cf_BetaNC | R Documentation |
cf_BetaNC(t, alpha, beta, delta, coef, niid, tol, type)
evaluates characteristic function
of a linear combination (resp. convolution) of independent non-central BETA random variables (Type I and Type II),
with distributions Beta(\alpha_i,\beta_i,\delta_i)
defined on the interval (0,1)
,
and specified by the parameters \alpha_i
, \beta_i
, and the noncentrality parameters delta_i
.
The noncentral beta distribution has two types. The Type I is
the distribution of the random variable B_1 = X_1/(X_1+X_2)
,
X1 ~ Gamma(\alpha, \gamma, \delta)
and X_2 ~ Gamma(\beta, \gamma)
.
The Type II noncentral beta distribution is the distribution of the ratio random
variable B_2 = X_1/(X_1+X_2)
, where X_1 ~ Gamma(\alpha,\gamma)
and
X_2 ~ Gamma(\beta, \gamma, \delta)
.
That is, cf_BetaNC
evaluates the characteristic function cf(t)
of Y = sum_{i=1}^N coef_i * X_i
, where X_i ~ Beta(\alpha_i,\beta_i,\delta_i)
are independent RVs, with the shape parameters \alpha_i > 0
and \beta_i > 0
,
and the noncentrality parameters \delta_i > 0
, for i = 1,...,N
.
For Type I noncentral beta distribution, the characteristic function
of X ~ Beta(\alpha, \beta, \delta)
is Poisson mixture of the central Beta CFs
of the form
cf(t) = cf_BetaNC(t, \alpha, \beta, \delta) = exp(-\delta/2) sum_{j=1}^Inf (\delta/2)^j/j! * cf_beta(\alpha+j, \beta)
where cf_beta(\alpha+j, \beta)
are the CFs of central Beta RVs with parameters alpha
+j and beta
.
For Type I noncentral beta distribution, the characteristic function of
X ~ Beta(\alpha, \beta, \delta)
is Poisson mixture of the central Beta CFs of the form
cf(t) = cf_BetaNC(t, \alpha, \beta, \delta) = exp(-\delta/2) sum_{j=1}^Inf (\delta/2)^j/j! * cf_beta(\alpha, \beta+j)
where cf_beta(\alpha, \beta+j)
are the CFs of central Beta RVs with parameters \alpha+j
and \beta
.
Hence,the characteristic function of Y = coef(1)*X_1 + ... + coef(N)*X_N
is
cf(t) = cf_X_1(coef(1)*t) * ... * cf_X_N(coef(N)*t),
where X_i ~ BetaNC(alpha(i),beta(i),delta(i)) with cf_X_i(t)
.
cf_BetaNC(t, alpha, beta, delta, coef, niid, tol, type)
t |
vector or array of real values, where the CF is evaluated. |
alpha |
vector of the 'shape' parameters |
beta |
vector of the 'shape' parameters |
delta |
vector of the non-centrality parameters |
coef |
vector of the coefficients of the linear combination of the Beta distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient |
tol |
tolerance factor for selecting the Poisson weights, i.e. such that |
type |
indicator of the type of the noncentral distribution
(Type I = 1 or Type II = 2). If empty, default value is |
Characteristic function cf(t)
of a linear combination
of independent non-central BETA random variables.
Ver.: 19-Sep-2018 23:51:40 (consistent with Matlab CharFunTool v1.3.0, 07-Feb-2018 13:53:40).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Noncentral_beta_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
Other Non-central Probability Distribution:
cf_FisherSnedecorNC()
,
cf_LogRV_BetaNC()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_FisherSnedecorNC()
## EXAMPLE 1
# CF of non-central Beta RV with delta = 1
alpha <- 1
beta <- 3
delta <- 1
t <- seq(from = -50,
to = 50,
length.out = 201)
functions_to_plot <- list(function(t) cf_BetaNC(t, alpha, beta, delta, type = 1),
function(t) cf_BetaNC(t, alpha, beta, delta, type = 2))
plotReIm2(functions_to_plot, list(t, t), title = 'CF of Type I and II Beta RV')
## EXAMPLE 2
# CDF/PDF of non-central Beta RV with delta = 1
alpha <- 1
beta <- 3
delta <- 1
cf <- function(t)
cf_BetaNC(t, alpha, beta, delta)
options <- list()
options$xMin <- 0
options$xMax <- 1
result <- cf2DistGP(cf = cf, options = options)
## EXAMPLE 3
# CDF/PDF of the linear combination of non-central Beta RVs
alpha <- c(5, 4, 3)
beta <- c(3, 4, 5)
delta <- c(0, 1, 2)
coef <- 1 / 3
cf <- function(t)
cf_BetaNC(t, alpha, beta, delta, coef)
options <- list()
options$xMin <- 0
options$xMax <- 1
result <- cf2DistGP(cf = cf, options = options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.