View source: R/cfE_DiracMixture.R
cfE_DiracMixture | R Documentation |
Characteristic function of the weighted mixture distribution
of independent DIRAC random variables D_1,...,D_N
, concentrated
at the fixed constants (data) given by the vector d = (d_1,...,d_N)
.
That is, cf(t) = weight_1*cfD(d_1*t) +...+ weight_N*cfD(d_N*t)
,
where cfD(t)
represents the characteristic function of the DIRAC RV
concentrated at the constant d=1
, i.e. cfD(t) = exp(1i*t)
.
cfE_DiracMixture(t, d, weight, cfX)
evaluates the compound characteristic function
cf(t) = cfE_DiracMixture(-1i*log(cfX(t)),d,weight) = weight_1*cfX(t)^d_1 +...+ weight_N*cfX(t)^d_N
where cfX
denotes the function handle of the characteristic function cfX(t)
of the random variable X
.
cfE_DiracMixture(t, d, weight, cfX)
t |
vector or array of real values, where the CF is evaluated. |
d |
vector of constants (data) where the DIRAC RVs are concentrated.
If empty, default value is |
weight |
vector of weights of the distribution mixture.
If empty, default value is |
cfX |
function handle of the characteristic function of a random
variable |
Characteristic function cf(t)
of the EMPIRICAL distribution, based on the observed data.
Ver.: 23-Sep-2018 14:59:46 (consistent with Matlab CharFunTool v1.3.0, 23-Jun-2017 10:00:49).
WITKOVSKY V., WIMMER G., DUBY T. (2017). Computing the aggregate loss distribution based on numerical inversion of the compound empirical characteristic function of frequency and severity. arXiv preprint arXiv:1701.08299.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Empirical_characteristic_function.
Other Empirical Probability Distribution:
cfE_EmpiricalOgive()
,
cfE_Empirical()
## EXAMPLE1
# Empirical CF - a weighted mixture of independent Dirac variables
set.seed(101)
n <- 1000
data <- c(rnorm(3 * n, 5, 0.2), rt(n, 3), rchisq(n, 1))
t <- seq(-50, 50, length.out = 2 ^ 10)
weights <- 1 / length(data)
plotReIm(function(t)
cfE_DiracMixture(t, data, weights),
t,
title = "Empirical CF - CF of the mixture of Dirac random variables")
## EXAMPLE2
# Convolution of the ECF and the Gaussian kernel)
set.seed(101)
n <- 1000
data <- c(rnorm(3 * n, 5, 0.2), rt(n, 3), rchisq(n, 1))
bandwidth <- 0.25
cf_DATA <- function(t) {
cfE_DiracMixture(t, data, weights)}
cf_KERNEL <- function(t) {
exp(-(bandwidth * t) ^ 2 / 2)}
cf <- function(t) {
cf_DATA(t) * cf_KERNEL(t)}
t <- seq(-50, 50, length.out = 2 ^ 10)
plotReIm(cf, t, title = "Smoothed Empirical CF")
result <- cf2DistGP(cf)
## EXAMPLE3
# (PDF/CDF of the compound Empirical-Empirical distribution)
set.seed(101)
lambda <- 25
nN <- 10
Ndata <- rpois(nN, lambda)
mu <- 0.1
sigma <- 2
nX <- 1500
Xdata <- rlnorm(nX, mu, sigma)
cfX <- function(t)
cfE_DiracMixture(t, Xdata, 1 / nX)
cf <- function(t)
cfE_DiracMixture(t, Ndata, 1 / nN, cfX)
t <- seq(-0.2, 0.2, length.out = 2 ^ 10)
plotReIm(cf, t, title = "Compound Empirical CF")
x <- seq(0, 1000, length.out = 501)
prob <- c(0.9, 0.95)
options <- list()
options$N <- 2 ^ 10
options$SixSigmaRule <- 10
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.