cfN_Quinkert | R Documentation |
cfN_Quinkert(t,a,b)
evaluates the characteristic function cf(t)
of the Quinkert distribution, with the parameters a
(a > 0) and b
(b > 0), i.e.
cf(t) = cfN_Quinkert(t,a,b) = 1F1(a,a+b,e^(1i*t)-1)
, where 1F1
denotes the confluent hypergeometric (Kummer's) function.
For more details see [4], p. 564.
cfN_Quinkert(t, a = 1, b = 1, cfX)
t |
vector or array of real values, where the CF is evaluated. |
a |
vector of the 'shape' parameters |
b |
vector of the 'shape' parameters |
cfX |
function. |
Characteristic function cf(t)
of the Quinkert distribution.
ver.: 31-Jul-2021 12:36:48 (consistent with Matlab CharFunTool v1.5.1, 15-Nov-2016 13:36:26).
[1] WITKOVSKY V., WIMMER G., DUBY T. (2016). Computing the aggregate loss distribution based on numerical inversion of the compound empirical characteristic function of frequency and severity. Preprint submitted to Insurance: Mathematics and Economics.
[2] DUBY T., WIMMER G., WITKOVSKY V.(2016). MATLAB toolbox CRM for computing distributions of collective risk models. Preprint submitted to Journal of Statistical Software.
[3] WITKOVSKY V. (2016). Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models. Acta IMEKO, 5(3), 32-44.
[4] WIMMER G., ALTMANN G. (1999). Thesaurus of univariate discrete probability distributions. STAMM Verlag GmbH, Essen, Germany. ISBN 3-87773-025-6.
Other Discrete Probability Distribution:
cfN_Binomial()
,
cfN_Delaporte()
,
cfN_GeneralizedPoisson()
,
cfN_Geometric()
,
cfN_Logarithmic()
,
cfN_NegativeBinomial()
,
cfN_Poisson()
,
cfN_PolyaEggenberger()
,
cfN_Waring()
## EXAMPLE 1
# CF of the Quinkert distribution with the parameter a=3, b=5
a <- 3;
b <- 5;
t <- seq(from = -15,
to = 15,
length.out =501)
plotReIm(function(t)
cfN_Quinkert(t, a, b),
t,
title = "CF of the Quinkert distribution with a = 3, b = 5")
## EXAMPLE 2
# CF of the compound Quinkert-Exponential distribution
a <- 3
b <- 5
lambda <- 5
cfX <- function(t)
cfX_Exponential(t, lambda)
t <- seq(from = -15,
to = 15,
length.out = 501)
plotReIm(function(t)
cfN_Quinkert(t, a, b, cfX),
t,
title = "CF of the compound Quinkert-Exponential distribution")
## EXAMPLE3
# PDF/CDF of the compound Quinkert-Exponential distribution
a <- 3;
b <- 5;
lambda <- 5;
cfX <- function(t)
cfX_Exponential(t, lambda)
cf <- function(t)
cfN_Quinkert(t,a,b,cfX)
x <- seq(0,1.5, length.out = 101)
prob <- c(0.9, 0.95, 0.99)
options <- list()
options$isCompound = TRUE
result <- cf2DistGP(cf,x,prob,options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.