cf_Laplace | R Documentation |
mu
(real)
and scale parameter beta > 0
.cf_Laplace(t,mu,beta,coef,niid)
evaluates the characteristic function
cf(t)
of Y = \sum_{i=1}^N coef_i * X_i
, where X_i ~ Laplace (\mu_i,\beta_{i})
are inedependent RVs, with real location parameters \mu_{i}
and the scale parameters \beta_{i} > 0
, for i = 1,...,N
.
The characteristic function of Y
is defined by
cf(t)=Prod(exp(li* t * coef(i) \eqn {mu(i)} ) / (1+(t*coef(i)*\eqn{beta(i)})^2) )
cf_Laplace(t, mu, beta, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
mu |
vector of real location parameters. If empty, default value is |
beta |
vector of the scale parameters |
coef |
vector of the coefficients of the linear combination of the LAPLACE random variables.
If |
niid |
scalar convolution coeficient |
Characteristic function cf(t)
of a linear combination
of independent LAPLACE random variables.
Ver.: 08-Aug-2021 16:19:30 (consistent with Matlab CharFunTool v1.5.1, 16-Aug-2018 16:00:43).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Laplace_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE1
# CF of the Laplace RV
mu <- 0
beta <- 1
t <- seq(from = -10,
to = 10,
length.out =201)
plotReIm(function(t)
cf_Laplace(t, mu, beta),
t,
title = "Characteristic function of the Laplace RVs")
##EXAMPLE2
# PDF/CDF of the Laplace RV
mu <- 0
beta <- 1
x <- seq(-5, 5, length.out = 101)
prop <- c(0.80, 0.85, 0.90, 0.925, 0.95, 0.975, 0.99, 0.995, 0.999)
cf <- function(t)
cf_Laplace(t, mu, beta)
result <- cf2DistGP(cf, x, prob)
##EXAMPLE3
# PDF/CDF of the linear combination of Laplace RVs
mu <- c(-4, -1, 2, 3)
beta <- c(0.1, 0.2, 0.3, 0.4)
coef <- c(1, 2, 3, 4)
prob <- c(0.80, 0.85, 0.90, 0.925, 0.95, 0.975, 0.99, 0.995, 0.999)
cf <- function(t)
cf_Laplace(t, mu, beta, coef)
options <- list()
options$N <- 2^12
result <- cf2DistGP(cf,prob=prob,options=options)
## EXAMPLE 4
# PDF/CDF of the linear combination of the Laplace RVs
mu <- c(-10, 10, 20, 30, 40)
beta <- c(1, 2, 3, 4, 5)
coef <- c(1/2, 1, 3/4, 5, 1)
prop <- c(0.80, 0.85, 0.90, 0.925, 0.95, 0.975, 0.99, 0.995, 0.999)
cf <- function(t)
cf_Laplace(t, mu, beta, coef)
options <- list()
options$N <- 2^12
result <- cf2DistGP(cf,c(),prob,options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.