cfS_Gaussian | R Documentation |
cfS_Gaussian(t, mu, sigma, coef, niid)
evaluates the characteristic function cf(t)
of a GAUSSIAN (standard normal) distribution.
cfS_Gaussian is an ALIAS of the more general function cf_Normal, used to evaluate the characteristic function of a linear combination of independent normally distributed random variables.
The characteristic function of the standard normally distributed random variable, X ~ N(0,1)
,
is defined by
cf(t) = cfS_Gaussian(t) = exp(-t^2/2).
cfS_Gaussian(t, mu, sigma, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
mu |
vector of mean values parameters. |
sigma |
vector of dispersion parameters. |
coef |
vector of coefficients of the linear combination of Normally distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient. |
Characteristic function cf(t)
of a GAUSSIAN (standard normal) distribution.
Ver.: 16-Sep-2018 19:08:06 (consistent with Matlab CharFunTool v1.3.0, 02-Jun-2017 12:08:24).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Normal_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
Other Symmetric Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_Trapezoidal()
,
cf_ArcsineSymmetric()
,
cf_BetaSymmetric()
,
cf_RectangularSymmetric()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
## EXAMPLE1
# CF of the Gaussian distribution N(0,1)
t <- seq(-5, 5, length.out = 501)
plotReIm(function(t)
cfS_Gaussian(t), t, title = "CF of the Gaussian distribution N(0,1)")
## EXAMPLE2
# PDF/CDF of the Gaussian distribution N(0,1)
cf <- function(t)
cfS_Gaussian(t)
x <- seq(-4, 4, length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$N <- 2 ^ 5
options$SixSigmaRule <- 8
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.