cf_Normal | R Documentation |
cf_Normal(t, mu, sigma, coef, niid)
evaluates the characteristic function
cf(t)
of a linear combination (resp. convolution) of independent NORMAL random variables.
That is, cf_Normal
evaluates the characteristic function cf(t)
of Y = sum_{i=1}^N coef_i * X_i
, where X_i ~ N(\mu_i,\sigma_i)
are inedependent RVs,
with means \mu_i
and standard deviations \sigma_i > 0
, for i = 1,...,N
.
The characteristic function of Y
is defined by
cf(t) = exp(1i*(coef'*\mu)*t - (1/2)*(coef^2'*\sigma^2)*t^2).
cf_Normal(t, mu, sigma, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
mu |
vector of the 'location' parameters |
sigma |
vector of the 'scale' parameters |
coef |
vector of the coefficients of the linear combination of the Normal random variables.
If |
niid |
scalar convolution coeficient |
Characteristic function cf(t)
of a linear combination
of independent NORMAL random variables.
The characteristic function of a lienar combination of independent Normal random variables has well known exact form.
Ver.: 16-Sep-2018 18:37:23 (consistent with Matlab CharFunTool v1.3.0, 10-May-2017 18:11:50).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Normal_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE 1
# CF of a linear combination of K=100 independent Norma RVs
coef <- 1 / (((1:50) - 0.5) * pi) ^ 2
plot(
1:50,
coef,
xlab = "",
ylab = "",
type = "p",
pch = 20,
col = "blue",
cex = 1,
main = expression('Coefficients of the linear combination of' ~ chi ^ 2 ~ 'RVs with DF=1')
)
lines(1:50, coef, col = "blue")
mu <- seq(from = -3,
to = 3,
length.out = 50)
sigma <- seq(from = 0.1,
to = 1.5,
length.out = 50)
t <- seq(from = -100,
to = 100,
length.out = 2001)
plotReIm(function(t)
cf_Normal(t, mu, sigma, coef),
t,
title = "Characteristic function of the linear combination of Normal RVs")
## EXAMPLE 2
# PDF/CDF from the CF by cf2DistGP
mu <- seq(from = -3,
to = 3,
length.out = 50)
sigma <- seq(from = 0.1,
to = 1.5,
length.out = 50)
coef <- 1 / (((1:50) - 0.5) * pi) ^ 2
cf <- function(t)
cf_Normal(t, mu, sigma, coef)
options <- list()
options$N <- 2 ^ 10
options$SixSigmaRule <- 8
prob <- c(0.01, 0.05, 0.1, 0.5, 0.9, 0.950, 0.99)
result <- cf2DistGP(cf = cf, prob = prob, options = options)
result
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.