32)
results[1,3] <- results[4,3] <- F11
results[2,3] <- F21
results[3,3] <- results[6,3] <- results[5,3] <- F31 <- F21
results[5,3] <- F21
results[1,4] <- results[4,4] <- df11n
results[1,5] <- results[4,5] <- df11d
results[1,6] <- results[4,6] <- p11
results[2,4] <- results[3,4] <- results[5,4] <- results[6,4] <- df21n
results[2,5] <- results[3,5] <- results[5,5] <- results[6,5] <- df21d
results[2,6] <- results[5,6] <- results[3,6] <- results[6,6] <- p21
#now find confidence limits
#first, the easy ones
alpha <- 1 - conf.level
F1L <- F11 / qf(1-alpha/2, df11n, df11d)
F1U <- F11 * qf(1-alpha/2, df11d, df11n)
L1 <- (F1L-1) / (F1L + (nr - 1))
U1 <- (F1U -1) / (F1U + nr - 1)
F3L <- F31 / qf(1-alpha/2, df21n, df21d)
F3U <- F31 * qf(1-alpha/2, df21d, df21n)
results[1,7] <- L1
results[1,8] <- U1
results[3,7] <- (F3L-1)/(F3L+nr-1)
results[3,8] <- (F3U-1)/(F3U+nr-1)
results[4,7] <- 1- 1/F1L
results[4,8] <- 1- 1/F1U
results[6,7] <- 1- 1/F3L
results[6,8] <- 1 - 1/F3U
#the hard one is case 2
Fj <- MSJ/MSE
vn <- (nr-1)*(ns-1)* ( (nr*ICC2*Fj+ns*(1+(nr-1)*ICC2) - nr*ICC2))^2
vd <- (ns-1)*nr^2 * ICC2^2 * Fj^2 + (ns *(1 + (nr-1)*ICC2) - nr*ICC2)^2
v <- vn/vd
F3U <- qf(1-alpha/2,ns-1,v)
F3L <- qf(1-alpha/2,v,ns-1)
L3 <- ns *(MSB- F3U*MSE)/(F3U*(nr * MSJ + (nr*ns-nr-ns) * MSE)+ ns*MSB)
results[2, 7] <- L3
U3 <- ns *(F3L * MSB - MSE)/(nr * MSJ + (nr * ns - nr - ns)*MSE + ns * F3L * MSB)
results[2, 8] <- U3
L3k <- L3 * nr/(1+ L3*(nr-1))
U3k <- U3 * nr/(1+ U3*(nr-1))
results[5, 7] <- L3k
results[5, 8] <- U3k
#clean up the output
results[,2:8] <- results[,2:8]
type <- match.arg(type, c("all", "ICC1","ICC2","ICC3","ICC1k","ICC2k","ICC3k"))
switch(type
, all={res <- list(results=results, summary=s.aov, stats=stats, MSW=MSW, ns=ns, nr=nr)
class(res) <- "ICC"
}
, ICC1={idx <- 1}
, ICC2={idx <- 2}
, ICC3={idx <- 3}
, ICC1k={idx <- 4}
, ICC2k={idx <- 5}
, ICC3k={idx <- 6}
)
if(type!="all"){
if(is.na(conf.level)){
res <- results[idx, c(2)][,]
} else {
res <- unlist(results[idx, c(2, 7:8)])
names(res) <- c(type,"lwr.ci","upr.ci")
}
}
return(res)
}
print.ICC <- function(x, digits = 3, ...){
cat("\nIntraclass correlation coefficients \n")
print(x$results, digits=digits)
cat("\n Number of subjects =", x$ns, " Number of raters =", x$nr, "\n")
}
# implementing Omega might be wise
# boostrap CI could be integrated in function instead on examples of help
CronbachAlpha <- function(x, conf.level = NA, cond = FALSE, na.rm = FALSE){
i.CronbachAlpha <- function(x, conf.level = NA){
nc <- ncol(x)
colVars <- apply(x, 2, var)
total <- var(rowSums(x))
res <- (total - sum(colVars)) / total * (nc/(nc-1))
if (!is.na(conf.level)) {
N <- length(x)
ci <- 1 - (1-res) * qf( c(1-(1-conf.level)/2, (1-conf.level)/2), N-1, (nc-1)*(N-1))
res <- c("Cronbach Alpha"=res, lwr.ci=ci[1], upr.ci=ci[2])
}
return(res)
}
x <- as.matrix(x)
if(na.rm) x <- na.omit(x)
res <- i.CronbachAlpha(x = x, conf.level = conf.level)
if(cond) {
condCronbachAlpha <- list()
n <- ncol(x)
if(n > 2) { # can't calculate conditional with only 2 items
for(i in 1:n){
condCronbachAlpha[[i]] <- i.CronbachAlpha(x[,-i], conf.level = conf.level)
}
condCronbachAlpha <- data.frame(Item = 1:n, do.call("rbind", condCronbachAlpha))
colnames(condCronbachAlpha)[2] <- "Cronbach Alpha"
}
res <- list(unconditional=res, condCronbachAlpha = condCronbachAlpha)
}
return(res)
}
KendallW <- function(x, correct=FALSE, test=FALSE, na.rm = FALSE) {
# see also old Jim Lemon function kendall.w
# other solution: library(irr); kendall(ratings, correct = TRUE)
# http://www.real-statistics.com/reliability/kendalls-w/
dname <- deparse(substitute(x))
ratings <- as.matrix(x)
if(na.rm) ratings <- na.omit(ratings)
ns <- nrow(ratings)
nr <- ncol(ratings)
#Without correction for ties
if (!correct) {
#Test for ties
TIES = FALSE
testties <- apply(ratings, 2, unique)
if (!is.matrix(testties)) TIES=TRUE
else { if (length(testties) < length(ratings)) TIES=TRUE }
ratings.rank <- apply(ratings,2,rank)
coeff.name <- "W"
coeff <- (12*var(apply(ratings.rank,1,sum))*(ns-1))/(nr^2*(ns^3-ns))
}
else { #With correction for ties
ratings <- as.matrix(na.omit(ratings))
ns <- nrow(ratings)
nr <- ncol(ratings)
ratings.rank <- apply(ratings,2,rank)
Tj <- 0
for (i in 1:nr) {
rater <- table(ratings.rank[,i])
ties <- rater[rater>1]
l <- as.numeric(ties)
Tj <- Tj + sum(l^3-l)
}
coeff.name <- "Wt"
coeff <- (12*var(apply(ratings.rank,1,sum))*(ns-1))/(nr^2*(ns^3-ns)-nr*Tj)
}
if(test){
#test statistics
Xvalue <- nr*(ns-1)*coeff
df1 <- ns-1
names(df1) <- "df"
p.value <- pchisq(Xvalue, df1, lower.tail = FALSE)
method <- paste("Kendall's coefficient of concordance", coeff.name)
alternative <- paste(coeff.name, "is greater 0")
names(ns) <- "subjects"
names(nr) <- "raters"
names(Xvalue) <- "Kendall chi-squared"
names(coeff) <- coeff.name
rval <- list(#subjects = ns, raters = nr,
estimate = coeff, parameter=c(df1, ns, nr),
statistic = Xvalue, p.value = p.value,
alternative = alternative, method = method, data.name = dname)
class(rval) <- "htest"
} else {
rval <- coeff
}
if (!correct && TIES) warning("Coefficient may be incorrect due to ties")
return(rval)
}
CCC <- function(x, y, ci = "z-transform", conf.level = 0.95, na.rm = FALSE){
dat <- data.frame(x, y)
if(na.rm) dat <- na.omit(dat)
# id <- complete.cases(dat)
# nmissing <- sum(!complete.cases(dat))
# dat <- dat[id,]
N. <- 1 - ((1 - conf.level) / 2)
zv <- qnorm(N., mean = 0, sd = 1)
lower <- "lwr.ci"
upper <- "upr.ci"
k <- length(dat$y)
yb <- mean(dat$y)
sy2 <- var(dat$y) * (k - 1) / k
sd1 <- sd(dat$y)
xb <- mean(dat$x)
sx2 <- var(dat$x) * (k - 1) / k
sd2 <- sd(dat$x)
r <- cor(dat$x, dat$y)
sl <- r * sd1 / sd2
sxy <- r * sqrt(sx2 * sy2)
p <- 2 * sxy / (sx2 + sy2 + (yb - xb)^2)
delta <- (dat$x - dat$y)
rmean <- apply(dat, MARGIN = 1, FUN = mean)
blalt <- data.frame(mean = rmean, delta)
# Scale shift:
v <- sd1 / sd2
# Location shift relative to the scale:
u <- (yb - xb) / ((sx2 * sy2)^0.25)
# Variable C.b is a bias correction factor that measures how far the best-fit line deviates from a line at 45 degrees (a measure of accuracy). No deviation from the 45 degree line occurs when C.b = 1. See Lin (1989 page 258).
# C.b <- (((v + 1) / (v + u^2)) / 2)^-1
# The following taken from the Stata code for function "concord" (changed 290408):
C.b <- p / r
# Variance, test, and CI for asymptotic normal approximation (per Lin (March 2000) Biometrics 56:325-5):
sep = sqrt(((1 - ((r)^2)) * (p)^2 * (1 - ((p)^2)) / (r)^2 + (2 * (p)^3 * (1 - p) * (u)^2 / r) - 0.5 * (p)^4 * (u)^4 / (r)^2 ) / (k - 2))
ll = p - zv * sep
ul = p + zv * sep
# Statistic, variance, test, and CI for inverse hyperbolic tangent transform to improve asymptotic normality:
t <- log((1 + p) / (1 - p)) / 2
set = sep / (1 - ((p)^2))
llt = t - zv * set
ult = t + zv * set
llt = (exp(2 * llt) - 1) / (exp(2 * llt) + 1)
ult = (exp(2 * ult) - 1) / (exp(2 * ult) + 1)
if(ci == "asymptotic"){
rho.c <- as.data.frame(cbind(p, ll, ul))
names(rho.c) <- c("est", lower, upper)
rval <- list(rho.c = rho.c, s.shift = v, l.shift = u, C.b = C.b, blalt = blalt ) # , nmissing = nmissing)
}
else if(ci == "z-transform"){
rho.c <- as.data.frame(cbind(p, llt, ult))
names(rho.c) <- c("est", lower, upper)
rval <- list(rho.c = rho.c, s.shift = v, l.shift = u, C.b = C.b, blalt = blalt) #, nmissing = nmissing)
}
return(rval)
}
KrippAlpha <- function (x, method = c("nominal", "ordinal", "interval", "ratio")) {
method <- match.arg(method)
coincidence.matrix <- function(x) {
levx <- (levels(as.factor(x)))
nval <- length(levx)
cm <- matrix(rep(0, nval * nval), nrow = nval)
dimx <- dim(x)
vn <- function(datavec) sum(!is.na(datavec))
if(any(is.na(x))) mc <- apply(x, 2, vn) - 1
else mc <- rep(1, dimx[2])
for(col in 1:dimx[2]) {
for(i1 in 1:(dimx[1] - 1)) {
for(i2 in (i1 + 1):dimx[1]) {
if(!is.na(x[i1, col]) && !is.na(x[i2, col])) {
index1 <- which(levx == x[i1, col])
index2 <- which(levx == x[i2, col])
cm[index1, index2] <- cm[index1,index2] + (1 + (index1 == index2))/mc[col]
if(index1 != index2) cm[index2,index1] <- cm[index1,index2]
}
}
}
}
nmv <- sum(apply(cm, 2, sum))
return(structure(list(method="Krippendorff's alpha",
subjects=dimx[2], raters=dimx[1],irr.name="alpha",
value=NA,stat.name="nil",statistic=NULL,
cm=cm,data.values=levx,nmatchval=nmv,data.level=NA),
class = "irrlist"))
}
ka <- coincidence.matrix(x)
ka$data.level <- method
dimcm <- dim(ka$cm)
utcm <- as.vector(ka$cm[upper.tri(ka$cm)])
diagcm <- diag(ka$cm)
occ <- sum(diagcm)
nc <- apply(ka$cm,1,sum)
ncnc <- sum(nc * (nc - 1))
dv <- as.numeric(ka$data.values)
diff2 <- rep(0,length(utcm))
ncnk <- rep(0,length(utcm))
ck <- 1
if (dimcm[2]<2)
ka$value <- 1.0
else {
for(k in 2:dimcm[2]) {
for(c in 1:(k-1)) {
ncnk[ck] <- nc[c] * nc[k]
if(match(method[1],"nominal",0)) diff2[ck] <- 1
if(match(method[1],"ordinal",0)) {
diff2[ck] <- nc[c]/2
if(k > (c+1))
for(g in (c+1):(k-1)) diff2[ck] <- diff2[ck] + nc[g]
diff2[ck] <- diff2[ck]+nc[k]/2
diff2[ck] <- diff2[ck]^2
}
if(match(method[1],"interval",0)) diff2[ck] <- (dv[c]-dv[k])^2
if(match(method[1],"ratio",0)) diff2[ck] <- (dv[c]-dv[k])^2/(dv[c]+dv[k])^2
ck <- ck+1
}
}
ka$value <- 1-(ka$nmatchval-1)*sum(utcm*diff2)/sum(ncnk*diff2)
}
return(ka)
}
Entropy <- function(x, y = NULL, base = 2, ...) {
# x is either a table or a vector if y is defined
if(!is.null(y)) { x <- table(x, y, ...) }
x <- as.matrix(x)
ptab <- x / sum(x)
H <- - sum( ifelse(ptab > 0, ptab * log(ptab, base=base), 0) )
return(H)
}
MutInf <- function(x, y = NULL, base = 2, ...){
# ### Ref.: http://en.wikipedia.org/wiki/Cluster_labeling
if(!is.null(y)) { x <- table(x, y, ...) }
x <- as.matrix(x)
return(
Entropy(rowSums(x), base=base) +
Entropy(colSums(x), base=base) - Entropy(x, base=base)
)
}
# Rao's Diversity from ade4 divc
# author:
DivCoef <- function(df, dis = NULL, scale = FALSE){
# checking of user's data and initialization.
if (!inherits(df, "data.frame")) stop("Non convenient df")
if (any(df < 0)) stop("Negative value in df")
if (!is.null(dis)) {
if (!inherits(dis, "dist")) stop("Object of class 'dist' expected for distance")
if (!IsEuclid(dis)) warning("Euclidean property is expected for distance")
dis <- as.matrix(dis)
if (nrow(df)!= nrow(dis)) stop("Non convenient df")
dis <- as.dist(dis)
}
if (is.null(dis)) dis <- as.dist((matrix(1, nrow(df), nrow(df))
- diag(rep(1, nrow(df)))) * sqrt(2))
div <- as.data.frame(rep(0, ncol(df)))
names(div) <- "diversity"
rownames(div) <- names(df)
for (i in 1:ncol(df)) {
if(sum(df[, i]) < 1e-16) div[i, ] <- 0
else div[i, ] <- (t(df[, i]) %*% (as.matrix(dis)^2) %*% df[, i]) / 2 / (sum(df[, i])^2)
}
if(scale == TRUE){
divmax <- DivCoefMax(dis)$value
div <- div / divmax
}
return(div)
}
IsEuclid <- function (distmat, plot = FALSE, print = FALSE, tol = 1e-07) {
"bicenter.wt" <- function (X, row.wt = rep(1, nrow(X)), col.wt = rep(1, ncol(X))) {
X <- as.matrix(X)
n <- nrow(X)
p <- ncol(X)
if (length(row.wt) != n)
stop("length of row.wt must equal the number of rows in x")
if (any(row.wt < 0) || (sr <- sum(row.wt)) == 0)
stop("weights must be non-negative and not all zero")
row.wt <- row.wt/sr
if (length(col.wt) != p)
stop("length of col.wt must equal the number of columns in x")
if (any(col.wt < 0) || (st <- sum(col.wt)) == 0)
stop("weights must be non-negative and not all zero")
col.wt <- col.wt/st
row.mean <- apply(row.wt * X, 2, sum)
col.mean <- apply(col.wt * t(X), 2, sum)
col.mean <- col.mean - sum(row.mean * col.wt)
X <- sweep(X, 2, row.mean)
X <- t(sweep(t(X), 2, col.mean))
return(X)
}
if (!inherits(distmat, "dist"))
stop("Object of class 'dist' expected")
if(any(distmat<tol))
warning("Zero distance(s)")
distmat <- as.matrix(distmat)
n <- ncol(distmat)
delta <- -0.5 * bicenter.wt(distmat * distmat)
lambda <- eigen(delta, symmetric = TRUE, only.values = TRUE)$values
w0 <- lambda[n]/lambda[1]
if (plot)
barplot(lambda)
if (print)
print(lambda)
return((w0 > -tol))
}
DivCoefMax <- function(dis, epsilon = 1e-008, comment = FALSE) {
# inititalisation
if(!inherits(dis, "dist")) stop("Distance matrix expected")
if(epsilon <= 0) stop("epsilon must be positive")
if(!IsEuclid(dis)) stop("Euclidean property is expected for dis")
D2 <- as.matrix(dis)^2 / 2
n <- dim(D2)[1]
result <- data.frame(matrix(0, n, 4))
names(result) <- c("sim", "pro", "met", "num")
relax <- 0 # determination de la valeur initiale x0
x0 <- apply(D2, 1, sum) / sum(D2)
result$sim <- x0 # ponderation simple
objective0 <- t(x0) %*% D2 %*% x0
if (comment == TRUE)
print("evolution of the objective function:")
xk <- x0 # grande boucle de test des conditions de Kuhn-Tucker
repeat {
# boucle de test de nullite du gradient projete
repeat {
maxi.temp <- t(xk) %*% D2 %*% xk
if(comment == TRUE) print(as.character(maxi.temp))
#calcul du gradient
deltaf <- (-2 * D2 %*% xk)
# determination des contraintes saturees
sature <- (abs(xk) < epsilon)
if(relax != 0) {
sature[relax] <- FALSE
relax <- 0
}
# construction du gradient projete
yk <- ( - deltaf)
yk[sature] <- 0
yk[!(sature)] <- yk[!(sature)] - mean(yk[!(
sature)])
# test de la nullite du gradient projete
if (max(abs(yk)) < epsilon) {
break
}
# determination du pas le plus grand compatible avec les contraintes
alpha.max <- as.vector(min( - xk[yk < 0] / yk[yk <
0]))
alpha.opt <- as.vector( - (t(xk) %*% D2 %*% yk) / (
t(yk) %*% D2 %*% yk))
if ((alpha.opt > alpha.max) | (alpha.opt < 0)) {
alpha <- alpha.max
}
else {
alpha <- alpha.opt
}
if (abs(maxi.temp - t(xk + alpha * yk) %*% D2 %*% (
xk + alpha * yk)) < epsilon) {
break
}
xk <- xk + alpha * yk
}
# verification des conditions de KT
if (prod(!sature) == 1) {
if (comment == TRUE)
print("KT")
break
}
vectD2 <- D2 %*% xk
u <- 2 * (mean(vectD2[!sature]) - vectD2[sature])
if (min(u) >= 0) {
if (comment == TRUE)
print("KT")
break
}
else {
if (comment == TRUE)
print("relaxation")
satu <- (1:n)[sature]
relax <- satu[u == min(u)]
relax <-relax[1]
}
}
if (comment == TRUE)
print(list(objective.init = objective0, objective.final
= maxi.temp))
result$num <- as.vector(xk, mode = "numeric")
result$num[result$num < epsilon] <- 0
# ponderation numerique
xk <- x0 / sqrt(sum(x0 * x0))
repeat {
yk <- D2 %*% xk
yk <- yk / sqrt(sum(yk * yk))
if (max(xk - yk) > epsilon) {
xk <- yk
}
else break
}
x0 <- as.vector(yk, mode = "numeric")
result$pro <- x0 / sum(x0) # ponderation propre
result$met <- x0 * x0 # ponderation propre
restot <- list()
restot$value <- DivCoef(cbind.data.frame(result$num), dis)[,1]
restot$vectors <- result
return(restot)
}
# http://sph.bu.edu/otlt/MPH-Modules/BS/BS704_Confidence_Intervals/BS704_Confidence_Intervals8.html
# sas: http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_surveyfreq_a0000000227.htm
# discussion: http://tolstoy.newcastle.edu.au/R/e2/help/06/11/4982.html
#
# RelRisk0 <- function(x, conf.level = NA) {
#
# rr <- (x[1,1]/sum(x[,1])) / (x[1,2]/sum(x[,2]))
# if (is.na(conf.level)) {
# res <- rr
# } else {
# sigma <- x[1,2]/(x[1,1]*sum(x[1,])) + x[2,2]/(x[2,1]*sum(x[2,]))
# qn <- qnorm(1-(1-conf.level)/2)
# ci <- exp(log(rr) + c(-1,1)*qn*sqrt(sigma))
# res <- c("rel. risk"=rr, lwr.ci=ci[1], upr.ci=ci[2])
# }
# return(res)
# }
RelRisk <- function(x, y = NULL, conf.level = NA, method = c("score", "wald", "use.or"), delta = 0.5, ...) {
if(!is.null(y)) x <- table(x, y, ...)
p <- (d <- dim(x))[1L]
if(!is.numeric(x) || length(d) != 2L || p != d[2L] || p !=2L)
stop("'x' is not a 2x2 numeric matrix")
x1 <- x[1,1]
x2 <- x[2,1]
n1 <- x[1,1] + x[1,2]
n2 <- x[2,1] + x[2,2]
rr <- (x[1,1]/sum(x[1,])) / (x[2,1]/sum(x[2,]))
if( !is.na(conf.level)) {
switch( match.arg( arg = method, choices = c("score", "wald", "use.or") )
, "score" = {
# source:
# Agresti-Code: http://www.stat.ufl.edu/~aa/cda/R/two-sample/R2/
# R Code for large-sample score confidence interval for a relative risk
# in a 2x2 table (Koopman 1984, Miettinen and Nurminen 1985, Nurminen 1986).
z = abs(qnorm((1-conf.level)/2))
if ((x2==0) &&(x1==0)){
ul = Inf
ll = 0
}
else{
a1 = n2*(n2*(n2+n1)*x1+n1*(n2+x1)*(z^2))
a2 = -n2*(n2*n1*(x2+x1)+2*(n2+n1)*x2*x1+n1*(n2+x2+2*x1)*(z^2))
a3 = 2*n2*n1*x2*(x2+x1)+(n2+n1)*(x2^2)*x1+n2*n1*(x2+x1)*(z^2)
a4 = -n1*(x2^2)*(x2+x1)
b1 = a2/a1
b2 = a3/a1
b3 = a4/a1
c1 = b2-(b1^2)/3
c2 = b3-b1*b2/3+2*(b1^3)/27
ceta = acos(sqrt(27)*c2/(2*c1*sqrt(-c1)))
t1 = -2*sqrt(-c1/3)*cos(pi/3-ceta/3)
t2 = -2*sqrt(-c1/3)*cos(pi/3+ceta/3)
t3 = 2*sqrt(-c1/3)*cos(ceta/3)
p01 = t1-b1/3
p02 = t2-b1/3
p03 = t3-b1/3
p0sum = p01+p02+p03
p0up = min(p01,p02,p03)
p0low = p0sum-p0up-max(p01,p02,p03)
if( (x2==0) && (x1!=0) ){
ll = (1-(n1-x1)*(1-p0low)/(x2+n1-(n2+n1)*p0low))/p0low
ul = Inf
}
else if( (x2!=n2) && (x1==0)){
ul = (1-(n1-x1)*(1-p0up)/(x2+n1-(n2+n1)*p0up))/p0up
ll = 0
}
else if( (x2==n2) && (x1==n1)){
ul = (n2+z^2)/n2
ll = n1/(n1+z^2)
}
else if( (x1==n1) || (x2==n2) ){
if((x2==n2) && (x1==0)) { ll = 0 }
if((x2==n2) && (x1!=0)) {
phat1 = x2/n2
phat2 = x1/n1
phihat = phat2/phat1
phil = 0.95*phihat
chi2 = 0
while (chi2 <= z){
a = (n2+n1)*phil
b = -((x2+n1)*phil+x1+n2)
c = x2+x1
p1hat = (-b-sqrt(b^2-4*a*c))/(2*a)
p2hat = p1hat*phil
q2hat = 1-p2hat
var = (n2*n1*p2hat)/(n1*(phil-p2hat)+n2*q2hat)
chi2 = ((x1-n1*p2hat)/q2hat)/sqrt(var)
ll = phil
phil = ll/1.0001}}
i = x2
j = x1
ni = n2
nj = n1
if( x1==n1 ){
i = x1
j = x2
ni = n1
nj = n2
}
phat1 = i/ni
phat2 = j/nj
phihat = phat2/phat1
phiu = 1.1*phihat
if((x2==n2) && (x1==0)) {
if(n2<100) {phiu = .01}
else {phiu=0.001}
}
chi1 = 0
while (chi1 >= -z){
a = (ni+nj)*phiu
b = -((i+nj)*phiu+j+ni)
c = i+j
p1hat = (-b-sqrt(b^2-4*a*c))/(2*a)
p2hat = p1hat*phiu
q2hat = 1-p2hat
var = (ni*nj*p2hat)/(nj*(phiu-p2hat)+ni*q2hat)
chi1 = ((j-nj*p2hat)/q2hat)/sqrt(var)
phiu1 = phiu
phiu = 1.0001*phiu1
}
if(x1==n1) {
ul = (1-(n1-x1)*(1-p0up)/(x2+n1-(n2+n1)*p0up))/p0up
ll = 1/phiu1
}
else{ ul = phiu1}
}
else{
ul = (1-(n1-x1)*(1-p0up)/(x2+n1-(n2+n1)*p0up))/p0up
ll = (1-(n1-x1)*(1-p0low)/(x2+n1-(n2+n1)*p0low))/p0low
}
}
}
, "wald" = {
# based on code by Michael Dewey, 2006
x1.d <- x1 + delta
x2.d <- x2 + delta
lrr <- log(rr)
se.lrr <- sqrt(1/x1.d - 1/n1 + 1/x2.d - 1/n2)
mult <- abs(qnorm((1-conf.level)/2))
ll <- exp(lrr - mult * se.lrr)
ul <- exp(lrr + mult * se.lrr)
}
, "use.or" = {
or <- OddsRatio(x, conf.level=conf.level)
p2 <- x2/n2
rr.ci <- or/((1-p2) + p2 * or)
ll <- unname(rr.ci[2])
ul <- unname(rr.ci[3])
}
)
}
if (is.na(conf.level)) {
res <- rr
} else {
res <- c("rel. risk"=rr, lwr.ci=ll, upr.ci=ul)
}
return(res)
}
OddsRatio <- function (x, conf.level = NULL, ...) {
UseMethod("OddsRatio")
}
OddsRatio.glm <- function(x, conf.level = NULL, digits=3, use.profile=FALSE, ...) {
if(is.null(conf.level)) conf.level <- 0.95
# Fasst die Ergebnisse eines binomialen GLMs als OR summary zusammen
d.res <- data.frame(summary(x)$coefficients)
names(d.res)[c(2,4)] <- c("Std. Error","Pr(>|z|)")
d.res$or <- exp(d.res$Estimate)
# ci or
d.res$"or.lci" <- exp(d.res$Estimate + qnorm(0.025)*d.res$"Std. Error" )
d.res$"or.uci" <- exp(d.res$Estimate + qnorm(0.975)*d.res$"Std. Error" )
if(use.profile)
ci <- exp(confint(x, level = conf.level))
else
ci <- exp(confint.default(x, level = conf.level))
# exclude na coefficients here, as summary does not yield those
d.res[, c("or.lci","or.uci")] <- ci[!is.na(coefficients(x)), ]
d.res$sig <- Format(d.res$"Pr(>|z|)", fmt="*")
d.res$pval <- Format(d.res$"Pr(>|z|)", fmt="p")
# d.res["(Intercept)",c("or","or.lci","or.uci")] <- NA
# d.res["(Intercept)","Pr(>|z|)"] <- "NA"
# d.res["(Intercept)"," "] <- ""
d.print <- data.frame(lapply(d.res[, 5:7], Format, digits=digits),
pval=d.res$pval, sig=d.res$sig, stringsAsFactors = FALSE)
rownames(d.print) <- rownames(d.res)
colnames(d.print)[4:5] <- c("Pr(>|z|)","")
mterms <- {
res <- lapply(labels(terms(x)), function(y)
colnames(model.matrix(formula(gettextf("~ 0 + %s", y)), data=model.frame(x))))
names(res) <- labels(terms(x))
res
}
res <- list(or=d.print, call=x$call,
BrierScore=BrierScore(x), PseudoR2=PseudoR2(x, which="all"), res=d.res,
nobs=nobs(x), terms=mterms, model=x$model)
class(res) <- "OddsRatio"
return(res)
}
OddsRatio.multinom <- function(x, conf.level=NULL, digits=3, ...) {
if(is.null(conf.level)) conf.level <- 0.95
# class(x) <- class(x)[class(x)!="regr"]
r.summary <- summary(x, Wald.ratios = TRUE)
coe <- t(r.summary$coefficients)
coe <- reshape(data.frame(coe, id=row.names(coe)), varying=1:ncol(coe), idvar="id"
, times=colnames(coe), v.names="or", direction="long")
se <- t(r.summary$standard.errors)
se <- reshape(data.frame(se), varying=1:ncol(se),
times=colnames(se), v.names="se", direction="long")[, "se"]
# d.res <- r.summary
d.res <- data.frame(
"or"= exp(coe[, "or"]),
"or.lci" = exp(coe[, "or"] + qnorm(0.025) * se),
"or.uci" = exp(coe[, "or"] - qnorm(0.025) * se),
"pval" = 2*(1-pnorm(q = abs(coe[, "or"]/se), mean=0, sd=1)),
"sig" = 2*(1-pnorm(q = abs(coe[, "or"]/se), mean=0, sd=1))
)
d.print <- data.frame(
"or"= Format(exp(coe[, "or"]), digits=digits),
"or.lci" = Format(exp(coe[, "or"] + qnorm(0.025) * se), digits=digits),
"or.uci" = Format(exp(coe[, "or"] - qnorm(0.025) * se), digits=digits),
"pval" = Format(2*(1-pnorm(q = abs(coe[, "or"]/se), mean=0, sd=1)), fmt="p", digits=3),
"sig" = Format(2*(1-pnorm(q = abs(coe[, "or"]/se), mean=0, sd=1)), fmt="*"),
stringsAsFactors = FALSE
)
colnames(d.print)[4:5] <- c("Pr(>|z|)","")
rownames(d.print) <- paste(coe$time, coe$id, sep=":")
rownames(d.res) <- rownames(d.print)
res <- list(or = d.print, call = x$call,
BrierScore = NA, # BrierScore(x),
PseudoR2 = PseudoR2(x, which="all"), res=d.res)
class(res) <- "OddsRatio"
return(res)
}
OddsRatio.zeroinfl <- function (x, conf.level = NULL, digits = 3, ...) {
if(is.null(conf.level)) conf.level <- 0.95
d.res <- data.frame(summary(x)$coefficients$zero)
names(d.res)[c(2, 4)] <- c("Std. Error", "Pr(>|z|)")
d.res$or <- exp(d.res$Estimate)
d.res$or.lci <- exp(d.res$Estimate + qnorm(0.025) * d.res$"Std. Error")
d.res$or.uci <- exp(d.res$Estimate + qnorm(0.975) * d.res$"Std. Error")
d.res["(Intercept)", c("or", "or.lci", "or.uci")] <- NA
d.res$sig <- format(as.character(cut(d.res$"Pr(>|z|)", breaks = c(0,
0.001, 0.01, 0.05, 0.1, 1), include.lowest = TRUE, labels = c("***",
"**", "*", ".", " "))), justify = "left")
d.res$"Pr(>|z|)" <- Format(d.res$"Pr(>|z|)", fmt="p")
d.res["(Intercept)", "Pr(>|z|)"] <- "NA"
d.res["(Intercept)", " "] <- ""
d.print <- data.frame(lapply(d.res[, 5:7], Format, digits=digits),
p.value = d.res[,4], sig = d.res[, 8], stringsAsFactors = FALSE)
rownames(d.print) <- rownames(d.res)
res <- list(or = d.print, call = x$call,
BrierScore = BrierScore(resp=(model.response(model.frame(x)) > 0) * 1L,
pred=predict(x, type="zero")),
PseudoR2 = PseudoR2(x, which="all"), res=d.res)
class(res) <- "OddsRatio"
return(res)
}
print.OddsRatio <- function(x, ...){
cat("\nCall:\n")
print(x$call)
cat("\nOdds Ratios:\n")
print(x$or)
cat("---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 \n\n")
if(!is.null(x$BrierScore)){
cat(gettextf("Brier Score: %s Nagelkerke R2: %s\n\n",
round(x$BrierScore,3), round(x$PseudoR2["Nagelkerke"],3)))
}
}
plot.OddsRatio <- function(x, intercept=FALSE, group=NULL, subset = NULL, ...){
if(!intercept)
# x$res <- x$res[rownames(x$res)!="(Intercept)", ]
x$res <- x$res[!grepl("(Intercept)", rownames(x$res)), ]
args <- list(...)
# here the defaults
args.errbars1 <- list(from=cbind(x$res$or, x$res$or.lci, x$res$or.uci))
# overwrite with userdefined values
if (!is.null(args[["args.errbars"]])) {
args.errbars1[names(args[["args.errbars"]])] <- args[["args.errbars"]][]
args[["args.errbars"]] <- NULL
}
# here the defaults for PlotDot
args.plotdot1 <- list(x=x$res$or, args.errbars=args.errbars1, labels=rownames(x$res),
panel.first=quote(abline(v=1, col="grey")))
if (!is.null(args)) {
args.plotdot1[names(args)] <- args
}
do.call(PlotDot, args=args.plotdot1)
}
OddsRatio.default <- function(x, conf.level = NULL, y = NULL, method=c("wald", "mle", "midp")
, interval = c(0, 1000), ...) {
if(!is.null(y)) x <- table(x, y, ...)
if(is.null(conf.level)) conf.level <- NA
p <- (d <- dim(x))[1L]
if(!is.numeric(x) || length(d) != 2L || p != d[2L] || p != 2L)
stop("'x' is not a 2x2 numeric matrix")
switch( match.arg( arg = method, choices = c("wald", "mle", "midp") )
, "wald" = {
if (any(x == 0)) x <- x + 0.5
lx <- log(x)
or <- exp(lx[1, 1] + lx[2, 2] - lx[1, 2] - lx[2, 1])
if(is.na(conf.level)){
res <- or
} else {
# Agresti Categorical Data Analysis, 3.1.1
sigma2lor <- sum(1/x)
ci <- or * exp(c(1,-1) * qnorm((1-conf.level)/2) * sqrt(sigma2lor))
res <- c("odds ratio"=or, lwr.ci=ci[1], upr.ci=ci[2])
}
}
, "mle" = {
if(is.na(conf.level)){
res <- unname(fisher.test(x, conf.int=FALSE)$estimate)
} else {
res <- fisher.test(x, conf.level=conf.level)
res <- c(res$estimate, lwr.ci=res$conf.int[1], upr.ci=res$conf.int[2])
}
}
, "midp" = {
# based on code from Tomas J. Aragon Developer <aragon at berkeley.edu>
a1 <- x[1,1]; a0 <- x[1,2]; b1 <- x[2,1]; b0 <- x[2,2]; or <- 1
# median-unbiased estimate function
mue <- function(a1, a0, b1, b0, or){
mm <- matrix(c(a1,a0,b1,b0), 2, 2, byrow=TRUE)
fisher.test(mm, or=or, alternative="l")$p-fisher.test(x=x, or=or, alternative="g")$p
}
##mid-p function
midp <- function(a1, a0, b1, b0, or = 1){
mm <- matrix(c(a1,a0,b1,b0),2,2, byrow=TRUE)
lteqtoa1 <- fisher.test(mm,or=or,alternative="l")$p.val
gteqtoa1 <- fisher.test(mm,or=or,alternative="g")$p.val
0.5*(lteqtoa1-gteqtoa1+1)
}
# root finding
EST <- uniroot(
function(or){ mue(a1, a0, b1, b0, or)},
interval = interval)$root
if(is.na(conf.level)){
res <- EST
} else {
alpha <- 1 - conf.level
LCL <- uniroot(function(or){
1-midp(a1, a0, b1, b0, or)-alpha/2
}, interval = interval)$root
UCL <- 1/uniroot(function(or){
midp(a1, a0, b1, b0, or=1/or)-alpha/2
}, interval = interval)$root
res <- c("odds ratio" = EST, lwr.ci=LCL, upr.ci= UCL)
}
}
)
return(res)
}
## odds ratio (OR) to relative risk (RR)
ORToRelRisk <- function(...) {
UseMethod("ORToRelRisk")
}
ORToRelRisk.default <- function(or, p0, ...) {
if(any(or <= 0))
stop("'or' has to be positive")
if(!all(ZeroIfNA(p0) %[]% c(0,1)))
stop("'p0' has to be in (0,1)")
or / (1 - p0 + p0*or)
}
ORToRelRisk.OddsRatio <- function(x, ...){
.PredPrevalence <- function(model) {
isNumericPredictor <- function(model, term){
unname(attr(attr(model, "terms"), "dataClasses")[term] == "numeric")
}
# mean of response ist used for all numeric predictors
meanresp <- mean(as.numeric(model.response(model)) - 1)
# this is ok, as the second level is the one we predict in glm
# https://stackoverflow.com/questions/23282048/logistic-regression-defining-reference-level-in-r
preds <- attr(terms(model), "term.labels")
# first the intercept
res <- NA_real_
for(i in seq_along(preds))
if(isNumericPredictor(model=model, term=preds[i]))
res <- c(res, meanresp)
else {
# get the proportions of the levels of the factor with the response ...
fprev <- prop.table(table(model.frame(model)[, preds[i]],
model.response(model)), 1)
# .. and use the proportion of positive response of the reference level
res <- c(res, rep(fprev[1, 2], times=nrow(fprev)-1))
}
return(res)
}
or <- x$res[, c("or", "or.lci", "or.uci")]
pprev <- .PredPrevalence(x$model)
res <- sapply(or, function(x) ORToRelRisk(x, pprev))
rownames(res) <- rownames(or)
colnames(res) <- c("rr", "rr.lci", "rr.uci")
return(res)
}
# Cohen, Jacob. 1988. Statistical power analysis for the behavioral
# sciences, (2nd edition). Lawrence Erlbaum Associates, Hillsdale, New
# Jersey, United States.
# Garson, G. David. 2007. Statnotes: Topics in Multivariate
# Analysis. URL:
# http://www2.chass.ncsu.edu/garson/pa765/statnote.htm. Visited Spring
# 2006 -- Summer 2007.
# Goodman, Leo A. and William H. Kruskal. 1954. Measures of Association
# for Cross-Classifications. Journal of the American Statistical
# Association, Vol. 49, No. 268 (December 1954), pp. 732-764.
# Liebetrau, Albert M. 1983. Measures of Association. Sage University
# Paper series on Quantitative Applications in the Social Sciences,
# 07-032. Sage Publications, Beverly Hills and London, United
# States/England.
# Margolin, Barry H. and Richard J. Light. 1974. An Analysis of Variance
# for Categorical Data II: Small Sample Comparisons with Chi Square and
# Other Competitors. Journal of the American Statistical Association,
# Vol. 69, No. 347 (September 1974), pp. 755-764.
# Reynolds, H. T. 1977. Analysis of Nominal Data. Sage University Paper
# series on Quantitative Applications in the Social Sciences, 08-007,
# Sage Publications, Beverly Hills/London, California/UK.
# SAS Institute. 2007. Measures of Association
# http://support.sas.com/onlinedoc/913/getDoc/en/statug.hlp/freq_sect20.htm
# Visited January 2007.
# Theil, Henri. 1970. On the Estimation of Relationships Involving
# Qualitative Variables. The American Journal of Sociology, Vol. 76,
# No. 1 (July 1970), pp. 103-154.
# N.B. One should use the values for the significance of the
# Goodman-Kruskal lambda and Theil's UC with reservation, as these
# have been modeled to mimic the behavior of the same statistics
# in SPSS.
GoodmanKruskalTau <- function(x, y = NULL, direction = c("row", "column"), conf.level = NA, ...){
if(!is.null(y)) x <- table(x, y, ...)
n <- sum(x)
n.err.unconditional <- n^2
sum.row <- rowSums(x)
sum.col <- colSums(x)
switch( match.arg( arg = direction, choices = c("row", "column") )
, "column" = { # Tau Column|Row
for(i in 1:nrow(x))
n.err.unconditional <- n.err.unconditional-n*sum(x[i,]^2/sum.row[i])
n.err.conditional <- n^2-sum(sum.col^2)
tau.CR <- 1-(n.err.unconditional/n.err.conditional)
v <- n.err.unconditional/(n^2)
d <- n.err.conditional/(n^2)
f <- d*(v+1)-2*v
var.tau.CR <- 0
for(i in 1:nrow(x))
for(j in 1:ncol(x))
var.tau.CR <- var.tau.CR + x[i,j]*(-2*v*(sum.col[j]/n)+d*((2*x[i,j]/sum.row[i])-sum((x[i,]/sum.row[i])^2))-f)^2/(n^2*d^4)
ASE.tau.CR <- sqrt(var.tau.CR)
est <- tau.CR
sigma2 <- ASE.tau.CR^2
}
, "row" = { # Tau Row|Column
for(j in 1:ncol(x))
n.err.unconditional <- n.err.unconditional-n*sum(x[,j]^2/sum.col[j])
n.err.conditional <- n^2-sum(sum.row^2)
tau.RC <- 1-(n.err.unconditional/n.err.conditional)
v <- n.err.unconditional/(n^2)
d <- n.err.conditional/(n^2)
f <- d*(v+1)-2*v
var.tau.RC <- 0
for(i in 1:nrow(x))
for(j in 1:ncol(x))
var.tau.RC <- var.tau.RC + x[i,j]*(-2*v*(sum.row[i]/n)+d*((2*x[i,j]/sum.col[j])-sum((x[,j]/sum.col[j])^2))-f)^2/(n^2*d^4)
ASE.tau.RC <- sqrt(var.tau.RC)
est <- tau.RC
sigma2 <- ASE.tau.RC^2
}
)
if(is.na(conf.level)){
res <- est
} else {
pr2 <- 1 - (1 - conf.level)/2
ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + est
res <- c(tauA=est, lwr.ci=ci[1], upr.ci=ci[2])
}
return(res)
}
# good description
# http://salises.mona.uwi.edu/sa63c/Crosstabs%20Measures%20for%20Nominal%20Data.htm
Lambda <- function(x, y = NULL, direction = c("symmetric", "row", "column"), conf.level = NA, ...){
if(!is.null(y)) x <- table(x, y, ...)
# Guttman'a lambda (1941), resp. Goodman Kruskal's Lambda (1954)
n <- sum(x)
csum <- colSums(x)
rsum <- rowSums(x)
rmax <- apply(x, 1, max)
cmax <- apply(x, 2, max)
max.rsum <- max(rsum)
max.csum <- max(csum)
nr <- nrow(x)
nc <- ncol(x)
switch( match.arg( arg = direction, choices = c("symmetric", "row", "column") )
, "symmetric" = { res <- 0.5*(sum(rmax, cmax) - (max.csum + max.rsum)) / (n - 0.5*(max.csum + max.rsum)) }
, "column" = { res <- (sum(rmax) - max.csum) / (n - max.csum) }
, "row" = { res <- (sum(cmax) - max.rsum) / (n - max.rsum) }
)
if(is.na(conf.level)){
res <- res
} else {
L.col <- matrix(,nc)
L.row <- matrix(,nr)
switch( match.arg( arg = direction, choices = c("symmetric", "row", "column") )
, "symmetric" = {
# How to see:
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp. 1744
# Author: Nina
l <- which.max(csum)
k <- which.max(rsum)
li <- apply(x,1,which.max)
ki <- apply(x,2,which.max)
w <- 2*n-max.csum-max.rsum
v <- 2*n -sum(rmax,cmax)
xx <- sum(rmax[li==l], cmax[ki==k], rmax[k], cmax[l])
y <- 8*n-w-v-2*xx
t <- rep(NA, length(li))
for (i in 1:length(li)){
t[i] <- (ki[li[i]]==i & li[ki[li[i]]]==li[i])
}
sigma2 <- 1/w^4*(w*v*y-2 *w^2*(n - sum(rmax[t]))-2*v^2*(n-x[k,l]))
}
, "column" = {
L.col.max <- min(which(csum == max.csum))
for(i in 1:nr) {
if(length(which(x[i, intersect(which(x[i,] == max.csum), which(x[i,] == max.rsum))] == n))>0)
L.col[i] <- min(which(x[i, intersect(which(x[i,] == max.csum), which(x[i,] == max.rsum))] == n))
else
if(x[i, L.col.max] == max.csum)
L.col[i] <- L.col.max
else
L.col[i] <- min(which(x[i,] == rmax[i]))
}
sigma2 <- (n-sum(rmax))*(sum(rmax) + max.csum -
2*(sum(rmax[which(L.col == L.col.max)])))/(n-max.csum)^3
}
, "row" = {
L.row.max <- min(which(rsum == max.rsum))
for(i in 1:nc) {
if(length(which(x[intersect(which(x[,i] == max.rsum), which(x[,i] == max.csum)),i] == n))>0)
L.row[i] <- min(which(x[i,intersect(which(x[i,] == max.csum), which(x[i,] == max.rsum))] == n))
else
if(x[L.row.max,i] == max.rsum)
L.row[i] <- L.row.max
else
L.row[i] <- min(which(x[,i] == cmax[i]))
}
sigma2 <- (n-sum(cmax))*(sum(cmax) + max.rsum -
2*(sum(cmax[which(L.row == L.row.max)])))/(n-max.rsum)^3
}
)
pr2 <- 1 - (1 - conf.level)/2
ci <- pmin(1, pmax(0, qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + res))
res <- c(lambda = res, lwr.ci=ci[1], upr.ci=ci[2])
}
return(res)
}
UncertCoef <- function(x, y = NULL, direction = c("symmetric", "row", "column"),
conf.level = NA, p.zero.correction = 1/sum(x)^2, ... ) {
# Theil's UC (1970)
# slightly nudge zero values so that their logarithm can be calculated (cf. Theil 1970: x->0 => xlogx->0)
if(!is.null(y)) x <- table(x, y, ...)
x[x == 0] <- p.zero.correction
n <- sum(x)
rsum <- rowSums(x)
csum <- colSums(x)
hx <- -sum((apply(x, 1, sum) * log(apply(x, 1, sum)/n))/n)
hy <- -sum((apply(x, 2, sum) * log(apply(x, 2, sum)/n))/n)
hxy <- -sum(apply(x, c(1, 2), sum) * log(apply(x, c(1, 2), sum)/n)/n)
switch( match.arg( arg = direction, choices = c("symmetric", "row", "column") )
, "symmetric" = { res <- 2 * (hx + hy - hxy)/(hx + hy) }
, "row" = { res <- (hx + hy - hxy)/hx }
, "column" = { res <- (hx + hy - hxy)/hy }
)
if(!is.na(conf.level)){
var.uc.RC <- var.uc.CR <- 0
for(i in 1:nrow(x))
for(j in 1:ncol(x))
{ var.uc.RC <- var.uc.RC + x[i,j]*(hx*log(x[i,j]/csum[j])+((hy-hxy)*log(rsum[i]/n)))^2/(n^2*hx^4);
var.uc.CR <- var.uc.CR + x[i,j]*(hy*log(x[i,j]/rsum[i])+((hx-hxy)*log(csum[j]/n)))^2/(n^2*hy^4);
}
switch( match.arg( arg = direction, choices = c("symmetric", "row", "column") )
, "symmetric" = {
sigma2 <- 4*sum(x * (hxy * log(rsum %o% csum/n^2) - (hx+hy)*log(x/n))^2 ) /
(n^2*(hx+hy)^4)
}
, "row" = { sigma2 <- var.uc.RC }
, "column" = { sigma2 <- var.uc.CR }
)
pr2 <- 1 - (1 - conf.level)/2
ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + res
res <- c(uc = res, lwr.ci=max(ci[1], -1), upr.ci=min(ci[2], 1))
}
return(res)
}
TheilU <- function(a, p, type = c(2, 1), na.rm = FALSE){
if(na.rm) {
idx <- complete.cases(a, p)
a <- a[idx]
p <- p[idx]
}
n <- length(a)
if(length(p)!=n) {
warning("a must have same length as p")
res <- NA
} else {
switch( match.arg(as.character(type), c("2", "1"))
, "1" = { res <- sqrt(sum((a-p)^2/n))/(sqrt(sum(a^2)/n) + sqrt(sum(p^2)/n)) }
, "2" = { res <- sqrt(sum((a-p)^2))/(sqrt(sum(a^2))) }
)
}
return(res)
}
#S function SomersDelta
#
# Calculates concordance probability and Somers' Dxy rank correlation
# between a variable X (for which ties are counted) and a binary
# variable Y (having values 0 and 1, for which ties are not counted).
# Uses short cut method based on average ranks in two groups.
#
# Usage:
#
# SomersDelta(x, y, weights)
#
# Returns vector whose elements are C Index, Dxy, n and missing, where
# C Index is the concordance probability and Dxy=2(C Index-.5).
#
# F. Harrell 28 Nov 90 6 Apr 98: added weights
#
# SomersDelta2 <- function(x, y, weights=NULL, normwt=FALSE, na.rm=TRUE) {
#
# wtd.mean <- function(x, weights=NULL, normwt='ignored', na.rm=TRUE)
# {
# if(!length(weights)) return(mean(x, na.rm=na.rm))
# if(na.rm) {
# s <- !is.na(x + weights)
# x <- x[s]
# weights <- weights[s]
# }
#
# sum(weights*x)/sum(weights)
# }
#
# wtd.table <- function(x, weights=NULL, type=c('list','table'),
# normwt=FALSE, na.rm=TRUE)
# {
# type <- match.arg(type)
# if(!length(weights))
# weights <- rep(1, length(x))
#
# isdate <- IsDate(x) ### 31aug02 + next 2
# ax <- attributes(x)
# ax$names <- NULL
# x <- if(is.character(x)) as.category(x)
# else unclass(x)
#
# lev <- levels(x)
# if(na.rm) {
# s <- !is.na(x + weights)
# x <- x[s,drop=FALSE] ### drop is for factor class
# weights <- weights[s]
# }
#
# n <- length(x)
# if(normwt)
# weights <- weights*length(x)/sum(weights)
#
# i <- order(x) ### R does not preserve levels here
# x <- x[i]; weights <- weights[i]
#
# if(any(diff(x)==0)) { ### slightly faster than any(duplicated(xo))
# weights <- tapply(weights, x, sum)
# if(length(lev)) { ### 3apr03
# levused <- lev[sort(unique(x))] ### 7sep02
# ### Next 3 lines 21apr03
# if((length(weights) > length(levused)) &&
# any(is.na(weights)))
# weights <- weights[!is.na(weights)]
#
# if(length(weights) != length(levused))
# stop('program logic error')
#
# names(weights) <- levused ### 10Apr01 length 16May01
# }
#
# if(!length(names(weights)))
# stop('program logic error') ### 16May01
#
# if(type=='table')
# return(weights)
#
# x <- all.is.numeric(names(weights),'vector')
# if(isdate)
# attributes(x) <- c(attributes(x),ax) ### 31aug02
#
# names(weights) <- NULL
# return(list(x=x, sum.of.weights=weights))
# }
#
# xx <- x ### 31aug02
# if(isdate)
# attributes(xx) <- c(attributes(xx),ax)
#
# if(type=='list')
# list(x=if(length(lev))lev[x]
# else xx,
# sum.of.weights=weights)
# else {
# names(weights) <- if(length(lev)) lev[x]
# else xx
# weights
# }
# }
#
#
# wtd.rank <- function(x, weights=NULL, normwt=FALSE, na.rm=TRUE)
# {
# if(!length(weights))
# return(rank(x),na.last=if(na.rm)NA else TRUE)
#
# tab <- wtd.table(x, weights, normwt=normwt, na.rm=na.rm)
#
# freqs <- tab$sum.of.weights
# ### rank of x = ### <= x - .5 (# = x, minus 1)
# r <- cumsum(freqs) - .5*(freqs-1)
# ### Now r gives ranks for all unique x values. Do table look-up
# ### to spread these ranks around for all x values. r is in order of x
# approx(tab$x, r, xout=x)$y
# }
#
#
# if(length(y)!=length(x))stop("y must have same length as x")
# y <- as.integer(y)
# wtpres <- length(weights)
# if(wtpres && (wtpres != length(x)))
# stop('weights must have same length as x')
#
# if(na.rm) {
# miss <- if(wtpres) is.na(x + y + weights)
# else is.na(x + y)
#
# nmiss <- sum(miss)
# if(nmiss>0) {
# miss <- !miss
# x <- x[miss]
# y <- y[miss]
# if(wtpres) weights <- weights[miss]
# }
# }
# else nmiss <- 0
#
# u <- sort(unique(y))
# if(any(! y %in% 0:1)) stop('y must be binary')
#
# if(wtpres) {
# if(normwt)
# weights <- length(x)*weights/sum(weights)
# n <- sum(weights)
# }
# else n <- length(x)
#
# if(n<2) stop("must have >=2 non-missing observations")
#
# n1 <- if(wtpres)sum(weights[y==1]) else sum(y==1)
#
# if(n1==0 || n1==n)
# return(c(C=NA,Dxy=NA,n=n,Missing=nmiss))
#
# mean.rank <- if(wtpres)
# wtd.mean(wtd.rank(x, weights, na.rm=FALSE), weights*y)
# else
# mean(rank(x)[y==1])
#
# c.index <- (mean.rank - (n1+1)/2)/(n-n1)
# dxy <- 2*(c.index-.5)
# r <- c(c.index, dxy, n, nmiss)
# names(r) <- c("C", "Dxy", "n", "Missing")
# r
# }
#
SomersDelta <- function(x, y = NULL, direction=c("row","column"), conf.level = NA, ...) {
if(!is.null(y)) tab <- table(x, y, ...)
else tab <- as.table(x)
# tab is a matrix of counts
x <- ConDisPairs(tab)
# use .DoCount
# if(is.na(conf.level)) {
# d.tab <- as.data.frame.table(tab)
# x <- .DoCount(d.tab[,1], d.tab[,2], d.tab[,3])
# } else {
# x <- ConDisPairs(tab)
# }
m <- min(dim(tab))
n <- sum(tab)
switch( match.arg( arg = direction, choices = c("row","column") )
, "row" = { ni. <- colSums(tab) }
, "column" = { ni. <- rowSums(tab) }
)
wt <- n^2 - sum(ni.^2)
# Asymptotic standard error: sqrt(sigma2)
sigma2 <- 4/wt^4 * (sum(tab * (wt*(x$pi.c - x$pi.d) - 2*(x$C-x$D)*(n-ni.))^2))
# debug: print(sqrt(sigma2))
somers <- (x$C - x$D) / (n * (n-1) /2 - sum(ni. * (ni. - 1) /2 ))
pr2 <- 1 - (1 - conf.level)/2
ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + somers
if(is.na(conf.level)){
result <- somers
} else {
result <- c(somers = somers, lwr.ci=max(ci[1], -1), upr.ci=min(ci[2], 1))
}
return(result)
}
# Computes rank correlation measures between a variable X and a possibly
# censored variable Y, with event/censoring indicator EVENT
# Rank correlation is extension of Somers' Dxy = 2(Concordance Prob-.5)
# See Harrell et al JAMA 1984(?)
# Set outx=T to exclude ties in X from computations (-> Goodman-Kruskal
# gamma-type rank correlation)
# based on rcorr.cens in Hmisc, https://stat.ethz.ch/pipermail/r-help/2003-March/030837.html
# author Frank Harrell
# GoodmanGammaF <- function(x, y) {
# ### Fortran implementation of Concordant/Discordant, but still O(n^2)
# x <- as.numeric(x)
# y <- as.numeric(y)
# event <- rep(TRUE, length(x))
# if(length(y)!=length(x))
# stop("y must have same length as x")
# outx <- TRUE
# n <- length(x)
# ne <- sum(event)
# z <- .Fortran("cidxcn", x, y, event, length(x), nrel=double(1), nconc=double(1),
# nuncert=double(1),
# c.index=double(1), gamma=double(1), sd=double(1), as.logical(outx)
# )
# r <- c(z$c.index, z$gamma, z$sd, n, ne, z$nrel, z$nconc, z$nuncert)
# names(r) <- c("C Index","Dxy","S.D.","n","uncensored",
# "Relevant Pairs",
# "Concordant","Uncertain")
# unname(r[2])
# }
# GoodmanGamma(as.numeric(d.frm$Var1), as.numeric(d.frm$Var2))
# cor(as.numeric(d.frm$Var1), as.numeric(d.frm$Var2))
GoodmanKruskalGamma <- function(x, y = NULL, conf.level = NA, ...) {
if(!is.null(y)) tab <- table(x, y, ...)
else tab <- as.table(x)
# tab is a matrix of counts
# Based on code of Michael Friendly and Laura Thompson
# Confidence interval calculation and output from Greg Rodd
x <- ConDisPairs(tab)
psi <- 2 * (x$D * x$pi.c - x$C * x$pi.d)/(x$C + x$D)^2
# Asymptotic standard error: sqrt(sigma2)
sigma2 <- sum(tab * psi^2) - sum(tab * psi)^2
gamma <- (x$C - x$D)/(x$C + x$D)
if(is.na(conf.level)){
result <- gamma
} else {
pr2 <- 1 - (1 - conf.level)/2
ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + gamma
result <- c(gamma = gamma, lwr.ci=max(ci[1], -1), upr.ci=min(ci[2], 1))
}
return(result)
}
# KendallTauB.table <- function(tab, conf.level = NA) {
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp 1738
# tab is a matrix of counts
# x <- ConDisPairs(tab)
# n <- sum(tab)
# ni. <- apply(tab, 1, sum)
# n.j <- apply(tab, 2, sum)
# wr <- n^2 - sum(ni.^2)
# wc <- n^2 - sum(n.j^2)
# w <- sqrt(wr * wc)
# vij <- ni. * wc + n.j * wr
# dij <- x$pi.c - x$pi.d ### Aij - Dij
# Asymptotic standard error: sqrt(sigma2)
# sigma2 <- 1/w^4 * (sum(tab * (2*w*dij + taub*vij)^2) - n^3 * taub^2 * (wr + wc)^2)
# this is the H0 = 0 variance:
# sigma2 <- 4/(wr * wc) * (sum(tab * (x$pi.c - x$pi.d)^2) - 4*(x$C - x$D)^2/n )
# taub <- 2*(x$C - x$D)/sqrt(wr * wc)
# if(is.na(conf.level)){
# result <- taub
# } else {
# pr2 <- 1 - (1 - conf.level)/2
# ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + taub
# result <- c(taub = taub, lwr.ci=max(ci[1], -1), ups.ci=min(ci[2], 1))
# }
# return(result)
# }
KendallTauA <- function(x, y = NULL, direction = c("row", "column"), conf.level = NA, ...){
if(!is.null(y)) tab <- table(x, y, ...)
else tab <- as.table(x)
x <- ConDisPairs(tab)
n <- sum(tab)
n0 <- n*(n-1)/2
taua <- (x$C - x$D) / n0
# Hollander, Wolfe pp. 415/416
# think we should not consider ties here, so take only the !=0 part
Ci <- as.vector((x$pi.c - x$pi.d) * (tab!=0))
Ci <- Ci[Ci!=0]
C_ <- sum(Ci)/n
sigma2 <- 2/(n*(n-1)) * ((2*(n-2))/(n*(n-1)^2) * sum((Ci - C_)^2) + 1 - taua^2)
if (is.na(conf.level)) {
result <- taua
}
else {
pr2 <- 1 - (1 - conf.level)/2
ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + taua
result <- c(tau_a = taua, lwr.ci = max(ci[1], -1), upr.ci = min(ci[2], 1))
}
return(result)
}
# KendallTauB <- function(x, y = NULL, conf.level = NA, test=FALSE, alternative = c("two.sided", "less", "greater"), ...){
KendallTauB <- function(x, y = NULL, conf.level = NA, ...){
# Ref: http://www.fs.fed.us/psw/publications/lewis/LewisHMP.pdf
# pp 2-9
#
if (!is.null(y)) {
dname <- paste(deparse(substitute(x)), "and", deparse(substitute(y)))
} else {
dname <- deparse(substitute(x))
}
if(!is.null(y)) tab <- table(x, y, ...)
else tab <- as.table(x)
x <- ConDisPairs(tab)
n <- sum(tab)
n0 <- n*(n-1)/2
ti <- rowSums(tab) # apply(tab, 1, sum)
uj <- colSums(tab) # apply(tab, 2, sum)
n1 <- sum(ti * (ti-1) / 2)
n2 <- sum(uj * (uj-1) / 2)
taub <- (x$C - x$D) / sqrt((n0-n1)*(n0-n2))
pi <- tab / sum(tab)
pdiff <- (x$pi.c - x$pi.d) / sum(tab)
Pdiff <- 2 * (x$C - x$D) / sum(tab)^2
rowsum <- rowSums(pi) # apply(pi, 1, sum)
colsum <- colSums(pi) # apply(pi, 2, sum)
rowmat <- matrix(rep(rowsum, dim(tab)[2]), ncol = dim(tab)[2])
colmat <- matrix(rep(colsum, dim(tab)[1]), nrow = dim(tab)[1], byrow = TRUE)
delta1 <- sqrt(1 - sum(rowsum^2))
delta2 <- sqrt(1 - sum(colsum^2))
# Compute asymptotic standard errors taub
tauphi <- (2 * pdiff + Pdiff * colmat) * delta2 * delta1 + (Pdiff * rowmat * delta2)/delta1
sigma2 <- ((sum(pi * tauphi^2) - sum(pi * tauphi)^2)/(delta1 * delta2)^4) / n
# for very small pi/tauph it's possible that sigma2 gets negative so we cut small negative values here
# example: KendallTauB(table(iris$Species, iris$Species))
if(sigma2 < .Machine$double.eps * 10) sigma2 <- 0
if (is.na(conf.level)) {
result <- taub
}
else {
pr2 <- 1 - (1 - conf.level)/2
ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + taub
result <- c(tau_b = taub, lwr.ci = max(ci[1], -1), upr.ci = min(ci[2], 1))
}
# if(test){
#
# alternative <- match.arg(alternative)
#
# zstat <- taub / sqrt(sigma2)
#
# if (alternative == "less") {
# pval <- pnorm(zstat)
# cint <- c(-Inf, zstat + qnorm(conf.level))
# }
# else if (alternative == "greater") {
# pval <- pnorm(zstat, lower.tail = FALSE)
# cint <- c(zstat - qnorm(conf.level), Inf)
# }
# else {
# pval <- 2 * pnorm(-abs(zstat))
# alpha <- 1 - conf.level
# cint <- qnorm(1 - alpha/2)
# cint <- zstat + c(-cint, cint)
# }
#
# RVAL <- list()
# RVAL$p.value <- pval
# RVAL$method <- "Kendall's rank correlation tau"
# RVAL$data.name <- dname
# RVAL$statistic <- x$C - x$D
# names(RVAL$statistic) <- "T"
# RVAL$estimate <- taub
# names(RVAL$estimate) <- "tau-b"
# RVAL$conf.int <- c(max(ci[1], -1), min(ci[2], 1))
# # attr(RVAL$conf.int, "conf.level") = round(attr(ci,"conf.level"), 3)
# class(RVAL) <- "htest"
# return(RVAL)
#
# # rval <- list(statistic = zstat, p.value = pval,
# # parameter = sd_pop,
# # conf.int = cint, estimate = estimate, null.value = mu,
# # alternative = alternative, method = method, data.name = dname)
#
# } else {
return(result)
# }
}
# KendallTauB(x, y, conf.level = 0.95, test=TRUE)
#
# cor.test(x,y, method="kendall")
# tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))
# KendallTauB(tab, conf.level = 0.95)
# Assocs(tab)
StuartTauC <- function(x, y = NULL, conf.level = NA, ...) {
if(!is.null(y)) tab <- table(x, y, ...)
else tab <- as.table(x)
# Reference:
# http://v8doc.sas.com/sashtml/stat/chap28/sect18.htm
x <- ConDisPairs(tab)
m <- min(dim(tab))
n <- sum(tab)
# Asymptotic standard error: sqrt(sigma2)
sigma2 <- 4 * m^2 / ((m-1)^2 * n^4) * (sum(tab * (x$pi.c - x$pi.d)^2) - 4 * (x$C -x$D)^2/n)
# debug: print(sqrt(sigma2))
# Tau-c = (C - D)*[2m/(n2(m-1))]
tauc <- (x$C - x$D) * 2 * min(dim(tab)) / (sum(tab)^2*(min(dim(tab))-1))
if(is.na(conf.level)){
result <- tauc
} else {
pr2 <- 1 - (1 - conf.level)/2
CI <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + tauc
result <- c(tauc = tauc, lwr.ci=max(CI[1], -1), upr.ci=min(CI[2], 1))
}
return(result)
}
# SpearmanRho <- function(x, y = NULL, use = c("everything", "all.obs", "complete.obs",
# "na.or.complete","pairwise.complete.obs"), conf.level = NA ) {
#
# if(is.null(y)) {
# x <- Untable(x)
# y <- x[,2]
# x <- x[,1]
# }
# # Reference:
# # https://stat.ethz.ch/pipermail/r-help/2006-October/114319.html
# # fisher z transformation for calc SpearmanRho ci :
# # Conover WJ, Practical Nonparametric Statistics (3rd edition). Wiley 1999.
#
# # http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# # pp 1738
#
#
# # n <- sum(tab)
# # ni. <- apply(tab, 1, sum)
# # n.j <- apply(tab, 2, sum)
# # F <- n^3 - sum(ni.^3)
# # G <- n^3 - sum(n.j^3)
# # w <- 1/12*sqrt(F * G)
#
# # ### Asymptotic standard error: sqrt(sigma2)
# # sigma2 <- 1
# # ### debug: print(sqrt(sigma2))
#
# # ### Tau-c = (C - D)*[2m/(n2(m-1))]
# # est <- 1
#
# # if(is.na(conf.level)){
# # result <- tauc
# # } else {
# # pr2 <- 1 - (1 - conf.level)/2
# # CI <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + est
# # result <- c(SpearmanRho = est, lwr.ci=max(CI[1], -1), ups.ci=min(CI[2], 1))
# # }
#
# # return(result)
#
#
# # Ref:
# # http://www-01.ibm.com/support/docview.wss?uid=swg21478368
#
# use <- match.arg(use, choices=c("everything", "all.obs", "complete.obs",
# "na.or.complete","pairwise.complete.obs"))
#
# rho <- cor(as.numeric(x), as.numeric(y), method="spearman", use = use)
#
# e_fx <- exp( 2 * ((.5 * log((1+rho) / (1-rho))) - c(1, -1) *
# (abs(qnorm((1 - conf.level)/2))) * (1 / sqrt(sum(complete.cases(x,y)) - 3)) ))
# ci <- (e_fx - 1) / (e_fx + 1)
#
# if (is.na(conf.level)) {
# result <- rho
# } else {
# pr2 <- 1 - (1 - conf.level) / 2
# result <- c(rho = rho, lwr.ci = max(ci[1], -1), upr.ci = min(ci[2], 1))
# }
# return(result)
#
# }
# replaced by DescTools v 0.99.36
# as Untable() is a nogo for tables with high frequencies...
SpearmanRho <- function(x, y = NULL, use = c("everything", "all.obs", "complete.obs",
"na.or.complete","pairwise.complete.obs"), conf.level = NA ) {
if(is.null(y)) {
# implemented following
# https://support.sas.com/documentation/onlinedoc/stat/151/freq.pdf
# S. 3103
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp 1738
# Old References:
# https://stat.ethz.ch/pipermail/r-help/2006-October/114319.html
# fisher z transformation for calc SpearmanRho ci :
# Conover WJ, Practical Nonparametric Statistics (3rd edition). Wiley 1999.
n <- sum(x)
ni. <- apply(x, 1, sum)
n.j <- apply(x, 2, sum)
ri <- rank(rownames(x))
ci <- rank(colnames(x))
ri <- 1:nrow(x)
ci <- 1:ncol(x)
R1i <- c(sapply(seq_along(ri),
function(i) ifelse(i==1, 0, cumsum(ni.)[i-1]) + ni.[i]/2))
C1i <- c(sapply(seq_along(ci),
function(i) ifelse(i==1, 0, cumsum(n.j)[i-1]) + n.j[i]/2))
Ri <- R1i - n/2
Ci <- C1i - n/2
v <- sum(x * outer(Ri, Ci))
F <- n^3 - sum(ni.^3)
G <- n^3 - sum(n.j^3)
w <- 1/12*sqrt(F * G)
rho <- v/w
} else {
# http://www-01.ibm.com/support/docview.wss?uid=swg21478368
use <- match.arg(use, choices=c("everything", "all.obs", "complete.obs",
"na.or.complete","pairwise.complete.obs"))
rho <- cor(as.numeric(x), as.numeric(y), method="spearman", use = use)
n <- complete.cases(x,y)
}
e_fx <- exp( 2 * ((.5 * log((1+rho) / (1-rho))) - c(1, -1) *
(abs(qnorm((1 - conf.level)/2))) * (1 / sqrt(sum(n) - 3)) ))
ci <- (e_fx - 1) / (e_fx + 1)
if (is.na(conf.level)) {
result <- rho
} else {
if(identical(rho, 1)){ # will blast the fisher z transformation
result <- c(rho=1, lwr.ci=1, upr.ci=1)
} else {
pr2 <- 1 - (1 - conf.level) / 2
result <- c(rho = rho, lwr.ci = max(ci[1], -1), upr.ci = min(ci[2], 1))
}
}
return(result)
}
# Definitions:
# http://v8doc.sas.com/sashtml/stat/chap28/sect18.htm
ConDisPairs <-function(x){
# tab is a matrix of counts
# Based on code of Michael Friendly and Laura Thompson
# slooooow because of 2 nested for clauses O(n^2)
# this is NOT faster when implemented with a mapply(...)
# Lookin for alternatives in C
# http://en.verysource.com/code/1169955_1/kendl2.cpp.html
# cor(..., "kendall") is for dimensions better
n <- nrow(x)
m <- ncol(x)
pi.c <- pi.d <- matrix(0, nrow = n, ncol = m)
row.x <- row(x)
col.x <- col(x)
for(i in 1:n){
for(j in 1:m){
pi.c[i, j] <- sum(x[row.x<i & col.x<j]) + sum(x[row.x>i & col.x>j])
pi.d[i, j] <- sum(x[row.x<i & col.x>j]) + sum(x[row.x>i & col.x<j])
}
}
C <- sum(pi.c * x)/2
D <- sum(pi.d * x)/2
return(list(pi.c = pi.c, pi.d = pi.d, C = C, D = D))
}
BinTree <- function(n) {
ranks <- rep(0L, n)
yet.to.do <- 1:n
depth <- floor(logb(n, 2))
start <- as.integer(2^depth)
lastrow.length <- 1 + n - start
indx <- seq(1L, by = 2L, length = lastrow.length)
ranks[yet.to.do[indx]] <- start + 0:(length(indx) - 1L)
yet.to.do <- yet.to.do[-indx]
while (start > 1) {
start <- as.integer(start/2)
indx <- seq(1L, by = 2L, length = start)
ranks[yet.to.do[indx]] <- start + 0:(start - 1L)
yet.to.do <- yet.to.do[-indx]
}
return(ranks)
}
PlotBinTree <- function(x, main="Binary tree", horiz=FALSE, cex=1.0, col=1, ...){
bimean <- function(x){
(x[rep(c(TRUE, FALSE), length.out=length(x))] +
x[rep(c(FALSE, TRUE), length.out=length(x))]) / 2
}
n <- length(x)
s <- floor(log(n, 2))
# if(sortx)
# x <- sort(x)
# else
# x <- x[BinTree(length(x))]
lst <- list()
lst[[s+1]] <- 1:2^s
for(i in s:1){
lst[[i]] <- bimean(lst[[i+1]])
}
d.frm <- merge(
x=data.frame(x=x, binpos=BinTree(length(x))),
y=data.frame(xpos = unlist(lst),
ypos = -rep(1:length(lst), unlist(lapply(lst, length))),
pos = 1:(2^(s+1)-1)
), by.x="binpos", by.y="pos")
if(horiz){
Canvas(xlim=c(1, s+1.5), ylim=c(0, 2^s+1), main=main,
asp=FALSE, mar=c(0,0,2,0)+1 )
ii <- 0
for(i in 1L:(length(lst)-1)){
for(j in seq_along(lst[[i]])){
ii <- ii + 1
if(ii < n)
segments(y0=lst[[i]][j], x0=i, y1=lst[[i+1]][2*(j-1)+1], x1=i+1, col=col)
ii <- ii + 1
if(ii < n)
segments(y0=lst[[i]][j], x0=i, y1=lst[[i+1]][2*(j-1)+2], x1=i+1, col=col)
}
}
# Rotate positions for the text
# rotxy <- Rotate(d.frm$xpos, d.frm$ypos, theta=pi/2)
# d.frm$xpos <- rotxy$x
# d.frm$ypos <- rotxy$y
m <- d.frm$xpos
d.frm$xpos <- -d.frm$ypos
d.frm$ypos <- m
} else {
Canvas(xlim=c(0,2^s+1), ylim=c(-s,1)-1.5, main=main,
asp=FALSE, mar=c(0,0,2,0)+1, ...)
ii <- 0
for(i in 1L:(length(lst)-1)){
for(j in seq_along(lst[[i]])){
ii <- ii + 1
if(ii < n)
segments(x0=lst[[i]][j], y0=-i, x1=lst[[i+1]][2*(j-1)+1], y1=-i-1, col=col)
ii <- ii + 1
if(ii < n)
segments(x0=lst[[i]][j], y0=-i, x1=lst[[i+1]][2*(j-1)+2], y1=-i-1, col=col)
}
}
}
BoxedText(x=d.frm$xpos, y=d.frm$ypos, labels=d.frm$x, cex=cex,
border=NA, xpad = 0.5, ypad = 0.5)
invisible(d.frm)
}
.DoCount <- function(y, x, wts) {
# O(n log n):
# http://www.listserv.uga.edu/cgi-bin/wa?A2=ind0506d&L=sas-l&P=30503
if(missing(wts)) wts <- rep_len(1L, length(x))
ord <- order(y)
ux <- sort(unique(x))
n2 <- length(ux)
idx <- BinTree(n2)[match(x[ord], ux)] - 1L
y <- cbind(y,1)
res <- .Call("conc", PACKAGE="DescTools", y[ord,], as.double(wts[ord]),
as.integer(idx), as.integer(n2))
return(list(pi.c = NA, pi.d = NA, C = res[2], D = res[1], T=res[3], N=res[4]))
}
.assocs_condis <- function(x, y = NULL, conf.level = NA, ...) {
# (very) fast function for calculating all concordant/discordant pairs based measures
# all table operations are cheap compared to the counting of cons/disc...
# no implementation for confidence levels so far.
if(!is.null(y))
x <- table(x, y)
# we need rowsums and colsums, so tabling is mandatory...
# use weights
x <- as.table(x)
min_dim <- min(dim(x))
n <- sum(x)
ni. <- rowSums(x)
nj. <- colSums(x)
n0 <- n*(n-1L)/2
n1 <- sum(ni. * (ni.-1L) / 2)
n2 <- sum(nj. * (nj.-1L) / 2)
x <- as.data.frame(x)
z <- .DoCount(x[,1], x[,2], x[,3])
gamma <- (z$C - z$D)/(z$C + z$D)
somers_r <- (z$C - z$D) / (n0 - n2)
somers_c <- (z$C - z$D) / (n0 - n1)
taua <- (z$C - z$D) / n0
taub <- (z$C - z$D) / sqrt((n0-n1)*(n0-n2))
tauc <- (z$C - z$D) * 2 * min_dim / (n^2*(min_dim-1L))
if(is.na(conf.level)){
result <- c(gamma=gamma, somers_r=somers_r, somers_c=somers_c,
taua=taua, taub=taub, tauc=tauc)
} else {
# psi <- 2 * (x$D * x$pi.c - x$C * x$pi.d)/(x$C + x$D)^2
# # Asymptotic standard error: sqrt(sigma2)
# gamma_sigma2 <- sum(tab * psi^2) - sum(tab * psi)^2
#
# pr2 <- 1 - (1 - conf.level)/2
# ci <- qnorm(pr2) * sqrt(gamma_sigma2) * c(-1, 1) + gamma
# result <- c(gamma = gamma, lwr.ci=max(ci[1], -1), ups.ci=min(ci[2], 1))
result <- NA
}
return(result)
}
TablePearson <- function(x, scores.type="table") {
# based on Lecoutre
# https://stat.ethz.ch/pipermail/r-help/2005-July/076371.html
# but the test might not be correctly implemented (negative values in sqrt)
# Statistic
sR <- scores(x, 1, scores.type)
sC <- scores(x, 2, scores.type)
n <- sum(x)
Rbar <- sum(apply(x, 1, sum) * sR) / n
Cbar <- sum(apply(x, 2, sum) * sC) / n
ssr <- sum(x * (sR-Rbar)^2)
ssc <- sum(t(x) * (sC-Cbar)^2)
tmpij <- outer(sR, sC, FUN=function(a,b) return((a-Rbar)*(b-Cbar)))
ssrc <- sum(x*tmpij)
v <- ssrc
w <- sqrt(ssr*ssc)
r <- v/w
return(r)
}
TableSpearman <- function(x, scores.type="table"){
# following:
# https://stat.ethz.ch/pipermail/r-help/2005-July/076371.html
# tablespearman=function(x)
# {
# # Details algorithme manuel SAS PROC FREQ page 540
# # Statistic
# n=sum(x)
# nr=nrow(x)
# nc=ncol(x)
# tmpd=cbind(expand.grid(1:nr,1:nc))
# ind=rep(1:(nr*nc),as.vector(x))
# tmp=tmpd[ind,]
# rhos=cor(apply(tmp,2,rank))[1,2]
# # ASE
# Ri=scores(x,1,"ranks")- n/2
# Ci=scores(x,2,"ranks")- n/2
# sr=apply(x,1,sum)
# sc=apply(x,2,sum)
# F=n^3 - sum(sr^3)
# G=n^3 - sum(sc^3)
# w=(1/12)*sqrt(F*G)
# vij=data
# for (i in 1:nrow(x))
# {
# qi=0
# if (i<nrow(x))
# {
# for (k in i:nrow(x)) qi=qi+sum(x[k,]*Ci)
# }
# }
# for (j in 1:ncol(x))
# {
# qj=0
# if (j<ncol(x))
# {
# for (k in j:ncol(x)) qj=qj+sum(x[,k]*Ri)
# }
# vij[i,j]=n*(Ri[i]*Ci[j] +
# 0.5*sum(x[i,]*Ci)+0.5*sum(data[,j]*Ri) +qi+qj)
# }
#
#
# v=sum(data*outer(Ri,Ci))
# wij=-n/(96*w)*outer(sr,sc,FUN=function(a,b) return(a^2*G+b^2*F))
# zij=w*vij-v*wij
# zbar=sum(data*zij)/n
# vard=(1/(n^2*w^4))*sum(x*(zij-zbar)^2)
# ASE=sqrt(vard)
# # Test
# vbar=sum(x*vij)/n
# p1=sum(x*(vij-vbar)^2)
# p2=n^2*w^2
# var0=p1/p2
# stat=rhos/sqrt(var0)
#
# # Output
# out=list(estimate=rhos,ASE=ASE,name="Spearman
# correlation",bornes=c(-1,1))
# class(out)="ordtest"
# return(out)
# }
#
# #tablespearman(data)
}
# all association measures combined
Assocs <- function(x, conf.level = 0.95, verbose=NULL){
if(is.null(verbose)) verbose <- "3"
if(verbose != "3") conf.level <- NA
res <- rbind(
# "Phi Coeff." = c(Phi(x), NA, NA)
"Contingency Coeff." = c(ContCoef(x),NA, NA)
)
if(is.na(conf.level)){
res <- rbind(res, "Cramer V" = c(CramerV(x), NA, NA))
res <- rbind(res, "Kendall Tau-b" = c(KendallTauB(x), NA, NA))
} else {
res <- rbind(res, "Cramer V" = CramerV(x, conf.level=conf.level))
res <- rbind(res, "Kendall Tau-b" = c(KendallTauB(x, conf.level=conf.level)))
}
if(verbose=="3") {
# # this is from boot::corr combined with ci logic from cor.test
# r <- boot::corr(d=CombPairs(1:nrow(x), 1:ncol(x)), as.vector(x))
# the boot::corr does not respect ordinal values in dimnames
# so do it ourselves
r <- TablePearson(x)
r.ci <- CorCI(rho = r, n = sum(x), conf.level = conf.level)
res <- rbind(res
, "Goodman Kruskal Gamma" = GoodmanKruskalGamma(x, conf.level=conf.level)
# , "Kendall Tau-b" = KendallTauB(x, conf.level=conf.level)
, "Stuart Tau-c" = StuartTauC(x, conf.level=conf.level)
, "Somers D C|R" = SomersDelta(x, direction="column", conf.level=conf.level)
, "Somers D R|C" = SomersDelta(x, direction="r", conf.level=conf.level)
# , "Pearson Correlation" =c(cor.p$estimate, lwr.ci=cor.p$conf.int[1], upr.ci=cor.p$conf.int[2])
, "Pearson Correlation" =c(r.ci[1], lwr.ci=r.ci[2], upr.ci=r.ci[3])
, "Spearman Correlation" = SpearmanRho(x, conf.level=conf.level)
, "Lambda C|R" = Lambda(x, direction="column", conf.level=conf.level)
, "Lambda R|C" = Lambda(x, direction="row", conf.level=conf.level)
, "Lambda sym" = Lambda(x, direction="sym", conf.level=conf.level)
, "Uncertainty Coeff. C|R" = UncertCoef(x, direction="column", conf.level=conf.level)
, "Uncertainty Coeff. R|C" = UncertCoef(x, direction="row", conf.level=conf.level)
, "Uncertainty Coeff. sym" = UncertCoef(x, direction="sym", conf.level=conf.level)
, "Mutual Information" = c(MutInf(x),NA,NA)
) }
if(verbose=="3")
dimnames(res)[[2]][1] <- "estimate"
else
dimnames(res)[[2]] <- c("estimate", "lwr.ci", "upr.ci")
class(res) <- c("Assocs", class(res))
return(res)
}
print.Assocs <- function(x, digits=4, ...){
out <- apply(round(x, digits), 2, Format, digits=digits)
if(nrow(x) == 3){
} else {
out[c(1,16), 2:3] <- " -"
}
dimnames(out) <- dimnames(x)
print(data.frame(out), quote=FALSE)
}
## This is an exact copy from Hmisc
## Changes since sent to statlib: improved printing N matrix in print.hoeffd
HoeffD <- function(x, y) {
phoeffd <- function(d, n) {
d <- as.matrix(d); n <- as.matrix(n)
b <- d + 1/36/n
z <- .5*(pi^4)*n*b
zz <- as.vector(z)
zz[is.na(zz)] <- 1e30 # so approx won't bark
tabvals <- c(5297,4918,4565,4236,3930,
3648,3387,3146,2924,2719,2530,2355,
2194,2045,1908,1781,1663,1554,1453,
1359,1273,1192,1117,1047,0982,0921,
0864,0812,0762,0716,0673,0633,0595,
0560,0527,0496,0467,0440,0414,0390,
0368,0347,0327,0308,0291,0274,0259,
0244,0230,0217,0205,0194,0183,0173,
0163,0154,0145,0137,0130,0123,0116,
0110,0104,0098,0093,0087,0083,0078,
0074,0070,0066,0063,0059,0056,0053,
0050,0047,0045,0042,0025,0014,0008,
0005,0003,0002,0001)/10000
P <- ifelse(z<1.1 | z>8.5, pmax(1e-8,pmin(1,exp(.3885037-1.164879*z))),
matrix(approx(c(seq(1.1, 5,by=.05),
seq(5.5,8.5,by=.5)),
tabvals, zz)$y,
ncol=ncol(d)))
dimnames(P) <- dimnames(d)
P
}
if(!missing(y))
x <- cbind(x, y)
x[is.na(x)] <- 1e30
storage.mode(x) <-
# if(.R.)
"double"
# else
# "single"
p <- as.integer(ncol(x))
if(p<1)
stop("must have >1 column")
n <- as.integer(nrow(x))
if(n<5)
stop("must have >4 observations")
h <-
# if(.R.)
.Fortran("hoeffd", x, n, p, hmatrix=double(p*p), aad=double(p*p),
maxad=double(p*p), npair=integer(p*p),
double(n), double(n), double(n), double(n), double(n),
PACKAGE="DescTools")
# else
# .Fortran("hoeffd", x, n, p, hmatrix=single(p*p), npair=integer(p*p),
# single(n), single(n), single(n), single(n), single(n),
# single(n), integer(n))
nam <- dimnames(x)[[2]]
npair <- matrix(h$npair, ncol=p)
aad <- maxad <- NULL
# if(.R.) {
aad <- matrix(h$aad, ncol=p)
maxad <- matrix(h$maxad, ncol=p)
dimnames(aad) <- dimnames(maxad) <- list(nam, nam)
# }
h <- matrix(h$hmatrix, ncol=p)
h[h>1e29] <- NA
dimnames(h) <- list(nam, nam)
dimnames(npair) <- list(nam, nam)
P <- phoeffd(h, npair)
diag(P) <- NA
structure(list(D=30*h, n=npair, P=P, aad=aad, maxad=maxad), class="HoeffD")
}
print.HoeffD <- function(x, ...)
{
cat("D\n")
print(round(x$D,2))
if(length(aad <- x$aad)) {
cat('\navg|F(x,y)-G(x)H(y)|\n')
print(round(aad,4))
}
if(length(mad <- x$maxad)) {
cat('\nmax|F(x,y)-G(x)H(y)|\n')
print(round(mad,4))
}
n <- x$n
if(all(n==n[1,1]))
cat("\nn=",n[1,1],"\n")
else {
cat("\nn\n")
print(x$n)
}
cat("\nP\n")
P <- x$P
P <- ifelse(P<.0001,0,P)
p <- format(round(P,4))
p[is.na(P)] <- ""
print(p, quote=FALSE)
invisible()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.