View source: R/cf_LogRV_BetaNC.R
cf_LogRV_BetaNC | R Documentation |
cf_LogRV_BetaNC(t, alpha, beta, delta, coef, niid, tol, type)
evaluates characteristic function
of a linear combination (resp. convolution) of independent LOG-TRANSFORMED non-central BETA random variables,
(Type I and Type II), with their distributions specified
by the parameters \alpha_i, \beta_i
, and the noncentrality parameters \delta_i
.
The noncentral beta distribution has two types.
The Type I is the distribution of the random variable B1 = X1/(X1+X2)
, X1 ~ Gamma(\alpha, \gamma, \delta)
and X2 ~ Gamma(\beta, \gamma)
. The Type II noncentral beta distribution is the distribution
of the ratio random variable B2 = X1/(X1+X2)
, where X1 ~ Gamma(\alpha, \gamma)
and
X2 ~ Gamma(\beta, \gamma, \delta)
.
That is, cf_LogRV_BetaNC
evaluates the characteristic function cf(t)
of Y = coef_i*log(X_1) +...+ coef_N*log(X_N)
, where X_i ~ Beta(\alpha_i,\beta_i,\delta_i)
are inedependent RVs, with the shape parameters \alpha_i > 0
, \beta_i > 0
,
and the noncentrality parameters \delta_i > 0
, for i = 1,...,N
.
For Type I noncentral beta distribution, the characteristic
function of Y = log(X)
with X ~ Beta(\alpha, \beta, \delta)
is Poisson mixture
of CFs of the central log-transformed Beta RVs of the form
cf(t) = cf_LogRV_BetaNC(t, \alpha, \beta, \delta) = exp(-\delta/2) * sum_{j=1}^Inf (\delta/2)^j/j! * cf_LogRV_Beta(\alpha+j, \beta)
where cf_LogRV_Beta(\alpha+j, \beta)
are the CFs of central log-transformed Beta RVs
with parameters \alpha+j
and \beta
. Alternatively,
cf(t) = cf_LogRV_BetaNC(t, \alpha, \beta, \delta) = Gamma(\alpha+1i*t)/Gamma(\alpha) * Gamma(\alpha+\beta)/Gamma(\alpha+\beta+1i*t) * exp(-\delta/2) * 2F2(\alpha+\beta, \alpha+1i*t; \alpha, \alpha+\beta+1i*t; \delta/2)
,
where 2F2(a,b,;c,d;z)
is hypergeometric function.
For Type II noncentral beta distribution, the characteristic function
of Y = log(X)
with X ~ Beta(\alpha, \beta, \delta)
is Poisson mixture of CFs
of the central log-transformed Beta RVs of the form
cf(t) = cf_LogRV_BetaNC(t, \alpha, \beta, \delta) = exp(-\delta/2) * sum_{j=1}^Inf (\delta/2)^j/j! * cf_LogRV_Beta(\alpha, \beta+j)
where cf_LogRV_Beta(\alpha, \beta+j)
are the CFs of central log-transformed Beta RVs with parameters \alpha
and \beta+j
.
Alternatively,
cf(t) = cf_LogRV_BetaNC(t, \alpha, \beta, \delta) = Gamma(\alpha+1i*t)/Gamma(\alpha) * Gamma(\alpha+\beta)/Gamma(\alpha+ \beta+1i*t) * 1F1(1i*t;1i*t+(\alpha+\beta); -\delta/2) = cf_LogRV_Beta(t, \alpha, \beta) * 1F1(1i*t;1i*t+(\alpha+\beta);-\delta/2)
where 1F1(a;b;z)
is hypergeometric function.
Hence,the characteristic function of Y = coef(1)*Y1 + ... + coef(N)*YN
is cf_Y(t) = cf_Y1(coef(1)*t) * ... * cf_YN(coef(N)*t)
, where cf_Yi(t)
is evaluated
with the parameters \alpha(i)
and \beta(i)
.
cf_LogRV_BetaNC(t, alpha, beta, delta, coef, niid, tol, type)
t |
vector or array of real values, where the CF is evaluated. |
alpha |
vector of the 'shape' parameters |
beta |
vector of the 'shape' parameters |
delta |
vector of the non-centrality parameters |
coef |
vector of the coefficients of the linear combination of the Beta distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient |
tol |
tolerance factor for selecting the Poisson weights, i.e. such that |
type |
indicator of the type of the noncentral distribution
(Type I = 1 or Type II = 2). If empty, default value is |
Characteristic function cf(t)
of a linear combination
of independent LOG-TRANSFORMED non-central BETA random variables.
Ver.: 20-Sep-2018 00:17:22 (consistent with Matlab CharFunTool v1.3.0, 06-Jul-2018 15:10:17).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Noncentral_beta_distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_FisherSnedecor()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
Other Non-central Probability Distribution:
cf_BetaNC()
,
cf_FisherSnedecorNC()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_FisherSnedecorNC()
## EXAMPLE 1
# CF of the log-transformed non-central Beta RV with delta = 1, coef = -1
alpha <- 1
beta <- 3
delta <- 1
coef <- -1
t <- seq(from = -10,
to = 10,
length.out = 201)
functions_to_plot <- list(function(t) cf_LogRV_BetaNC(t, alpha, beta, delta, coef, type = 1),
function(t) cf_LogRV_BetaNC(t, alpha, beta, delta, coef, type = 2))
plotReIm2(functions_to_plot, list(t, t),
title = 'CF of minus log-transformed Type I and II Beta RV')
type <- 1
plotReIm(function(t)
cf_LogRV_BetaNC(t, alpha, beta, delta, coef, type),
t,
title = 'CF of minus log-transformed Type I and II Beta RV')
par(new=TRUE)
type <- 2
plotReIm(function(t)
cf_LogRV_BetaNC(t, alpha, beta, delta, coef, type),
t,
title = 'CF of minus log-transformed Type I and II Beta RV')
## EXAMPLE 2
# CDF/PDF of the minus log-transformed non-central Beta RV with delta = 1
alpha <- 1
beta <- 3
delta <- 1
coef <- -1
cf <- function(t)
cf_LogRV_BetaNC(t, alpha, beta, delta, coef)
options <- list()
options$xMin <- 0
result <- cf2DistGP(cf = cf, options = options)
## EXAMPLE 3
# CDF/PDF of the linear combination of minus log-transformed non-central Beta RVs
alpha <- c(1, 2, 3)
beta <- c(3, 4, 5)
delta <- c(0, 1, 2)
coef <- c(-1,-1,-1) / 3
cf <- function(t)
cf_LogRV_BetaNC(t, alpha, beta, delta, coef)
options <- list()
options$xMin <- 0
result <- cf2DistGP(cf = cf, options = options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.