View source: R/cf_FisherSnedecorNC.R
cf_FisherSnedecorNC | R Documentation |
cf_FisherSnedecorNC(t, df1, df2, delta, coef, niid, tol)
evaluates characteristic function
of a linear combination (resp. convolution) of independent non-central Fisher-Snedecor random variables,
with distributions F(df1_i,df2_i,\delta_i)
.
That is, cf_FisherSnedecorNC evaluates the characteristic function
cf(t)
of Y = coef_i*X_1 +...+ coef_N*X_N
, where X_i ~ F(df1_i,df2_i,\delta_i)
are inedependent RVs, with df1_i
and df2_i
degrees of freedom,
and the noncentrality parameters \delta_i >0
, for i = 1,...,N
.
Random variable X
has non-central F
distribution with df1
and df2
degrees of freedom and the non-centrality parameter \delta
if
X = (X1/df1)/(X2/df2)
where X1 ~ ChiSquare(df1, \delta)
,
i.e. with non-central chi-square distribution, and X2 ~ ChiSquare(df2)
is independent
random variable with central chi-square distribution.
The characteristic function of X ~ F(df1,df2,delta) is Poisson mixture of the CFs of the scaled central F RVs of the form
cf(t) = cf_FisherSnedecorNC(t,df1,df2,\delta) = exp(-\delta/2) sum_{j=1}^Inf (\delta/2)^j/j! * cf_FisherSnedecor(t*(df1+2*j)/df1,df1+2*j,df2),
where cf_FisherSnedecor(t,df1,df2)
are the CFs of central F RVs with parameters df1
and df2
.
Hence,the characteristic function of Y = coef(1)*Y1 + ... + coef(N)*YN is cf_Y(t) = cf_Y1(coef(1)*t) * ... *cf_YN(coef(N)*t)
,
where cf_Yi(t)
is evaluated with the parameters df1_i
, df2_i
, and \delta_i
.
cf_FisherSnedecorNC(t, df1, df2, delta, coef, niid, tol)
t |
vector or array of real values, where the CF is evaluated. |
df1 |
vector of the degrees of freedom |
df2 |
vector of the degrees of freedom |
delta |
non-centrality parameter. |
coef |
vector of the coefficients of the linear combination of the Beta distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient |
tol |
tolerance factor for selecting the Poisson weights, i.e. such that |
Characteristic function cf(t)
of a linear combination
of independent non-central Fisher-Snedecor random variables.
Ver.: 20-Sep-2018 00:03:52 (consistent with Matlab CharFunTool v1.3.0, 10-Aug-2018 16:04:30).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Noncentral_F-distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
Other Non-central Probability Distribution:
cf_BetaNC()
,
cf_LogRV_BetaNC()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_FisherSnedecorNC()
## EXAMPLE 1
# CF of the non-central F RV with delta = 1
df1 <- 3
df2 <- 5
delta <- 1
t <- seq(from = -10,
to = 10,
length.out = 201)
plotReIm(function(t)
cf_FisherSnedecorNC(t, df1, df2, delta), t, title = 'CF of non-central Fisher Snedecor RV')
## EXAMPLE 2
# CDF/PDF of the non-central F RV with delta = 1
df1 <- 3
df2 <- 5
delta <- 1
cf <- function(t)
cf_FisherSnedecorNC(t, df1, df2, delta)
options <- list()
options$xMin <- 0
result <- cf2DistGP(cf = cf, options = options)
## EXAMPLE 3
# CDF/PDF of the linear combination of non-central F RVs
df1 <- c(5, 4, 3)
df2 <- c(3, 4, 5)
delta <- c(0, 1, 2)
coef <- 1 / 3
cf <- function(t)
cf_FisherSnedecorNC(t, df1, df2, delta, coef)
options <- list()
options$xMin <- 0
result <- cf2DistGP(cf = cf, options = options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.