| cf_Laplace | R Documentation |
mu (real)
and scale parameter beta > 0.cf_Laplace(t,mu,beta,coef,niid) evaluates the characteristic function
cf(t) of Y = \sum_{i=1}^N coef_i * X_i, where X_i ~ Laplace (\mu_i,\beta_{i})
are inedependent RVs, with real location parameters \mu_{i} and the scale parameters \beta_{i} > 0, for i = 1,...,N.
The characteristic function of Y is defined by
cf(t)=Prod(exp(li* t * coef(i) \eqn {mu(i)} ) / (1+(t*coef(i)*\eqn{beta(i)})^2) )
cf_Laplace(t, mu, beta, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
mu |
vector of real location parameters. If empty, default value is |
beta |
vector of the scale parameters |
coef |
vector of the coefficients of the linear combination of the LAPLACE random variables.
If |
niid |
scalar convolution coeficient |
Characteristic function cf(t) of a linear combination
of independent LAPLACE random variables.
Ver.: 08-Aug-2021 16:19:30 (consistent with Matlab CharFunTool v1.5.1, 16-Aug-2018 16:00:43).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Laplace_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Laplace(),
cfS_Rectangular(),
cfS_Student(),
cfS_TSP(),
cfS_Trapezoidal(),
cfS_Triangular(),
cfS_Wigner(),
cfX_ChiSquare(),
cfX_Exponential(),
cfX_FisherSnedecor(),
cfX_Gamma(),
cfX_InverseGamma(),
cfX_LogNormal(),
cf_ArcsineSymmetric(),
cf_BetaNC(),
cf_BetaSymmetric(),
cf_Beta(),
cf_ChiSquare(),
cf_Exponential(),
cf_FisherSnedecorNC(),
cf_FisherSnedecor(),
cf_Gamma(),
cf_InverseGamma(),
cf_LogRV_BetaNC(),
cf_LogRV_Beta(),
cf_LogRV_ChiSquareNC(),
cf_LogRV_ChiSquare(),
cf_LogRV_FisherSnedecorNC(),
cf_LogRV_FisherSnedecor(),
cf_LogRV_MeansRatioW(),
cf_LogRV_MeansRatio(),
cf_LogRV_WilksLambdaNC(),
cf_LogRV_WilksLambda(),
cf_Normal(),
cf_RectangularSymmetric(),
cf_Student(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric(),
cf_TriangularSymmetric(),
cf_vonMises()
## EXAMPLE1
# CF of the Laplace RV
mu <- 0
beta <- 1
t <- seq(from = -10,
to = 10,
length.out =201)
plotReIm(function(t)
cf_Laplace(t, mu, beta),
t,
title = "Characteristic function of the Laplace RVs")
##EXAMPLE2
# PDF/CDF of the Laplace RV
mu <- 0
beta <- 1
x <- seq(-5, 5, length.out = 101)
prop <- c(0.80, 0.85, 0.90, 0.925, 0.95, 0.975, 0.99, 0.995, 0.999)
cf <- function(t)
cf_Laplace(t, mu, beta)
result <- cf2DistGP(cf, x, prob)
##EXAMPLE3
# PDF/CDF of the linear combination of Laplace RVs
mu <- c(-4, -1, 2, 3)
beta <- c(0.1, 0.2, 0.3, 0.4)
coef <- c(1, 2, 3, 4)
prob <- c(0.80, 0.85, 0.90, 0.925, 0.95, 0.975, 0.99, 0.995, 0.999)
cf <- function(t)
cf_Laplace(t, mu, beta, coef)
options <- list()
options$N <- 2^12
result <- cf2DistGP(cf,prob=prob,options=options)
## EXAMPLE 4
# PDF/CDF of the linear combination of the Laplace RVs
mu <- c(-10, 10, 20, 30, 40)
beta <- c(1, 2, 3, 4, 5)
coef <- c(1/2, 1, 3/4, 5, 1)
prop <- c(0.80, 0.85, 0.90, 0.925, 0.95, 0.975, 0.99, 0.995, 0.999)
cf <- function(t)
cf_Laplace(t, mu, beta, coef)
options <- list()
options$N <- 2^12
result <- cf2DistGP(cf,c(),prob,options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.