| cf_Student | R Documentation |
cf_Student(t, df, mu, sigma, coef, niid) evaluates the characteristic function cf(t)
of a linear combination (resp. convolution) of independent (location and scale shifted) STUDENT's t random variables.
That is, cf_Student evaluates the characteristic function cf(t)
of Y = sum_{i=1}^N coef_i * (mu_i + sigma_i * X_i), where X_i ~ t(df_i)
are inedependent (symmetric) t-distributed RVs, with df_i > 0 degrees of freedom, for i = 1,...,N.
The characteristic function of the random variable \mu + \sigma*X, where X ~ t(df) is given by
cf(t) = exp(1i*t*mu) * besselk(df/2,abs(sigma*t)*sqrt(df),1) * exp(-abs(sigma*t)*sqrt(df)) * (sqrt(df)*abs(aigma*t))^(df/2) / 2^(df/2-1)/gamma(df/2).
Hence, the characteristic function of Y = coef_1*(\mu_1+\sigma_1*X_1) +...+ coef_N*(\mu_N+\sigma_N*X_N)
is cf_Y(t) = exp(1i*\mu*t) * (cf_1(coef_1*\sigma_1*t) *...* cf_N(coef_N*\sigma_N*t)), where cf_i(t)
is the characteristic function of X_i ~ t(df_i).
cf_Student(t, df, mu, sigma, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
df |
the degrees of freedom, |
mu |
vector of location parameters, |
sigma |
vector of scale parameters, |
coef |
vector of the coefficients of the linear combination of the STUDENT's t random variables.
If |
niid |
scalar convolution coeficient, such that |
Characteristic function cf(t) of a linear combination
of independent STUDENT's t random variables.
Ver.: 16-Sep-2018 18:38:54 (consistent with Matlab CharFunTool v1.3.0, 02-Jun-2017 12:08:24).
WITKOVSKY V. (2016). Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models. Acta IMEKO, 5(3), 32-44.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Student's_t-distribution.
Other Continuous Probability Distribution:
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Laplace(),
cfS_Rectangular(),
cfS_Student(),
cfS_TSP(),
cfS_Trapezoidal(),
cfS_Triangular(),
cfS_Wigner(),
cfX_ChiSquare(),
cfX_Exponential(),
cfX_FisherSnedecor(),
cfX_Gamma(),
cfX_InverseGamma(),
cfX_LogNormal(),
cf_ArcsineSymmetric(),
cf_BetaNC(),
cf_BetaSymmetric(),
cf_Beta(),
cf_ChiSquare(),
cf_Exponential(),
cf_FisherSnedecorNC(),
cf_FisherSnedecor(),
cf_Gamma(),
cf_InverseGamma(),
cf_Laplace(),
cf_LogRV_BetaNC(),
cf_LogRV_Beta(),
cf_LogRV_ChiSquareNC(),
cf_LogRV_ChiSquare(),
cf_LogRV_FisherSnedecorNC(),
cf_LogRV_FisherSnedecor(),
cf_LogRV_MeansRatioW(),
cf_LogRV_MeansRatio(),
cf_LogRV_WilksLambdaNC(),
cf_LogRV_WilksLambda(),
cf_Normal(),
cf_RectangularSymmetric(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric(),
cf_TriangularSymmetric(),
cf_vonMises()
## EXAMPLE 1
# CF of a linear combination of independent Student's t RVs
coef <- 1 / (1:50)
df <- seq(50, 1, -1)
t <- seq(from = -1,
to = 1,
length.out = 201)
plotReIm(function(t)
cf_Student(t, df, coef),
t,
title = "Characteristic function of the linear combination of t RVs")
## EXAMPLE 2
# CDF/PDF of a linear combination of independent Student's t RVs
coef <- 1 / (1:50)
df <- seq(50, 1, -1)
cf <- function(t)
cf_Student(t, df, coef)
x <- seq(from = -50,
to = 50,
length.out = 100)
prob <- c(0.9, 0.95, 0.975, 0.99)
options <- list()
options$N <- 2 ^ 12
result <- cf2DistGP(cf, x, prob, options)
result
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.