View source: R/cf_Exponential.R
cf_Exponential | R Documentation |
cf_Exponential(t, lambda)
evaluates characteristic function of a linear combination
(resp. convolution) of independent EXPONENTIAL random variables.
That is, cf_Exponential
evaluates the characteristic function cf(t)
of Y = sum_{i=1}^N coef_i * X_i
, where X_i ~ EXP(\lambda_i)
are inedependent RVs,
with the rate parameters \lambda_i > 0
, for i = 1,...,N
.
The characteristic function of Y
is defined by
cf(t) = Prod( \lambda_i / (\lambda_i - 1i*t) ).
cf_Exponential(t, lambda, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
lambda |
vector of the 'rate' parameters |
coef |
vector of the coefficients of the linear combination
of the GAMMA random variables. If |
niid |
scalar convolution coeficient |
Characteristic function cf(t)
of a linear combination of independent EXPONENTIAL random variables.
Ver.: 16-Sep-2018 18:16:12 (consistent with Matlab CharFunTool v1.3.0, 10-May-2017 18:11:50).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Exponential_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE 1
# CF of the Exponential distribution with lambda = 5
lambda <- 5
t <- seq(from = -50,
to = 50,
length.out = 501)
plotReIm(
function(t)
cfX_Exponential(t, lambda),
t,
title = expression('CF of the Exponential distribution with' ~ lambda ~ '= 5')
)
## EXAMPLE 2
# CF of a linear combination of independent Exponential RVs
coef <- 1 / (((1:50) - 0.5) * pi) ^ 2
lambda <- 5
t <- seq(from = -100,
to = 100,
length.out = 201)
plotReIm(function(t)
cfX_Exponential(t, lambda, coef),
t,
title = "CF of a linear combination of EXPONENTIAL RVs")
## EXAMPLE 3
# PDF/CDF of the compound Binomial-Exponential distribution
n <- 25
p <- 0.3
coef <- 1 / (((1:50) - 0.5) * pi) ^ 2
lambda <- 5
cfX <- function(t)
cf_Exponential(t, lambda, coef)
cf <- function(t)
cfN_Binomial(t, n, p, cfX)
x <- seq(from = 0,
to = 5,
length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$isCompound <- TRUE
options$N <- 2 ^ 12
options$SixSigmaRule <- 15
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.