View source: R/cf_RectangularSymmetric.R
cf_RectangularSymmetric | R Documentation |
cf_RectangularSymmetric(t, coef, niid)
evaluates the characteristic function cf(t)
of a linear combination (resp. convolution)of independent zero-mean symmetric RECTANGULAR
random variables defined on the interval (-1,1)
.
That is, cf_RectangularSymmetric
evaluates the characteristic function
cf(t)
of Y = sum_{i=1}^N coef_i * X_i
, where X_i ~ RectangularSymmetric
are independent uniformly distributed RVs defined on (-1,1)
, for all i = 1,...,N
.
The characteristic function of X ~ RectangularSymmetric
is defined by
cf(t) = cf_RectangularSymmetric(t) = sinc(t) = sin(t)/t.
cf_RectangularSymmetric(t, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
coef |
vector of the coefficients of the linear combination
of the Beta distributed random variables. If coef is scalar, it is
assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient |
Characteristic function cf(t)
of a linear combination
of independent zero-mean symmetric RECTANGULAR random variables.
Ver.: 16-Sep-2018 18:38:11 (consistent with Matlab CharFunTool v1.3.0, 02-Jun-2017 12:08:24).
WITKOVSKY V. (2016). Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models. Acta IMEKO, 5(3), 32-44.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Uniform_distribution_(continuous).
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
Other Symmetric Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_Trapezoidal()
,
cf_ArcsineSymmetric()
,
cf_BetaSymmetric()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
## EXAMPLE 1
# CF of the Rectangular distribution on (-1,1)
t <- seq(from = -50,
to = 50,
length.out = 201)
plotReIm(function(t)
cf_RectangularSymmetric(t),
t,
title = "CF of the Rectangular distribution on (-1,1)")
## EXAMPLE 2
# CF of a weighted linear combination of independent Rectangular RVs
t <- seq(from = -10,
to = 10,
length.out = 201)
coef <- c(1, 2, 3, 4, 5) / 15
plotReIm(function(t)
cf_RectangularSymmetric(t, coef),
t,
title = "CF of a weighted linear combination of Rectangular RVs")
## EXAMPLE 3
# PDF/CDF of a weighted linear combination of independent Rectangular RVs
coef <- c(1, 2, 3, 4, 5) / 15
cf <- function(t)
cf_RectangularSymmetric(t, coef)
x <- seq(from = -1,
to = 1,
length.out = 201)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$N <- 2 ^ 12
options$xMin <- -1
options$xMax <- 1
result <- cf2DistGP(cf, x, prob, options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.