View source: R/cf_LogRV_ChiSquare.R
cf_LogRV_ChiSquare | R Documentation |
cf_LogRV_ChiSquare(t, df, coef, niid)
evaluates characteristic function of a linear combination
(resp. convolution) of independent LOG-TRANSFORMED CHI-SQUARE random variables (RVs)
log(X)
, where X ~ ChiSquare(df)
is central CHI-SQUARE distributed RV with df degrees of freedom.
That is, cf_LogRV_ChiSquare
evaluates the characteristic function cf(t)
of Y = coef_1*log(X_1) +...+ coef_N*log(X_N)
, where X_i ~ ChiSquare(df_i)
, with df_i > 0
degrees of freedom, for i = 1,...,N
.
The characteristic function of Y = log(X)
, with X ~ ChiSquare(df)
is defined by
cf_Y(t) = E(exp(1i*t*Y)) = E(exp(1i*t*log(X))) = E(X^(1i*t)).
That is, the characteristic function can be derived from expression for the r-th moment of X
,
E(X^r)
by using (1i*t)
instead of r
.
In particular, the characteristic function of Y = log(X)
is
cf_Y(t) = 2^(1i*t) * gamma(df/2 + 1i*t) / gamma(df/2).
Hence,the characteristic function of Y = coef_1*X_1 +...+ coef_N*X_N
is
cf_Y(t) = cf_1(coef_1*t) *...* cf_N(coef_N*t),
where cf_i(t)
is the characteristic function of the ChiSquare distribution with df_i
degrees of freedom.
cf_LogRV_ChiSquare(t, df, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
df |
vector of the degrees of freedom |
coef |
vector of the coefficients of the linear combination of the logGamma random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient |
Characteristic function cf(t)
of a linear combination
of independent LOG-TRANSFORMED CHI-SQUARE random variables.
Ver.: 16-Sep-2018 18:34:40 (consistent with Matlab CharFunTool v1.3.0, 02-Jun-2017 12:08:24).
[1] PHILLIPS, P.C.B. The true characteristic function of the F distribution. Biometrika (1982), 261-264.
[2] WITKOVSKY, V.: On the exact computation of the density and of the quantiles of linear combinations of t and F random variables. Journal of Statistical Planning and Inference 94 (2001), 1–13.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Chi-squared_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE 1
# CF of a weighted linear combination of independent log-ChiSquare RVs
coef <- c(1, 2, 3, 4, 5)
weight <- coef / sum(coef)
df <- c(1, 2, 3, 4, 5)
t <- seq(from = -20,
to = 20,
length.out = 1001)
plotReIm(function(t)
cf_LogRV_ChiSquare(t, df, weight),
t,
title = 'CF of a linear combination of minus log-ChiSquare RVs')
## EXAMPLE 2
# PDF/CDF of a linear combination of independent log-ChiSquare RVs
coef <- c(1, 2, 3, 4, 5)
weight <- coef / sum(coef)
df <- c(1, 2, 3, 4, 5)
cf <- function(t)
cf_LogRV_ChiSquare(t, df, weight)
options <- list()
options$N <- 2 ^ 12
prob <- c(0.9, 0.95, 0.99)
result <- cf2DistGP(cf = cf, prob = prob, options = options)
str(result)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.