cf_Student | R Documentation |
cf_Student(t, df, mu, sigma, coef, niid)
evaluates the characteristic function cf(t)
of a linear combination (resp. convolution) of independent (location and scale shifted) STUDENT's t random variables.
That is, cf_Student
evaluates the characteristic function cf(t)
of Y = sum_{i=1}^N coef_i * (mu_i + sigma_i * X_i)
, where X_i ~ t(df_i)
are inedependent (symmetric) t-distributed RVs, with df_i > 0
degrees of freedom, for i = 1,...,N
.
The characteristic function of the random variable \mu + \sigma*X
, where X ~ t(df)
is given by
cf(t) = exp(1i*t*mu) * besselk(df/2,abs(sigma*t)*sqrt(df),1) * exp(-abs(sigma*t)*sqrt(df)) * (sqrt(df)*abs(aigma*t))^(df/2) / 2^(df/2-1)/gamma(df/2).
Hence, the characteristic function of Y = coef_1*(\mu_1+\sigma_1*X_1) +...+ coef_N*(\mu_N+\sigma_N*X_N)
is cf_Y(t) = exp(1i*\mu*t) * (cf_1(coef_1*\sigma_1*t) *...* cf_N(coef_N*\sigma_N*t))
, where cf_i(t)
is the characteristic function of X_i ~ t(df_i)
.
cf_Student(t, df, mu, sigma, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
df |
the degrees of freedom, |
mu |
vector of location parameters, |
sigma |
vector of scale parameters, |
coef |
vector of the coefficients of the linear combination of the STUDENT's t random variables.
If |
niid |
scalar convolution coeficient, such that |
Characteristic function cf(t)
of a linear combination
of independent STUDENT's t random variables.
Ver.: 16-Sep-2018 18:38:54 (consistent with Matlab CharFunTool v1.3.0, 02-Jun-2017 12:08:24).
WITKOVSKY V. (2016). Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models. Acta IMEKO, 5(3), 32-44.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Student's_t-distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE 1
# CF of a linear combination of independent Student's t RVs
coef <- 1 / (1:50)
df <- seq(50, 1, -1)
t <- seq(from = -1,
to = 1,
length.out = 201)
plotReIm(function(t)
cf_Student(t, df, coef),
t,
title = "Characteristic function of the linear combination of t RVs")
## EXAMPLE 2
# CDF/PDF of a linear combination of independent Student's t RVs
coef <- 1 / (1:50)
df <- seq(50, 1, -1)
cf <- function(t)
cf_Student(t, df, coef)
x <- seq(from = -50,
to = 50,
length.out = 100)
prob <- c(0.9, 0.95, 0.975, 0.99)
options <- list()
options$N <- 2 ^ 12
result <- cf2DistGP(cf, x, prob, options)
result
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.