cfN_Geometric: Characteristic function of the Geometric distribution

View source: R/cfN_Geometric.R

cfN_GeometricR Documentation

Characteristic function of the Geometric distribution

Description

cfN_Geometric(t, p, type, cfX) evaluates the characteristic function cf(t) of the Geometric distribution.

The standard Geometric distribution (type = "standard" or "zero") is defined on non-negative integers k = 0,1, \ldots .

The shifted Geometric distribution (type = "shifted") is defined on positive integers k = 1,2, \ldots .

Both types are parametrized by the success probability parameter p in [0,1]), i.e. cfN_Geometric(t, p, "standard") = p / (1 - (1-p) * exp(1i*t)), cfN_Geometric(t, p, "shifted") = exp(1i*t) * (p / (1 - (1-p) * exp(1i*t))). For more details see [4].

cfN_Geometric(t, p, type, cfX) evaluates the compound characteristic function

cf(t) = Geometric(-1i*log(cfX(t)), p),

where cfX is function handle of the characteristic function cfX(t) of a continuous distribution and/or random variable X.

Note that such CF is characteristic function of the compound distribution, i.e. distribution of the random variable Y = X_1 + ... + X_N, where X_i ~ F_X are i.i.d. random variables with common CF cfX(t), and N ~ F_N is independent RV with its CF given by cfN(t).

Usage

cfN_Geometric(t, p = 1, type = "standard", cfX)

Arguments

t

vector or array of real values, where the CF is evaluated.

p

success probability, 0 \le p \le 1, default value p = 1.

type

standard = 1, shifted = 2, default type = standard.

cfX

function.

Value

Characteristic function cf(t) of the Geometric distribution.

Note

Ver.: 16-Sep-2018 19:00:04 (consistent with Matlab CharFunTool v1.3.0, 15-Nov-2016 13:36:26).

References

[1] WITKOVSKY V., WIMMER G., DUBY T. (2016). Computing the aggregate loss distribution based on numerical inversion of the compound empirical characteristic function of frequency and severity. Preprint submitted to Insurance: Mathematics and Economics.

[2] DUBY T., WIMMER G., WITKOVSKY V.(2016). MATLAB toolbox CRM for computing distributions of collective risk models. Preprint submitted to Journal of Statistical Software.

[3] WITKOVSKY V. (2016). Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models. Acta IMEKO, 5(3), 32-44.

[4] WIMMER G., ALTMANN G. (1999). Thesaurus of univariate discrete probability distributions. STAMM Verlag GmbH, Essen, Germany. ISBN 3-87773-025-6.

See Also

For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Geometric_distribution.

Other Discrete Probability Distribution: cfN_Binomial(), cfN_Delaporte(), cfN_GeneralizedPoisson(), cfN_Logarithmic(), cfN_NegativeBinomial(), cfN_Poisson(), cfN_PolyaEggenberger(), cfN_Quinkert(), cfN_Waring()

Examples

## EXAMPLE1
# CF of the Geometric distribution with the parameter p = 0.5
p <- 0.5
t <- seq(-10, 10, length.out = 501)
plotReIm(function(t)
        cfN_Geometric(t, p), t,
        title = "CF of the Geometric distribution with the parameter p = 0.5")

## EXAMPLE2
# CF of the Geometric distribution with the parameter p = 0.5, type = "shifted"
p <- 0.5
t <- seq(-10, 10, length.out = 501)
plotReIm(function(t)
        cfN_Geometric(t, p, "shifted"), t,
        title = "CF of the Geometric distribution with the parameter p = 0.5")

## EXAMPLE3
# CF of the compound Geometric-Exponential distribution
p <- 0.5
lambda <- 5
cfX <- function(t)
        cfX_Exponential(t, lambda)
t <- seq(-10, 10, length.out = 501)
plotReIm(function(t)
        cfN_Geometric(t, p, 1, cfX), t,
        title = "CF of the compound Geometric-Exponential distribution")

## EXAMPLE4
# PDF/CDF of the compound Geometric-Exponential distribution
p <- 0.5
lambda <- 5
cfX <- function(t)
        cfX_Exponential(t, lambda)
cf <- function(t)
        cfN_Geometric(t, p, cfX = cfX)
x <- seq(0, 4, length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$isCompound <- TRUE
result <- cf2DistGP(cf, x, prob, options)

gajdosandrej/CharFunToolR documentation built on June 3, 2024, 7:46 p.m.