View source: R/cf_FisherSnedecor.R
| cf_FisherSnedecor | R Documentation | 
cf_FisherSnedecor(t, df1, df2, coef, niid, tol) evaluates characteristic function
of the distribution of a linear combination of independent random variables
with the central FISHER-SNEDECOR F-distribution.
That is, cf_FisherSnedecor evaluates the characteristic function cf(t)
of  Y = sum_{i=1}^N coef_i * X_i, where X_i ~ F(df1_i,df2_i) are inedependent RVs,
with df1_i and df2_i degrees of freedom, for i = 1,...,N.
The characteristic function of X ~ F(df1,df2) is
cf(t) = U(df1/2, 1-df2/2, -1i*(df2/df1)*t),
where U(a,b,z) denotes the confluent hypergeometric function of the second kind.
Hence, the characteristic function of Y  = coef_1*X_1 +...+ coef_N*X_N
is 
cf_Y(t) =  cf_1(coef_1*t) *...* cf_N(coef_N*t),
 where cf_i(t)
is the characteristic function of X_i ~ F(df1_i,df2_i).
cf_FisherSnedecor(t, df1, df2, coef, niid, tol)
t | 
 vector or array of real values, where the CF is evaluated.  | 
df1 | 
 vector of the  degrees of freedom   | 
df2 | 
 vector of the  degrees of freedom   | 
coef | 
 vector of the coefficients of the linear combination of the log-transformed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is   | 
niid | 
 scalar convolution coeficient   | 
tol | 
 tolerance factor for selecting the Poisson weights, i.e. such that   | 
Characteristic function cf(t) of a linear combination of independent random variables
with the central FISHER-SNEDECOR F-distribution.
Ver.: 16-Sep-2018 18:18:47 (consistent with Matlab CharFunTool v1.3.0, 24-Jun-2017 10:07:43).
[1] PHILLIPS, P.C.B. The true characteristic function of the F distribution. Biometrika (1982), 261-264.
[2] WITKOVSKY, V.: On the exact computation of the density and of the quantiles of linear combinations of t and F random variables. Journal of Statistical Planning and Inference 94 (2001), 1-13.
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/F-distribution.
Other Continuous Probability Distribution: 
cfS_Arcsine(),
cfS_Beta(),
cfS_Gaussian(),
cfS_Laplace(),
cfS_Rectangular(),
cfS_Student(),
cfS_TSP(),
cfS_Trapezoidal(),
cfS_Triangular(),
cfS_Wigner(),
cfX_ChiSquare(),
cfX_Exponential(),
cfX_FisherSnedecor(),
cfX_Gamma(),
cfX_InverseGamma(),
cfX_LogNormal(),
cf_ArcsineSymmetric(),
cf_BetaNC(),
cf_BetaSymmetric(),
cf_Beta(),
cf_ChiSquare(),
cf_Exponential(),
cf_FisherSnedecorNC(),
cf_Gamma(),
cf_InverseGamma(),
cf_Laplace(),
cf_LogRV_BetaNC(),
cf_LogRV_Beta(),
cf_LogRV_ChiSquareNC(),
cf_LogRV_ChiSquare(),
cf_LogRV_FisherSnedecorNC(),
cf_LogRV_FisherSnedecor(),
cf_LogRV_MeansRatioW(),
cf_LogRV_MeansRatio(),
cf_LogRV_WilksLambdaNC(),
cf_LogRV_WilksLambda(),
cf_Normal(),
cf_RectangularSymmetric(),
cf_Student(),
cf_TSPSymmetric(),
cf_TrapezoidalSymmetric(),
cf_TriangularSymmetric(),
cf_vonMises()
## EXAMPLE 1
# CF of a linear combination of independent F RVs
df1 <- 3:12
df2 <- seq(14, 5,-1)
coef <- 1 / 10
t <- seq(from = -5,
         to = 5,
         length.out = 501)
plotReIm(function(t)
        cf_FisherSnedecor(t, df1, df2, coef),
        t,
        title = 'Characteristic function of the linear combination of F RVs')
## EXAMPLE 2
# PDF/CDF  of a linear combination of independent F RVs
df1 <- 3:12
df2 <- seq(14, 5,-1)
coef <- 1 / 10
cf <- function(t)
        cf_FisherSnedecor(t, df1, df2, coef)
options <- list()
options$N <- 2 ^ 10
options$xMin = 0
prob <- c(0.9, 0.95, 0.99)
result <- cf2DistGP(cf = cf, prob = prob, options = options)
result
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.