View source: R/cfS_Trapezoidal.R
cfS_Trapezoidal | R Documentation |
cfS_Trapezoidal(t, lambda, coef, niid)
evaluates
the characteristic function of the zero-mean symmetric TRAPEZOIDAL distribution defined on the interval (-1,1)
.
cfS_Trapezoidal
is an ALIAS of the more general function
cf_TrapezoidalSymmetric
, used to evaluate the characteristic function
of a linear combination of independent TRAPEZOIDAL distributed random variables.
The characteristic function of X ~ TrapezoidalSymmetric(\lambda)
, where
0\le \lambda \le 1
is the offset parameter is defined by
cf(t) = (sin(w*t)/(w*t))*(sin((1-w)*t)/((1-w)*t))
,
where w = (1+\lambda)/2
.
cfS_Trapezoidal(t, lambda, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
lambda |
parameter of the offset, |
coef |
vector of coefficients of the linear combination of Trapezoidal distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient. |
Characteristic function cf(t)
of the zero-mean symmetric TRAPEZOIDAL distribution.
Ver.: 16-Sep-2018 19:10:20 (consistent with Matlab CharFunTool v1.3.0, 02-Jun-2017 12:08:24).
WITKOVSKY V. (2016). Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models. Acta IMEKO, 5(3), 32-44.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Trapezoidal_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
Other Symmetric Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cf_ArcsineSymmetric()
,
cf_BetaSymmetric()
,
cf_RectangularSymmetric()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
## EXAMPLE1
# CF of the symmetric Trapezoidal distribution, lambda = 0.5
lambda <- 0.5
t <- seq(-50, 50, length.out = 501)
plotReIm(function(t)
cfS_Trapezoidal(t, lambda), t,
title = "CF of the symmetric Trapezoidal distribution with lambda = 0.5")
## EXAMPLE2
# PDF/CDF of the symmetric Trapezoidal distribution, lambda = 0.5
lambda <- 0.5
cf <- function(t)
cfS_Trapezoidal(t, lambda)
x <- seq(-1, 1, length.out = 100)
xRange <- 2
options <- list()
options$N <- 2 ^ 10
options$dx <- 2 / pi / xRange
result <- cf2DistGP(cf = cf, x = x, options = options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.