cf_Beta | R Documentation |
cf_Beta(t, alpha, beta, coef, niid)
evaluates the characteristic function of a linear combination
(resp. convolution) of independent BETA random variables defined on the interval (0,1)
.
That is, cf_Beta
evaluates the characteristic function cf(t)
of Y = sum_{i=1}^N coef_i * X_i
, where X_i ~ Beta(\alpha_i,\beta_i)
are independent RVs, with the shape parameters \alpha_i > 0
and \beta_i >0
,
and with the mean = \alpha_i / (\alpha_i + \beta)_i
and the
variance = (\alpha_i*\beta_i) / ((\alpha_i+\beta_i)^2*(\alpha_i+\beta_i+1))
, for i = 1,...,N
.
The characteristic function of X ~ Beta(\alpha,\beta)
is
cf(t) = cf_Beta(t,\alpha,\beta) = 1F1(\alpha; \alpha + \beta; i*t),
where 1F1(.;.;.)
is the Confluent hypergeometric function. Hence,
the characteristic function of Y = coef(1)*X_1 + ... + coef(N)*X_N
is cf(t) = cf_X_1(coef(1)*t) * ... * cf_X_N(coef(N)*t)
,
where X_i ~ Beta(\alpha(i),\beta(i))
with cf_X_i(t)
.
cf_Beta(t, alpha, beta, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
alpha |
vector of the 'shape' parameters |
beta |
vector of the 'shape' parameters |
coef |
vector of the coefficients of the linear combination of the Beta distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient |
Characteristic function cf(t)
of a linear combination of independent BETA random variables.
Ver.: 16-Sep-2018 18:03:12 (consistent with Matlab CharFunTool v1.3.0, 14-May-2017 12:08:24).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Beta_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE 1
# CF of a Beta RV
alpha <- 1
beta <- 3
t <- seq(from = -50,
to = 50,
length.out = 501)
plotReIm(function(t)
cf_Beta(t, alpha, beta), t, title = "CF of a Beta RVs")
## EXAMPLE 2
# PDF/CDF of a Beta RV
alpha <- 1
beta <- 3
cf <- function(t) {
cf_Beta(t, alpha, beta)
}
options <- list()
options$N <- 2 ^ 12
options$xMin <- 0
options$xMax <- 1
x <- seq(from = 0,
to = 1,
length.out = 201)
prob <- c(0.9, 0.95, 0.99)
result <- cf2DistGP(cf, x, prob, options)
## EXAMPLE 3
# CF of a linear combination of independent Beta RVs
alpha <- 1
beta <- 3
coef <- 1 / (((1:50) - 0.5) * pi) ^ 2
weights <- coef / sum(coef)
t <- seq(from = -100,
to = 100,
length.out = 501)
plotReIm(function(t)
cf_Beta(t, alpha, beta, weights),
t,
title = "CF of a weighted linear combination of independent Beta RVs")
## EXAMPLE 4
# PDF/CDF of a weighted linear combination of independent Beta RVs
alpha <- 1
beta <- 3
coef <- 1 / (((1:50) - 0.5) * pi) ^ 2
weights <- coef / sum(coef)
cf <- function(t) {
cf_Beta(t, alpha, beta, weights)
}
options <- list()
options$xMin <- 0
options$xMax <- 1
x <- seq(from = 0,
to = 1,
length.out = 201)
prob <- c(0.9, 0.95, 0.99)
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.