View source: R/cf_FisherSnedecor.R
cf_FisherSnedecor | R Documentation |
cf_FisherSnedecor(t, df1, df2, coef, niid, tol)
evaluates characteristic function
of the distribution of a linear combination of independent random variables
with the central FISHER-SNEDECOR F-distribution.
That is, cf_FisherSnedecor
evaluates the characteristic function cf(t)
of Y = sum_{i=1}^N coef_i * X_i
, where X_i ~ F(df1_i,df2_i)
are inedependent RVs,
with df1_i
and df2_i
degrees of freedom, for i = 1,...,N
.
The characteristic function of X ~ F(df1,df2)
is
cf(t) = U(df1/2, 1-df2/2, -1i*(df2/df1)*t),
where U(a,b,z)
denotes the confluent hypergeometric function of the second kind.
Hence, the characteristic function of Y = coef_1*X_1 +...+ coef_N*X_N
is
cf_Y(t) = cf_1(coef_1*t) *...* cf_N(coef_N*t),
where cf_i(t)
is the characteristic function of X_i ~ F(df1_i,df2_i)
.
cf_FisherSnedecor(t, df1, df2, coef, niid, tol)
t |
vector or array of real values, where the CF is evaluated. |
df1 |
vector of the degrees of freedom |
df2 |
vector of the degrees of freedom |
coef |
vector of the coefficients of the linear combination of the log-transformed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient |
tol |
tolerance factor for selecting the Poisson weights, i.e. such that |
Characteristic function cf(t)
of a linear combination of independent random variables
with the central FISHER-SNEDECOR F-distribution.
Ver.: 16-Sep-2018 18:18:47 (consistent with Matlab CharFunTool v1.3.0, 24-Jun-2017 10:07:43).
[1] PHILLIPS, P.C.B. The true characteristic function of the F distribution. Biometrika (1982), 261-264.
[2] WITKOVSKY, V.: On the exact computation of the density and of the quantiles of linear combinations of t and F random variables. Journal of Statistical Planning and Inference 94 (2001), 1-13.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/F-distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE 1
# CF of a linear combination of independent F RVs
df1 <- 3:12
df2 <- seq(14, 5,-1)
coef <- 1 / 10
t <- seq(from = -5,
to = 5,
length.out = 501)
plotReIm(function(t)
cf_FisherSnedecor(t, df1, df2, coef),
t,
title = 'Characteristic function of the linear combination of F RVs')
## EXAMPLE 2
# PDF/CDF of a linear combination of independent F RVs
df1 <- 3:12
df2 <- seq(14, 5,-1)
coef <- 1 / 10
cf <- function(t)
cf_FisherSnedecor(t, df1, df2, coef)
options <- list()
options$N <- 2 ^ 10
options$xMin = 0
prob <- c(0.9, 0.95, 0.99)
result <- cf2DistGP(cf = cf, prob = prob, options = options)
result
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.