View source: R/cf_LogRV_FisherSnedecor.R
cf_LogRV_FisherSnedecor | R Documentation |
cf_LogRV_FisherSnedecor(t, df1, df2, coef, niid)
evaluates characteristic function
of a linear combination (resp. convolution) of independent LOG-TRANSFORMED FISHER-SNEDECOR F
random variables (RVs) log(X)
, where X ~ F(df1,df2)
has the FISHER-SNEDECOR F distribution
with df1 > 0
and df2 > 0
degrees of freedom.
That is, cf_LogRV_FisherSnedecor
evaluates the characteristic function
cf(t) of Y = coef_1*log(X_1) +...+ coef_N*log(X_N)
, where X_i ~ F(df1_i,df2_i),
with degrees of freedom df1_i
and df2_i
, for i = 1,...,N
.
The characteristic function of Y = log(X)
, with X ~ F(df1,df2,\lambda)
,
where \lambda
is the non-centrality parameter, is defined by
cf_Y(t) = E(exp(1i*t*Y)) = E(exp(1i*t*log(X))) = E(X^(1i*t))
.
That is, the characteristic function can be derived from expression
for the r-th moment of X
, E(X^r)
by using (1i*t)
instead of r
.
In particular, the characteristic function of Y = log(X)
is defined by
cf_Y(t) = (df2/df1)^(1i*t) * gamma(df1/2 + 1i*t) / gamma(df1/2) * gamma(df2/2 - 1i*t) / gamma(df2/2).
Hence,the characteristic function of Y = coef(1)*Y1 + ... + coef(N)*YN
is
cf_Y(t) = cf_Y1(coef(1)*t) * ... * cf_YN(coef(N)*t),
where cf_Yi(t)
is evaluated with the parameters df1(i)
, df2(i)
, and \lambda(i)
.
cf_LogRV_FisherSnedecor(t, df1, df2, coef, niid)
t |
vector or array of real values, where the CF is evaluated. |
df1 |
vector of the degrees of freedom |
df2 |
vector of the degrees of freedom |
coef |
vector of the coefficients of the linear combination of the Beta distributed random variables.
If coef is scalar, it is assumed that all coefficients are equal. If empty, default value is |
niid |
scalar convolution coeficient |
Characteristic function cf(t)
of a linear combination
of independent LOG-TRANSFORMED FISHER-SNEDECOR F random variables.
Ver.: 20-Sep-2018 19:26:09 (consistent with Matlab CharFunTool v1.3.0, 10-Aug-2018 15:46:49).
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/F-distribution.
Other Continuous Probability Distribution:
cfS_Arcsine()
,
cfS_Beta()
,
cfS_Gaussian()
,
cfS_Laplace()
,
cfS_Rectangular()
,
cfS_Student()
,
cfS_TSP()
,
cfS_Trapezoidal()
,
cfS_Triangular()
,
cfS_Wigner()
,
cfX_ChiSquare()
,
cfX_Exponential()
,
cfX_FisherSnedecor()
,
cfX_Gamma()
,
cfX_InverseGamma()
,
cfX_LogNormal()
,
cf_ArcsineSymmetric()
,
cf_BetaNC()
,
cf_BetaSymmetric()
,
cf_Beta()
,
cf_ChiSquare()
,
cf_Exponential()
,
cf_FisherSnedecorNC()
,
cf_FisherSnedecor()
,
cf_Gamma()
,
cf_InverseGamma()
,
cf_Laplace()
,
cf_LogRV_BetaNC()
,
cf_LogRV_Beta()
,
cf_LogRV_ChiSquareNC()
,
cf_LogRV_ChiSquare()
,
cf_LogRV_FisherSnedecorNC()
,
cf_LogRV_MeansRatioW()
,
cf_LogRV_MeansRatio()
,
cf_LogRV_WilksLambdaNC()
,
cf_LogRV_WilksLambda()
,
cf_Normal()
,
cf_RectangularSymmetric()
,
cf_Student()
,
cf_TSPSymmetric()
,
cf_TrapezoidalSymmetric()
,
cf_TriangularSymmetric()
,
cf_vonMises()
## EXAMPLE 1
# CF of a weighted linear combination of independent log-F RVs
coef <- c(1, 2, 3, 4, 5)
weight <- coef / sum(coef)
df1 <- 5
df2 <- 3
t <- seq(from = -10,
to = 10,
length.out = 201)
plotReIm(function(t)
cf_LogRV_FisherSnedecor(t, df1, df2, weight),
t,
title = "Characteristic function of a linear combination of log-F RVs")
## EXAMPLE 2
# PDF/CDF from the CF by cf2DistGP
coef <- c(1, 2, 3, 4, 5)
weight <- coef / sum(coef)
df1 <- 5
df2 <- 3
cf <- function(t)
cf_LogRV_FisherSnedecor(t, df1, df2, weight)
options <- list()
options$N <- 2 ^ 12
prob <- c(0.9, 0.95, 0.99)
result <- cf2DistGP(cf = cf, prob = prob, options = options)
str(result)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.