| cf_Gamma | R Documentation |
cf_Gamma(t, alpha, beta, coef, niid) evaluates the characteristic function
of a linear combination (resp. convolution) of independent GAMMA random variables.
That is, cf_Gamma evaluates the characteristic function cf(t)
of Y =sum_{i=1}^N coef_i * X_i, where X_i ~ Gamma(\alpha_i,\beta_i)
are inedependent RVs, with the shape parameters \alpha_i > 0
and the rate parameters \beta_i > 0, for i = 1,...,N.
The characteristic function of Y is defined by
cf(t) = Prod( (1 - i*t*coef(i)/\beta(i))^(-\alpha(i)) ).
cf_Gamma(t, alpha, beta, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
alpha |
the shape parameter |
beta |
the rate ( |
coef |
- vector of the coefficients of the linear combination
of the GAMMA random variables. If coef is scalar,
it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient |
PARAMETRIZATION:
Notice that there are three different parametrizations for GAMMA distribution in common use:
i) With a shape parameter k and a scale parameter theta.
ii) With a shape parameter \alpha = k and an inverse scale parameter \beta = 1/\theta,
called a rate parameter.
iii) With a shape parameter k and a mean parameter \mu = k/\beta.
In each of these three forms, both parameters are positive real numbers.
Here, cf_Gamma implements the shape-rate parametrization with parameters alpha
and beta, respectively.
SPECIAL CASES:
1) If X ~ Gamma(1,\lambda) (shape-rate parametrization), then X has an exponential distribution
with rate parameter lambda.
2) If X ~ Gamma(df/2,1/2)(shape-rate parametrization), then X ~ ChiSquared(df),
the chi-squared distribution with df degrees offreedom. Conversely,
if Q ~ ChiSquared(df) and c is a positive constant, then cQ ~ Gamma(df/2,1/2c).
3) If X ~ Gamma(\alpha,\theta) and Y ~ Gamma(\beta,\theta) are independently distributed,
then X/(X + Y) has a beta distribution with parameters \alpha and \beta.
Characteristic function cf(t) of a linear combination of independent GAMMA random variables.
Ver.: 16-Sep-2018 18:26:34 (consistent with Matlab CharFunTool v1.3.0, 10-May-2017 18:11:50).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Gamma_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Laplace(),
cfS_Rectangular(),
cfS_Student(),
cfS_TSP(),
cfS_Trapezoidal(),
cfS_Triangular(),
cfS_Wigner(),
cfX_ChiSquare(),
cfX_Exponential(),
cfX_FisherSnedecor(),
cfX_Gamma(),
cfX_InverseGamma(),
cfX_LogNormal(),
cf_ArcsineSymmetric(),
cf_BetaNC(),
cf_BetaSymmetric(),
cf_Beta(),
cf_ChiSquare(),
cf_Exponential(),
cf_FisherSnedecorNC(),
cf_FisherSnedecor(),
cf_InverseGamma(),
cf_Laplace(),
cf_LogRV_BetaNC(),
cf_LogRV_Beta(),
cf_LogRV_ChiSquareNC(),
cf_LogRV_ChiSquare(),
cf_LogRV_FisherSnedecorNC(),
cf_LogRV_FisherSnedecor(),
cf_LogRV_MeansRatioW(),
cf_LogRV_MeansRatio(),
cf_LogRV_WilksLambdaNC(),
cf_LogRV_WilksLambda(),
cf_Normal(),
cf_RectangularSymmetric(),
cf_Student(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric(),
cf_TriangularSymmetric(),
cf_vonMises()
## EXAMPLE 1
# CF of a linear combination of independent Gamma RVs
coef <- 1 / (((1:50) - 0.5) * pi) ^ 2
plot(
1:50,
coef,
xlab = "",
ylab = "",
type = "p",
pch = 20,
col = "blue",
cex = 1,
main = expression('Coefficients of the linear combination of GAMMA RVs')
)
lines(1:50, coef, col = "blue")
alpha <- 5 / 2
beta <- 1 / 2
t <- seq(from = -10,
to = 10,
length.out = 201)
plotReIm(function(t)
cf_Gamma(t, alpha, beta, coef),
t,
title = "Characteristic function of the linear combination of GAMMA RVs")
## EXAMPLE 2
# PDF/CDF from the CF by cf2DistGP
alpha <- 5 / 2
beta <- 1 / 2
coef <- 1 / (((1:50) - 0.5) * pi) ^ 2
cf <- function(t)
cf_Gamma(t, alpha, beta, coef)
options <- list()
options$N <- 2 ^ 10
options$xMin <- 0
result <- cf2DistGP(cf = cf, options = options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.