| cfS_Laplace | R Documentation |
beta>0.cfS_Laplace(t, beta, coef, niid) evaluates the characteristic function of a linear
combination of independent (symmetric) Laplace distributed random variables.
That is, cfS_Laplace evaluates the characteristic function
cf(t) of Y=sum_{i=1}^N coef_i * X_i, where X_i ~ Laplace (0,beta_i)
are independent zero-mean RVs with the scale parameters
beta_i > 0, for i = 1,...,N
cfS_Laplace(t, beta, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
beta |
vector of the scale parameters |
coef |
vector of the coefficients of the linear combination of the LAPLACE random variables.
If |
niid |
scalar convolution coeficient |
Characteristic function cf(t) of of a linear
combination of independent (symmetric) LAPLACE sistributed random variables.
Ver.: 10-Aug-2021 17:21:39 (consistent with Matlab CharFunTool v1.5.1, 16-Aug-2018 16:00:43).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Normal_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Rectangular(),
cfS_Student(),
cfS_TSP(),
cfS_Trapezoidal(),
cfS_Triangular(),
cfS_Wigner(),
cfX_ChiSquare(),
cfX_Exponential(),
cfX_FisherSnedecor(),
cfX_Gamma(),
cfX_InverseGamma(),
cfX_LogNormal(),
cf_ArcsineSymmetric(),
cf_BetaNC(),
cf_BetaSymmetric(),
cf_Beta(),
cf_ChiSquare(),
cf_Exponential(),
cf_FisherSnedecorNC(),
cf_FisherSnedecor(),
cf_Gamma(),
cf_InverseGamma(),
cf_Laplace(),
cf_LogRV_BetaNC(),
cf_LogRV_Beta(),
cf_LogRV_ChiSquareNC(),
cf_LogRV_ChiSquare(),
cf_LogRV_FisherSnedecorNC(),
cf_LogRV_FisherSnedecor(),
cf_LogRV_MeansRatioW(),
cf_LogRV_MeansRatio(),
cf_LogRV_WilksLambdaNC(),
cf_LogRV_WilksLambda(),
cf_Normal(),
cf_RectangularSymmetric(),
cf_Student(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric(),
cf_TriangularSymmetric(),
cf_vonMises()
Other Symmetric Probability Distribution:
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Rectangular(),
cfS_Student(),
cfS_Trapezoidal(),
cf_ArcsineSymmetric(),
cf_BetaSymmetric(),
cf_RectangularSymmetric(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric()
## EXAMPLE 1
# CF of the linear combination of symmetric Laplace RV
beta <- 1
t <- seq(from = -10,
to = 10,
length.out =201)
plotReIm(function(t)
cfS_Laplace(t, beta),
t,
title = "Characteristic function of the symmetric Laplace RV")
##EXAMPLE2
# PDF/CDF of the symmetric Laplace RVs
beta <- 1
x <- seq(-5, 5, length.out = 101)
prop <- c(0.80, 0.85, 0.90, 0.925, 0.95, 0.975, 0.99, 0.995, 0.999)
cf <- function(t)
cfS_Laplace(t, beta)
result <- cf2DistGP(cf, x, prob)
##EXAMPLE3
# PDF/CDF of the linear combination of symmetric Laplace RVs
beta <- c(0.1, 0.2, 0.3, 0.4)
coef <- c(1, 2, 3, 4)
prop <- c(0.80, 0.85, 0.90, 0.925, 0.95, 0.975, 0.99, 0.995, 0.999)
cf <- function(t)
cfS_Laplace(t, beta, coef)
options <- list()
options$N <- 2^12
result <- cf2DistGP(cf, c(), prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.